FIXED POINT THEORY FOR CONTRACTIVE MAPPINGS SATISFYING Φ-MAPS IN GENERALIZED CONE D-METRIC SPACES

1Gajanan. A. Dhanorkar* and 2J. N. Salunke

1V PCOE, Vidyanagari, MIDC, Baramati, Pune (MS), India
E-mail: gdhanorkar81@yahoo.com

2School of Mathematical Sciences, N. M. U., Jalgaon, India
E-mail: drjnsalunke@gmail.com

(Received on: 23-09-11; Accepted on: 10-10-11)

Abstract

In this paper we introduce cone D-metric spaces under some contractive conditions related to a nondecreasing map $\phi : [0, +\infty) \rightarrow [0, +\infty)$ with $\lim_{t \rightarrow +\infty} \phi(t) = 0$, for all $t \in (0, +\infty)$. Also we prove some fixed point theorems on the cone D-metric spaces with ϕ maps.

Keywords: Cone metric, D-metric spaces, Cone metric space, mapping ϕ.

1. INTRODUCTION:

A generalized metric space or D-metric space introduced by Dhage in [2] and [3]. He proved some results on fixed points for a self-map satisfying a contraction for complete and bounded D-metric spaces. By increasing the number of factors Rhoades [4] generalized Dhage’s contractive condition and proved the existence of a unique fixed point of a self-map in a D-metric space. Recently, Huang and Zhang [1] defined cone metric spaces and generalized the concept of a metric space, replacing the set of real numbers by an ordered Banach space E and obtained some fixed point theorems for mappings satisfying different contractive conditions. Our main aim is to prove some results on cone D-metric spaces under some contractive conditions related to a nondecreasing map $\phi: [0, +\infty) \rightarrow [0, +\infty)$ with $\lim_{t \rightarrow +\infty} \phi(t) = 0$, for all $t \in (0, +\infty)$.

2. PRELIMINARIES:

Definition 2.1: Let E always be a real Banach space and P a subset of E. Then P is called a cone if
(i) P is closed, non-empty and $P \neq 0$,
(ii) $ax + by \in P$ for all $x, y \in P$ and non-negative real numbers a, b.
(iii) $P \cap (-P) = 0$.

For a given cone $P \subseteq E$, we can define a partial ordering \leq with respect to P by $x \leq y$ if and only if $x - y \in P$. $x \ll y$ will stand for $x - y \in \text{int}(P)$, where $\text{int}(P)$ denotes the interior of P [1].

Definition 2.2: The cone P is called normal if there is a number $M > 0$ such that for all x, y in E, $0 \leq x \leq y$ implies $\|x\| \leq M \|y\|$
The least positive number satisfying above is called the normal constant of P [1]. It is clear that $M \geq 1$.

In the following, let E be a normed linear space, P be a cone in E satisfying $\text{int}(P) \neq \phi$ and \geq denote the partial ordering on E with respect to P.

Corresponding author: 1Gajanan. A. Dhanorkar, E-mail: gdhanorkar81@yahoo.com
Definition 2.3: Let X be a non-empty set. Suppose the mapping $d : X \times X \to E$ satisfies:
(a) $0 \leq d(x, y)$ for all x, y in X and $d(x, y) = 0$ if and only if $x = y$,
(b) $d(x, y) = d(y, x)$ for all x, y in X,
(c) $d(x, y) \leq d(x, z) + d(z, y)$ for all x, y, z in X. Then d is called a cone metric on X, and (X, d) is called a cone metric space $[1]$.

Example 2.4: Let $E = R^2$, $P = \{(x, y) \in E : x, y \geq 0\}$, $X = R$ and $d : X \times X \to E$ defined by
$$d(x, y) = (|x - y|, \alpha|x - y|),$$
where $\alpha \geq 0$ is constant. Then (X, d) is a cone metric space $[1]$.

Definition 2.5: $[2]$ Let X be a nonempty set, a D-metric space is a function $D : X \times X \times X \to R$ defined on X such that for any x, y, z, a in X
(i) $D(x, y, z) = 0$ if and only if $x = y = z$ for each x, y, z in X,
(ii) $D(x, y, z) = D(\pi(x, y, z))$, π is a permutation,
(iii) $D(x, y, z) \leq D(x, y, a) + D(x, a, z) + D(a, y, z)$.

Definition 2.6: Let X be a nonempty set, a strong D-metric space is a function $D : X \times X \times X \to R^+$ defined on X such that for any x, y, z, a in X
(i) $D(x, y, z) = 0$ if and only if $x = y = z$ for each x, y, z in X,
(ii) $D(x, y, z) = D(\pi(x, y, z))$, π is a permutation,
(iii) $D(x, y, z) \leq D(x, y, a) + D(x, a, z)$.

Lemma 2.9: Any Strong cone D-metric space is a cone D-metric space but the converse is not true in general. Since the strong cone D-metric leads to the cone D-metric, so in the rest of the article we consider both the (strong) cone D-metric space and the cone D-metric space to prove the main results.

Example 2.10: Let $E = R^3$, $P = \{(x, y, z) \in E : x, y, z \geq 0\}$, $X = R$. Define $D : X \times X \times X \to E$, by
$$D(x, y, z) = (|x - y|, |y - z|, |x - z|)$$
a cone D-metric space.

Example 2.11: Let (X, d) denotes cone metric space on X and define
$$D(x, y, z) = (d(x - y), d(y - z), d(x - z))$$
So, (X, D) is a cone D-metric space on X.

Definition 2.12: Let (X, D) be a cone D-metric space on X, $x \in X$, and $\{x_n\}$ be a sequence in X then $\{x_n\}$ is called converge sequence to some fixed $x \in X$ if for each $c \in E : c << 0$ and N be natural number, $D(x_n, x, x) << c$ for all $n, m > N$. We can write $x_n \to x$, if $\{x_n\}$ converge to x. And $\{x_n\}$ is called a Cauchy sequence if $D(x_n, x_m, x_p) << c$ for all $n, m, p > N$.

Definition 2.13: A cone D-metric space on (X, D) is complete if every Cauchy sequence in X is convergent.

Proposition 2.14: Let (X, D) be a cone D-metric space on X, then the following are equivalent
(1) $\{x_n\}$ is convergent to x,
(2) $D(x_n, x, x) << c$ for each $n, m > N$,
(3) $D(x_n, x, x) << c$ for each $n > N$.

MAIN RESULTS:

Following to Matkowski $[6]$, let Φ be the set of all functions ϕ such that $\phi : [0, +\infty) \to [0, +\infty)$ be a nondecreasing function with $\lim_{t \to +\infty} \phi'(t) = 0$ for all $t \in (0, +\infty)$. If $\Phi \in \phi$, then ϕ is called Φ-map. If ϕ is Φ-map, then it is an easy matter to show that
(1) $\phi(t) < t$, for all $t \in (0, +\infty)$,
(2) $\phi(0) = 0$.

© 2012, IJMA. All Rights Reserved 805
In this section we prove some fixed point theorems on the D-cone metric spaces with \(\varphi \)-maps.

Lemma 2.15: For any natural numbers \(l, n \) and \(m \), we get \(D(x_l, x_n, x_m) \leq D(x_l, x_n, x_m) \).

Theorem 2.16: Let \((X, D)\) be a complete cone D-metric space, \(P \) be a cone normal, suppose the mapping \(T : X \to X \) satisfies the contractive condition, \(D(Tx, Ty, Tz) \leq \phi(D(x, y, z)) \), for all \(x, y, z \in X \). Then \(T \) has a unique fixed point in \(X \).

Proof: Let \(x_0 \) be an arbitrary point in \(X \), define the iterative sequence \(\{x_n\} \) by \(x_1 = Tx_0 \), \(x_2 = T^2x_0 \), ..., \(x_{n+1} = T^nx_0 = T^{n+1}x_0 \). So, we have \(D(x_{n+1}, x_{n+1}, x_n) = D(Tx_n, Tx_n, Tx_{n+1}) \leq \phi(D(x_n, x_n, x_{n+1})) \). \[\leq \varphi(D(x_{n+1}, x_{n+1}, x_{n+2})) \] \[\leq \ldots \] \[\leq \varphi(D(x_1, x_1, x_2)) \] given \(\varepsilon > 0 \), since \(\lim_{x \to c} \varphi(D(x, x, x)) = 0 \) and \(\phi(\varepsilon) < \varepsilon \), there is an integer \(k_0 \) such that \(\varphi(D(x_1, x_1, x_2)) < \varepsilon - \phi(\varepsilon) \), for all \(n \geq k_0 \).

Hence \[\varphi(D(x_{n+1}, x_{n+1}, x_{n+2})) < \varepsilon - \phi(\varepsilon) \], for all \(n \geq k_0 \). \[(1) \]

For \(m, n \in N \) with \(n > m \), we claim that \[\varphi(D(x_n, x_n, x_m)) < \varepsilon - \phi(\varepsilon) \], for all \(n \geq m > k_0 \). \[(2) \]

We prove Inequality (2) by induction on \(n \). Inequality (2) holds for \(n = m+1 \) by using Inequality (1) and the fact that \(\varepsilon - \phi(\varepsilon) < \varepsilon \). Assume Inequality (2) holds for \(n = k \). For \(n = k + 1 \), we have \[D(x_{k+1}, x_{k+1}, x_m) \leq D(x_{m+1}, x_{m+1}, x_m) + D(x_{k+1}, x_{k+1}, x_{m+1}) \] \[< \varepsilon - \phi(\varepsilon) + \varphi(D(x_1, x_k, x_m)) \] \[< \varepsilon - \phi(\varepsilon) + \phi(\varepsilon) \] \[= \varepsilon \]

By induction on \(n \), we conclude that Inequality (2) holds for all \(n \geq m \geq k_0 \). So \(\{x_n\} \) is Cauchy since \(X \) is complete metric space, there exist a point \(x \in X \) such that \(x_n \to x \).

To show \(x \) is a fixed point of the mapping \(T \). Consider \[D(Tx, Tx, x) < D(Tx, Tx, Tx) + D(Tx, Tx, x) \]

By lemma 2.15, we get \[D(Tx, Tx, x) < D(Tx, Tx, Tx) + D(Tx, Tx, x) \] .

This gives \[D(Tx, Tx, x) \leq D(x_n, x, x) + D(x_{n+1}, x_{n+1}, x) \] \[\leq D(x_n, x, x) \] \[< D(x_n, x, x) + \varphi(D(x_n, x, x)) \] \[< D(x_n, x, x) + \varphi(D(x_n, x, x)) \] \[= \varepsilon \]

since \(\{x_n\} \) is a Cauchy sequence in the complete D-cone metric space, there exist \(c \ll 0 \) such that \(D(x_n, x, x) < c \) and so \(D(x_{n+1}, x, x) \to 0 \), as \(n \to \infty \) and similarly \(D(x_n, x, x) < c \), \(D(x_n, x, x) \to 0 \), as \(n \to \infty \), then \(D(Tx, Tx, x) \to 0 \) and we have \(Tx = x \). This show that \(x \) is a fixed point of \(T \).
UNIQUENESS: If y is another fixed point,

\[D(x, y, y) = D(Tx, Ty, y) \leq \phi(D(x, y, y)) < D(x, y, y) \]

which is a contradiction. So $x = y$, and hence T has a unique fixed point.

Corollary 2.17: Let (X, D) be a complete cone D-metric space, P be a cone normal, suppose the mapping $T : X \to X$ satisfy the contractive condition, thus for $m \in N$, $D(T^n x, T^n x, T^n x) \leq \phi(x, y, z)$, for all $x, y, z \in X$. Then T has a unique fixed point in X.

Proof: From Theorem 2.16, we get T^m has a unique fixed point say x. Since $T(x) = T(T^n x) = T^{n+1} x = T^n (Tx)$, also we have Tx is a fixed point for T^m. By uniqueness of x, we get $Tx = x$.

Corollary 2.18: Let (X, D) be a complete cone D-metric space, P be a cone normal, suppose the mapping $T : X \to X$ satisfy the contractive condition, thus for $m \in N$, $D(Tx, Ty, Tz) \leq \phi(D(x, y, z))$, for all $x, y, z \in X$. Then T has a unique fixed point in X.

Proof: Define $\phi : [0, +\infty) \to [0, +\infty)$ with $\phi(t) = \frac{t}{1+t}$. Then it is clear that $\phi(t) = \frac{t}{1+t}$ is a nondecreasing function with $\lim_{n \to \infty} \phi^n(t) = 0$, for all $t > 0$. Since $D(Tx, Ty, Tz) \leq \phi(D(x, y, z))$, for all $x, y, z \in X$, the result follows from Theorem 2.16.

Theorem 2.19: Let (X, D) be a complete cone D-metric space, P be a cone normal, suppose the mapping $T : X \to X$ satisfy the contractive condition, $D(Tx, Ty, Tz) \leq \phi(\max\{D(x, y, z), D(Tx, Tx, x), D(Ty, Ty, y), D(Tx, y, z)\})$, for all $x, y, z \in X$. Then T has a unique fixed point in X.

Proof: Let x_0 be an arbitrary point in X, define the iterative sequence \(\{x_n\} \) by $x_1 = Tx_0$, $x_2 = Tx_1 = T^2 x_0$, ..., $x_{n+1} = Tx_n = T^{n+1} x_0$. So, we have

\[
D(x_n, x_{n+1}, x_{n+1}) = D(Tx_n, Tx_n, Tx_n) \\
\leq \phi(\max\{D(x_n, x_{n+1}, x_{n+1}), D(x_{n+1}, x_{n+1}, x_{n+1}), D(x_{n+1}, x_{n+1}, x_{n+1})\}) \\
\leq \phi(\max\{D(x_n, x_{n+1}, x_{n+1}), D(x_{n+1}, x_{n+1}, x_{n+1}), D(x_{n+1}, x_{n+1}, x_{n+1})\})
\]

If $\max\{D(x_n, x_{n+1}, x_{n+1}), D(x_{n+1}, x_{n+1}, x_{n+1}), D(x_{n+1}, x_{n+1}, x_{n+1})\} = D(x_n, x_{n+1}, x_{n+1})$, then

\[
D(x_n, x_{n+1}, x_{n+1}) \leq \phi(D(x_n, x_{n+1}, x_{n+1})) \\
< D(x_n, x_{n+1}, x_{n+1}),
\]

which is impossible. So we must have

\[
\max\{D(x_n, x_{n+1}, x_{n+1}), D(x_{n+1}, x_{n+1}, x_{n+1}), D(x_{n+1}, x_{n+1}, x_{n+1})\} = D(x_n, x_{n+1}, x_{n+1}),
\]

and hence

\[
D(x_n, x_{n+1}, x_{n+1}) \leq \phi(D(x_n, x_{n+1}, x_{n+1})),
\]

for $n \in N$.

\[
D(x_{n+1}, x_{n+1}, x_{n+1}) = D(Tx_n, Tx_n, Tx_n) \\
\leq \phi(D(x_{n+1}, x_{n+1}, x_{n+1})) \\
\leq \phi(\phi(D(x_n, x_{n+1}, x_{n+1}))) \\
\leq \phi^{2}(D(x_n, x_{n+1}, x_{n+1})) \\
\leq \phi^{n}(D(x_0, x_1, x_1)).
\]

Using proof of Theorem 2.16, we can show that \(\{x_n\} \) is a Cauchy sequence, and since X is complete cone D-metric space, there exist a point x in X such that $x_n \to x$. For $n \in N$, we have
\[D(x, x, Tx) = D(x, x, x) + D(x, x, x) + \phi(\max\{D(x, x, x), D(x, x, x), D(x, x, x), D(x, x, x)\}). \]

Case 1:
\[
\max\{D(x, x, x), D(x, x, x), D(x, x, x)\} = D(x, x, x).
\]
Letting \(n \to \infty \), we conclude that \(D(x, x, Tx) = 0 \), and hence \(Tx = x \).

Case 2:
\[
\max\{D(x, x, x), D(x, x, x), D(x, x, x), D(x, x, x)\} = D(x, x, x).
\]
Letting \(n \to \infty \), we conclude that \(D(x, x, Tx) = 0 \), and hence \(Tx = x \).

Case 3:
\[
\max\{D(x, x, x), D(x, x, x), D(x, x, x)\} = D(x, x, x).
\]
Letting \(n \to \infty \), we conclude that \(D(x, x, Tx) = 0 \), and hence \(Tx = x \).

In all cases, we conclude that \(x \) is a fixed point of \(T \).

For Uniqueness: Let \(y \) be any other fixed point of \(T \) such that \(x \neq y \). Then
\[
D(x, y, y) = (\max\{D(x, y, y), D(x, x, x), D(y, y, y), D(x, y, y)\})
\leq \phi(D(x, y, y))
\leq D(x, y, y).
\]
which is a contradiction since \(\phi(D(x, y, y)) < D(x, y, y) \). Therefore, \(D(x, y, y) = 0 \) and hence \(x = y \).

Corollary 2.20: Let \((X, D) \) be a complete cone D-metric space, \(P \) be a cone normal, suppose there is \(k \in [0, 1) \) such that the map mapping \(T : X \to X \) satisfy the contractive condition,
\[
D(Tx, Ty, Tz) \leq k(\max\{D(x, y, z), D(x, Tx, Ty), D(y, Ty, Tz), D(Tx, y, z)\}) \text{, for all } x, y, z \in X \text{. Then } T \text{ has a unique fixed point in } X \text{.}
\]

Proof: Define \(\phi : [0, +\infty) \to [0, +\infty) \) with \(\phi(t) = kt \). Then it is clear that \(\phi(t) \) is a nondecreasing function with \(\lim_{t \to \infty} \phi(t) = 0 \), for all \(t > 0 \). Since \(D(Tx, Ty, Tz) \leq \phi(\max\{D(x, y, z), D(x, Tx, Ty), D(y, Ty, Tz), D(Tx, y, z)\}) \), for all \(x, y, z \in X \), then result follows from Theorem 2.19.

Corollary 2.21: Let \((X, D) \) be a complete cone D-metric space, \(P \) be a cone normal, suppose the map the mapping \(T : X \to X \) satisfy the contractive condition,
\[
D(Tx, Ty, Tz) \leq k(\max\{D(x, y, z), D(x, Tx, Ty), D(y, Ty, Tz), D(Tx, y, z)\}) \text{, for all } x, y, z \in X \text{. Then } T \text{ has a unique fixed point in } X \text{.}
\]

Proof: It follows from Theorem 2.19 by replacing \(z = y \).

REFERENCES:
