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ABSTRACT

In this paper we introduce cone D-metric spaces under some contractive conditions related to a nondecreasing ma

pap p g map

¢ :[0,+90) — [0,+w0) With |im ¢"(t) =0, for allt € (0,+00). Also we prove some fixed point theorems on the cone D-
n—+o

metric spaces with ¢ maps.
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1. INTRODUCTION:

A generalized metric space or D-metric space introduced by Dhage in [2] and [3]. He proved some results on fixed
points for a self-map satisfying a contraction for complete and bounded D-metric spaces. By increasing the number of
factors Rhoades [4] generalized Dhage’s contractive condition and proved the existence of a unique fixed point of a
self-map in a D-metric space. Recently, Huang and Zhang [1] defined cone metric spaces and generalized the concept
of a metric space, replacing the set of real numbers by an ordered Banach space E and obtained some fixed point
theorems for mappings satisfying different contractive conditions. Our main aim is to prove some results on cone D-
metric spaces under some contractive conditions related to a nondecreasing map ¢ :[0,+0) — [0,+00) with

lim ¢"(t) =0, forall t  (0,+).

2. PRELIMINARIES:

Definition 2.1: Let E always be a real Banach space and P a subset of E. Then P is called a cone if
(i) P is closed, non-empty and P = O,

(i) ax + by € P forall X,y € P and non-negative real numbers a, b.

(iii) P~ (~P) =0.

For a given cone P — E, we can define a partial ordering < with respect to P by x <y if and only if x—yeP.
X <<y will stand for x—y e int(P), where int(P) denotes the interior of P [1].

Definition 2.2: The cone P is called normal if there is a number M > 0 such that for all x, y in E, 0 < x <y implies
I xli<M [yl
The least positive number satisfying above is called the normal constant of P [1]. It is clear that M >1.

In the following, let E be a normed linear space, P be a cone in E satisfying int(p) = ¢ and =’ denote the partial
ordering on E with respect to P.
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Definition 2.3: Let X be a non-empty set. Suppose the mapping d : X x X — E satisfies:

(@ 0<d(x,y) forallx,yinXandd(x,y)=0ifandonly if x =y,

(b) d(x, y) =d(y, x) forall x, y in X,

(€) d(x,y) < d(x,z) +d(z,y) forall x,y, zin X. Then d is called a cone metric on X, and (X, d) is called a cone metric
space [1].

Example 2.4: Let E=R*,P={(x,y) € E:x,y > 0}, X=R and d: X x X — E defined by

d(x,y) = (x-yl, alx-y|), where & >0 is constant. Then (X, d) is a cone metric space [1].

Definition 2.5: [2] Let X be a nonempty set, a D-metric space is a function D : X x X x X — R* defined on X such that
forany x,y,z,ain X

(i) D(x,y,z)=0ifandonly if x=y =z foreach x,y, zin X,

(i) D(x, Y, 2) = D(p(x, Y, 2)), p isa permutation,

(iii) D(x,y,2) < D(x,y,a) +D(x,a,2z)+D(a,vV, 2).

Definition 2.6: Let X be a nonempty set, a strong D-metric space is a function D : X x X x X — R* defined on X such
that for any x, y, z,ain X

(i) D(x,y,z)=0ifand only ifx=y =z foreach x, y, z in X,

(ii) D(x, y, z) = D(p(X, ¥, 2)), p isa permutation,

(iii) D(X,v¥,2) <D(x,v,a)+D(x,a,z).

Lemma 2.9: Any Strong cone D-metric space is a cone D-metric space but the converse is not true in general. Since the
strong cone D-metric leads to the cone D-metric, so in the rest of the article we consider both the (strong) cone D-metric
space and the cone D-metric space to prove the main results.

Example 2.10: Let E=R® P = {(x,y,z)€E:X,y,z > 0}, X=R.Define D: X x Xx X —E, by

DX, Y, 2)=(x =yl ly =2, [x —2])
a cone D-metric space.

Example 2.11: Let (X, d) denotes cone metric space on X and define

D(x,y, 2) = (d(x —y), d(y — 2), d(x — 2))
So, (X, D) is a cone D-metric space on X.
Definition 2.12: Let (X, D) be a cone D-metric space on X, xe X, and {xn} be a sequence in X then {Xn} is called

converge sequence to some fixed x e X if for each ce E, c<<0 and N be natural number, D(x,,x,,x) <<c forall

m?

n, m> N. We can write X, — X, if {xn} converge to x. And {xn} is called a Cauchy sequence if D(X,, Xy, X,) << €
foralln,m,p>N.

Definition 2.13: A cone D-metric space on (X, D) is complete if every Cauchy sequence in X is convergent.

Proposition 2.14: Let (X, D) be a cone D-metric space on X, then the following are equivalent
(1) {x,} is convergent to X,

(2) D(x,,X,,X) << c for each n, m >N,
(3) D(x,,x,,x) << ¢ foreachn>N.

MAIN RESULTS:

Following to Matkowski [6], let @ be the set of all functions ¢ such that ¢:[0,+00) —[0,+00) be a nondecreasing
function with |im 4" (t) =0for all te (0,+x). If ®eg , then ¢ is called ®-map. If$ is ®-map, then it is an easy
matter to show that

(1) ¢(t) <t, forall t (0, +0),

(2)¢(0)=0.
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In this section we prove some fixed point theorems on the D-cone metric spaces with ¢-maps.
Lemma 2.15: For any natural numbers I, n and m, we getD(x,,X,,,X,) < D(X,, X, X,) -

Theorem 2.16: Let (X, D) be a complete cone D-metric space, P be a cone normal, suppose the mapping T:X — X
satisfy the contractive condition, D(Tx, Ty, Tz) < ¢(D(x, Y, 2)), forall X, y, z in X. Then T has a unique fixed point in X.

Proof: Let x, be an arbitrary point in X, define the iterative sequence {Xn} by x, =Txy» X, =TX =T?Xys

X,., =Tx, =T""x,. So, we have

n+l

D(Xn+1’ Xn+1’ Xn) =D(TXn, TXn’ TXn-l)
< ¢(D(Xn ! Xn 1 Xn 1))-
< ¢2 (D(Xn-ll Xn-l’ Xn-2 ))

<¢" (DX, Xy, X,))
given ¢ >0,since [|im #"(D(X,%,%)) =0 and ¢(¢) < ¢, there is an integer k, such that

" (D(x,%,%)) <& —¢(e), forall n>k, .
Hence
¢n (D(Xn+1' Xn+1’ Xn )) <& _¢(g) ' for a” n 2 ko " (1)

For m,n e N with n>m, we claim that
#"(D(X,, X, X,)) <& —¢(), forall n>m >k, - 2

We prove Inequality (2) by induction on n. Inequality (2) holds for n = m+1 by using Inequality (1) and the fact that
& —¢(¢) < £ . Assume Inequality (2) holds for n = k. For n =k + 1, we have

D(Xk+1’ Xk+1’ Xm) <D(Xm+1’ Xm+1’ Xm)+D(Xk+1’ Xk+1’ Xm+1)
<& =¢(e) + pD(Xy, X, X))
<&—4(e)+9(s)

=&

By induction on n, we conclude that inequality (2) holds for alln > m >k, . So (%, } is Cauchy since X is completemetric
space, there exist a point x in X such thatx — x .

To show x is fixed point of the mapping T. Consider

D(Tx, Tx, x) <D(Tx, Tx, Tx,,)+D(TX,, TX, X)
By lemma 2.15, we get
D(Tx, Tx, x) <D(Tx,, Tx, TX)+D(Tx,, TX,, X) -
This gives
D(TX,TX, X) <D(X,, X, X)*D(X, .1, X1+ X)

<D, % X)+4(D(X,, X, X)) -
<D(x,, X, X)+D(x,, X, X)

since {Xn} is a Cauchy sequence in the complete D-cone metric space, there exist ¢ << 0 such that D(x_, x,x) << ¢ and

SO D(x,,x,X) =0, as n — o and similarly D(x ,x ,x)<<c, D(x,,x,,x) —>0,a 88—, then D(Tx,Tx,x) — 0and
we have Tx = x. This show that x is a fixed point of T.
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UNIQUENESS: Ify is another fixed point,
D(x.y.y) = D(Tx, Ty, y)
< ¢(D(x.y.y))
<D(x,y,Y)

which is a contradiction. So x =y, and hence T has a unique fixed point.

Corollary 2.17: Let (X,D) be a complete cone D-metric space, P be a cone normal, suppose the mapping T : X — X
satisfy the contractive condition, thus for me N, D(T"x,T"x,T"x) <4(x,y,z), for all x,y,ze X. Then T has a

unique fixed point in X.

Proof: From Theorem 2.16, we get T™ has a unique fixed point say x. Since T(x) =T (T"x) =T™*x =T"(Tx),also we
have Tx is a fixed point for T™. By uniqueness of X, we get Tx = x.

Corollary 2.18: Let (X,D) be a complete cone D-metric space, P be a cone normal, suppose the mapping T: X —» X

satisfy the contractive condition, thus for me N, p(rx, Ty, T2) < D(x.y.2) forall y,ze X . Then T has a unique
Y 1+D(x,y,2)’

fixed point in X.

Proof: Define ¢ :[0,+00) — [0, +00) with (1) = _t__ Thenitis clear that #(t) = t isa nondecreasing function with
1+t 1+t

limg"(t) =0, forallt>0. Since D(Tx,Ty,Tz) < #(D(x,y,z)), forall x,y,z e X , the result follows from Theorem 2.16.

Theorem 2.19: Let (X, D) be a complete cone D-metric space, P be a cone normal, suppose the mapping T: X —» X
satisfy the contractive condition, D(Tx,Ty,Tz) < g(max{D(x, y, ), D(Tx, Tx, x), D(Ty, Ty, y), D(Tx, y, z)}), for all
X,¥,z e X . Then T has a unique fixed point in X.

Proof: Let x, be an arbitrary point in X, define the iterative sequence () by x =Tx,, X, =Tx, =T%%,, oo

n+l
X,, =TX, =T"x,. So, we have

D(Xn’ X Xn+1) :D(Txn-l' TXn’ Txn)
< ¢(maX{D(Xn-1’ Xn’ Xn)iD(Xn-ll TXn-l’ TXn-l)’D(Xm TXn’ TXn)7D(TXn-1’ Xn’ Xn)})

< g(max{D(X,,, X, X, ).D(X,q, X0 X, ).D(X, s X1 X1 ), DX, X0 X))

n+l?

max{D(X,.;, X, X, ),D(X,, Xps1s Xpse DX, Xy X, )3 = DXy Xiigs Xan)s
Then
DXy Xpi1r Xpet) S @DXy s Xigs Xii1))
<Dy Xpgr Xpe)s
which is impossible. So we must have

max{D(X, 1, Xy: X3 ),DXy0 X 10 Xp 1) P X0 X )} = DI, 10 %0 %),
and hence
D(Xn’ Xn+1’ Xn+1) < ¢(D(Xn-1l Xn! Xn)):
forneN
D(X 415 Xpeps X,,) =D(TX ., TX,,, TX,))
<P(DX,1) Xy1 Xy))

< ¢ (D(Xpz0 X1 Xp1))

<" (D(Xo, Xy, X4))-

n+1?

Using proof of Theorem 2.16, we can show that (%} is a Cauchy sequence, and since X is complete cone D-metric
space, there exist a point x in X such that x — x . For ne N, we have
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D(x, X, Tx) = D(X, X, X, )+D(X, X, TX)
< D(X’ X Xn)+¢(maX{D(Xn»1’ Xn-l’ X), D(Xn-l' Xn’ Xn)l D(Xn-l’ Xn’ Xn)l D(Xn' Xn-l’ X)})

Case 1:

maX{D(Xn-]_’ Xn-l’ X)! D(Xn-l’ Xn’ Xn)v D(Xn7 X X)} = D(Xn-l’ Xn’ Xn)' we gEt

n-1?
D(x, x, Tx) < D(x, X, X, )+D(X,,, X, X,)-
Letting n — oo, we conclude that D(x, X, Tx) = 0, and hence Tx = x.

Case 2:
maX{D(Xn»ll Xn-l’ X), D(Xn-l' Xn’ Xn)l D(Xn' Xn-l’ X)} = D(Xn-1’ Xn-l’ Xn)' we QEt
D(x, X, Tx) < D(X, X, X, )+D(X,1, X;.1» X,,)-

Letting n — o, we conclude that D(x, x, Tx) = 0, and hence Tx = X.

Case 3:
max{D(X, ,, X,.;, X), D(X,,, X,,, X, ), D(X,,, X, X)} = D(X,,, X, ,, X). We get

D(x, X, Tx) < D(X, X, X, )*D(X,, X,.;, X)
< D(Xl Xl Xn) + D(an Xn»l’ Xn-l) + D(Xn»ll Xn-l' X)'

Letting n — oo, we conclude that D(x, X, Tx) = 0, and hence Tx = x. In all cases, we conclude that x is a fixed point of T.
For Uniqueness: Lety be any other fixed point of T such that x = y . Then

D(x,y,y) = (max{D(x, y, y) , D(x, X, X), D(y, ¥, ¥), D(X, ¥, ¥)})
< #(D(XY.y))
<D(x, Y, y).

which is a contradiction since ¢(D(x, y, y)) < D(x, y, y)- Therefore, D(x, y, y) = 0 and hence x = y.

Corollary 2.20: Let (X, D) be a complete cone D-metric space, P be a cone normal, suppose there is k < [0,1) such that
the map the mapping T : X — X satisfy the contractive condition,

D(Tx,Ty,Tz) < k(max{D(x, y, z), D(x, Tx, Tx), D(y, Ty, Ty), D(Tx, y, 2)}), forall x,y,z € X . Then T has a unique fixed
point in X.

Proof: Define ¢:[0,+0) — [0,+0) withg(t) =kt. Then it is clear that ¢(t) is a nondecreasing function with
limg"(t)=0 , for all t > 0. Since D(Tx,Ty,Tz) < g((max{D(x, y, y) + D(x, Tx, Tx),D(y, Ty, Ty),D(Tx, y, z)}), for all

X, Y,z € X , then result follows from Theorem 2.19.
Corollary 2.21: Let (X, D) be a complete cone D-metric space, P be a cone normal, suppose the map the mapping
T : X — X satisfy the contractive condition,
D(Tx, Ty, Ty) < k(max{D(x, Y, ¥), D(X, Tx, Tx), D(y, Ty, Ty), D(TX, y, Y)})»
forall x,y,ze X . Then T has a unique fixed point in X.
Proof: It follows from Theorem 2.19 by replacing z = y.
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