

International Journal of Mathematical Archive-2(1), Jan. - 2011, Page: 154-158 Available online through <u>www.ijma.info</u>

A NEW TYPE OF DIFFERENCE SEQUENCE SPACES OF FUZZY REAL NUMBERS

T. BILGIN and V.A. Khan

Department of Mathematics Faculty of Sciences and Arts, Yüzüncü Yil University, 65080-Van –TURKEY E-mail: tbilgin@yyu.edu.tr *Department of Mathematics, A.M.U. Aligarh (INDIA) E-mail: <u>vakhan@math.com</u>

E-man. <u>vaknan@math.com</u>

(Received on; 26-11-10; Accepted on: 06-12-10)

ABSTRACT

T he Idea of difference sequence sets introduced by Kizmaz [1]. In this paper, we introduce certain new difference sequence spaces of fuzzy real numbers and give some topological properties and inclusion relations.

Keyword and phrases: Difference sequence, Fuzzy real number, Solid space, Symmetric space.

AMS Mathematical Subject Classification: 40A05, 40A25, 40A30, 40C05.

1. INTRODUCTION:

The concept of fuzzy was introduced by Zadeh [2]. Latter on sequences of fuzzy number have been discussed by Matloka [3]. Tripathy and Nanda [4], Nuray and Savas [5], Bilgin [6], Altin, Et, and colak [7], Kwon [8] and many others.

Let D denote the set of all closed bounded intervals $A = [*A, A^*]$ on the real line R, where *A and A* denote the end point of A. For A, $B \in D$ define $A \leq B$ and iff *A $\leq *$ B and $A^* \leq B^*$, d (A,B) = max (|*A - *B|, $A^* - B^*|$). It is well known that (*D*,*d*) is a complete metric space and *d*(*A*,*B*) is called the distance between the intervals *A* and *B*. Also it is easy to see that \leq defined above is a partial order relation in D (see Matloka [3]).

A fuzzy number is a fuzzy subset of the real line R which is bounded, convex and normal. Let R(I) denote the set of all fuzzy numbers which are upper semi continuous and have compact support. For $X \in R(I)$, the α -level set X^{α} for $0 < \alpha \le 1$ is defined by, $X^{\alpha} = \{t \in R: X(t) \ge \alpha\}$. The 0-level i.e. X^{0} is the closure of strong 0-cut, i.e. $X_{0} = cl\{t \in R: X(t) > 0\}$. The absolute value of $X \in R(I)$ i.e. |X| is defined as (see Kaleva and Seikhala [9]).

$$|X|(t) = \begin{cases} \max\{X(t), X(-t)\}, \text{ for } t \ge 0\\ 0, 0 < t \end{cases}$$

For $r \in R, \overline{r} \in R(I)$ is defined by $\overline{r}(t) = \begin{cases} 1 \text{ for } t = r\\ 0, \text{ otherwise} \end{cases}$
For $r \in R$ and $X \in R(I)$ we define $rX(t) = \begin{cases} X(r^{-1}t) \text{ for } r \neq 0\\ \overline{0}, \text{ for } r = 0 \end{cases}$

*Corresponding author: V.A. Khan E-mail: <u>vakhan@math.com</u> Define $d: R(I) \times R(I) \rightarrow R$ By

$$\overline{d}(X,Y) = \sup_{0 < \alpha \le 1} d(X^{\alpha}, Y^{\alpha}), \text{ for } X, Y \in R(I)$$

The it is well known that $(R(I), \overline{d})$ is a complete metric space. A sequence $X=(X_k)$ of fuzzy numbers is said to be converge to a fuzzy number X_0 if for if for every $\varepsilon > 0$ there is a positive integer No such that $d(X_k, X_0) < \varepsilon$ for $k > N_0$. and $X=(X_k)$ of fuzzy numbers is said to be Cauchy sequence if for every $\varepsilon > 0$ there is a positive integer No such that

 $X = (X_k, X_l) < \varepsilon$ for $k, l > N_0$.

A sequence space *E* is said to be solid if $(Y_n) \in E$, whenever $(X_n) \in E$ and $|Y_n| \leq |X_n|$, for all $n \in N.A$ sequence space *E* is said to be monotone if *E* contains the canonical pre-images of all its step space, Let $X = (X_n)$ be a sequence, the S(X) denotes the set of all permutations of the elements of (X_n) i.e. $S(X) = \{(X_{\pi(n)}): \pi \text{ is a permutation of N}\}$. A sequence spaces *E* is said to be symmetric if $S(X) \subset E$ for all $X \in E.A$ sequence space E is said to be convergence-free if $(Y_n) \in E$ wherever $(X_n) E$ and $X_n = \overline{O}$ implies $Y_n = \overline{O}$.

REMARK: A sequence space *E* is solid implies that *E* is monotone. Let ℓ^0 be the set of all complex sequences and $l_{\infty,c}$ and c_0 be the sets of all bounded, convergent and null sequences $x = (x_k)$ with complex terms, respectively.

The idea of difference sequence spaces was introduced by Kizmaz [1]. In 1981, Kizmaz [1] define the sequence spaces.

$$l_{\infty}(\Delta) = \{x = \{x_k\} \in \ell^0 : (\Delta x_k) \in l_{\infty}\},\$$
$$c(\Delta) = \{x = \{x_k\} \in \ell^0 : (\Delta x_k) \in c\},\$$

and

$$c_0(\Delta) = \{x = \{x_k\} \in \ell^0 : (\Delta x_k) \in c_0\},\$$

© 2011, IJMA. All Rights Reserved

where $\Delta x = (x_k - x_{k+1})$. There are Banach spaces with the norm

$$||x||_{\Delta} = |x_1| + ||\Delta x||_{\infty}.$$

Then Et and Colak [10] generalized the above sequence spaces, to the sequence spaces

$$X(\Delta^{\mathbf{r}}) = \{ x = \{ x_k \} \in \ell^0 : \Delta^{\mathbf{r}} x_k \in X \},\$$

for $X = l_{\infty}$, *c* and c₀, where $r \in |x|$,

$$\Delta^0 x = (x_k), \Delta x = (xk - x_{k+1}), \Delta^r x = (\Delta^r x_k - \Delta^r x_{k+1})$$

and so that

$$\Delta^{r} x_{k} = \sum_{i=0}^{r} (-1)^{i} \begin{bmatrix} r \\ i \end{bmatrix} x_{k+i}$$

Difference sequence spaces have been studied by Colak and Et [11], Tripathy and Esi [12], Et and Esi [13], Et, Altin, and altinok [14], Khan [15, 16] and many others.

Let *c* denote the space whose elements are finite sets of distinct positive integers. Given any element σ of *C*, we denote by $c(\sigma)$ the sequence $\{c_n(\sigma)\}$ which is such that $c_n(\sigma) = 1$ if $n \in \sigma$, $c_n(\sigma) = 0$ otherwise. Further

$$C_{s} = \left\{ \boldsymbol{\sigma} \in C : \sum_{n=1}^{\infty} c_{n}(\boldsymbol{\sigma}) s \right\} (see[17]),$$

the set of those σ whose support has cardinality at most *s*, and

$$\Phi = \left\{ \phi = \left\{ \phi_k \right\} \in \ell^0 : \phi_1 > 0, \Delta \phi_k \ge 0 \text{ and } \Delta \left(\frac{\phi_k}{k} \right) \le 0 \left(k = 1, 2 \dots \right) \right\}$$

where $\Delta \phi_k = \phi_k - \phi_{k-1}$, and ℓ^0 is the set of all real sequences.

For $\phi \in \Phi$, we define the following sequence space, introduce in [18],

$$m(\phi) = \left\{ x = \left\{ x_k \right\} \in \ell^0 \underset{s \ge 1 \ \sigma \in C_s}{\text{sup sup}} \left(\frac{1}{\phi_s} \sum_{k \in \sigma} |x_k| \right) < \infty \right\}$$

The space $m(\phi)$ was extended to $m(\phi,p)$ by Tripathy and Sen [19] as follows:

$$m(\phi,p) := \left\{ x = \left\{ x_k \right\} \in \ell^0 \underset{s \ge 1}{\text{ som sup }} \sup_{\sigma \in C_s} \frac{1}{\phi_s} \sum_{k \in \sigma} |x_k|^p < \infty \right\}$$

Let *u* be a fixed positive integer and $u = (u_k)$ be any fixed scalars sequence of non zero complex numbers (see [20,21,13]. Khan [16] generalized this sequence space and introduced the sequence space $m(\Delta_u^u, \phi, p)$: defined as follows:

$$m(\Delta_{u}^{u},\phi,p):\left\{x=\{x_{k}\}\in\ell^{0} : \sup_{s\geq 1}\sup_{\sigma\in C_{s}}\frac{1}{\phi_{s}}\sum_{k\in\sigma}\left(|\Delta_{u}^{u}x_{k}|^{p}\right)<\infty, 0\,p<\infty\right\}$$

(

where

$$\begin{aligned} \Delta_{u}^{u} x_{k} &= (u_{k} x_{k}), \\ \Delta_{u} x_{k} &= (u_{k} x_{k} - u_{k+1} x_{k+1}), \\ \Delta_{u}^{u} x_{k} &= (\Delta_{u}^{u-1} x_{k} - \Delta_{u}^{u-1} x_{k+1}) \end{aligned}$$

and so that

$$\Delta_{u}^{u} x_{k} = \sum_{i=0}^{u} (-1)^{i} \frac{u}{i} \bigg| u_{k+i} x_{k+i}$$

We introduce the sequence space $m(\Delta_u^u, \phi, p)^F$ of fuzzy real numbers as follows;

$$m(\Delta_{u}^{\mu},\phi,p)^{F} = \left\{ X = (X_{k}) \underset{s \geq 1}{\operatorname{supsup}} \frac{1}{\sigma \in C_{s}} \overline{\phi} \sum_{k \in \sigma} \overline{d} (\Delta_{u}^{\mu} X_{k},\overline{0})^{p} > \infty, 0$$

2. MAIN RESULTS:

In this section, we prove some results involving the sequence space $m(\Delta_u^u, \phi, p)^F$ with twos values of p such that 0

Theorem: 2.1. (a) The sequence space $m(\Delta_u^u, \phi, p)^F$ for $l \leq p < \infty$ is a complete metric space by the metric,

$$\rho(X,Y) = \sum_{i=1}^{u} \overline{d}(X_i,Y_i) + \sup_{\substack{s \ge 1 \ \sigma \in C_s}} \frac{1}{\phi_s} \sum_{k \in \sigma} \left(\overline{d} \left(\Delta_u^u X_k, \Delta_u^u Y_k \right)^p \right)^{1/p}$$
(2.1.1)
for $X,Y \in m(\Delta_u^u, \phi, p)^F$.

(**b**) The sequence space $m(\Delta_u^u, \phi, p)^F$ for 0 is a complete metric space by the metric

$$\eta(X,Y) = \sum_{i=1}^{u} \overline{d}(X_i,Y_i) + \sup_{\substack{s \ge 1 \ \sigma \in C_s}} \frac{1}{\phi_s} \sum_{k \in \sigma} \left(\overline{d} \left(\Delta_u^u X_k, \Delta_u^u Y_k \right) \right)^p,$$
(2.1.2)

for $X, Y \in m(\Delta_u^r, \varphi, p)$.

Proof: It is clear that $m(\Delta_u^u, \phi, p)^F$ is a metric space by (2.1.1) for $1 \le p < \infty$ and (2.1.2) for $0 . We need to show that <math>m(\Delta_u^u, \phi, p)^F$ is complete.

We give the proof only for $0 . Since the proof is analog for the spaces <math>1 \le p < \infty$, we omit the details.

T. BILGIN and V.A. Khan*/ A new type of difference sequence spaces of fuzzy real numbers/IJMA- 2(1), Jan.-2011, Page: 154-158 Let $(X^{(l)})$ be a Cauchy sequence in $m(\Delta_u^u, \phi, p)^F$ where $X^l =$ $(X_k^l)_k = (X_k^l, X_2^1, ...) \in m(\Delta_u^u, \phi, p)^F$ for each $l \in |\mathbf{x}|$. Then for given $\varepsilon > 0$ there exists $n_0 \in |x|$ such that

$$\eta(X^{(l)}, X^{(t)}) < \varepsilon$$
, for all $l, t > n_0$.

Hence

$$\sum_{i=1}^{u} \overline{d} \left(X_{i}^{(l)}, X_{i}^{(t)} \right) + \sum_{\substack{\text{sup sup}\\s \ge 1 \ \sigma \in C_{s}}} \frac{1}{\phi_{s}} \sum_{k \in \sigma} \left(\overline{d} \left(\Delta_{u}^{u} X_{k}^{(l)}, \Delta_{u}^{u} X_{k}^{(t)} \right) \right)^{p} < \varepsilon,$$

$$(2.1.3)$$

for all $l, t > n_0$.

Now we obtain

$$\sum_{k \in \sigma} \overline{d} \left(X_i^{(l)}, X_i^{(l)} \right) < \varepsilon, \text{ for all } l, t > n_0$$

which implies that

$$\overline{d}\left(X_{i}^{(l)}, X_{i}^{(l)}\right) < \varepsilon, \text{ for all } l, t > n_{0} \text{ for } i=1,2,3...u.$$

Hence, $(X_i^{(l)})$ is a Cauchy sequence in R(I), so it is convergent in R(I), by the completeness property of R(I), for *i* $= 1, 2, 3, \dots, u$

Also,

$$\sup_{s \geq 1} \sup_{\sigma \in C_s} \frac{1}{\phi_s} \sum_{k \in \sigma} \left(\overline{d} \left(\Delta_u^u X_k^{(l)}, \Delta_u^u X_k^{(t)} \right) \right)^p < \mathcal{E} \text{ , for all } l, t > n_0.$$

On taking s = 1, we have,

$$\overline{d}\left(\Delta_{u}^{u}X_{k}^{(l)},\Delta_{u}^{u}X_{k}^{(l)}\right) < \left(\mathcal{E}\phi_{1}\right)^{1/p}, \text{ for all } l,t > n_{0}, k \in |\mathbf{x}|$$

Which implies that for each fixed k ($1 \le k < \infty$), the sequence $\left(\Delta_{u}^{u} X_{k}^{(l)}\right)$ is a Cauchy sequence in R(I), hence converges in R(I).

Hence, we get, $\lim \Delta_{u}^{u} X_{k}^{(l)} = \Delta_{u}^{u} X_{k}$ for $k \in |\mathbf{x}|$

Taking limit as $t \rightarrow \infty$ in (2.1.3), we get,

$$\sum_{i=1}^{u} \overline{d} \left(X_{i}^{(l)}, X_{i} \right) + \sup_{s \ge 1} \sup_{\sigma \in C_{s}} \frac{1}{\varphi_{s}} \sum_{k \in \sigma} \left(\overline{d} \left(\Delta_{u}^{u} X_{k}^{(l)}, \Delta_{u}^{u} X_{k} \right) \right)^{p} < \mathcal{E},$$

for all $l > n_{0}.$ (2.1.4)

$$\Rightarrow \qquad \eta(X^{(l)}, X) < \varepsilon \text{, for all } l > n_{0.}$$

Since $(X^{(l)}) \in m(\Delta_u^u, \phi, p)^F$ and by (2.1.4), for all $l > n_0$.

we have,

$$\eta(X^{(l)}, \theta) \leq \eta(X^{(l)}, \theta) + \eta(X^{(l)}, \theta) < \infty.$$

International Journal of Mathematical Archive- 2 (1), Jan. - 2011

Hence, $X \in m(\Delta^u_u, \phi, p)^F$. Hence, $m(\Delta^u_u, \phi, p)^F$ is a complete metric space. This completes the proof of the theorem.

Theorem 2.2: $m(\Delta_u^u, \phi)^F \subset m(\Delta_u^u, \phi, p)^F$, for all $1 \le p < \infty$. **Proof:** Let $X \in m(\Delta_{u}^{u}, \phi)^{F}$, then we have

$$\sup_{s \ge 1} \sup_{\sigma \in C_s} \frac{1}{\phi_s} \sum_{k \in \sigma} \overline{d} \left(\Delta_u^u X_k, \overline{0} \right) = K \left(< \infty \right)$$

Hence, for each fixed s, we have

$$\sum_{k\in\sigma} \overline{d} \left(\Delta_u^u X_k, \overline{0} \right) = K \phi_s \quad \sigma \in \phi_s \text{ for each fixed s.}$$

Hence

$$\left\{\sum_{k\in\sigma} \left(\overline{d}\left(\Delta_{u}^{u}X_{k},\overline{0}\right)\right)^{p}\right\}^{V_{p}} < K\phi_{s}, \ \sigma \in \phi_{s} \text{ for each p o and } 1 \le p < \infty.$$

Thus $X \in m(\Delta^u, \phi, p)^F$.

Theorem 2.3: For any two sequence (ϕ_s) and (Ψ_s) of real numbers

$$m(\Delta_u^u, \phi, p)^F \subset m(\Delta_u^u, \Psi, p)^F$$

if and only if

$$\sup_{s\geq 1} \left(\frac{\phi_s}{\Psi_s} \right) < \infty$$

Proof: Let $X \in m(\Delta_u^u, \phi, p)$. Then

$$\sup_{s\geq 1} \sup_{\sigma\in C_s} \frac{1}{\phi_s} \sum_{k\in\sigma} \left(\overline{d}\left(\Delta_u^u X_k, \overline{0}\right)\right)^p < \infty$$

Suppose that

$$\sup_{s\geq 1}\left(\frac{\phi_s}{\Psi_s}\right) < \infty \ .$$

Then $\phi_s \leq K \psi_s$ and so that $\frac{1}{\psi_s} \leq \frac{K}{\phi_s}$ for some positive number K and for all s. Therefore we have

$$\frac{1}{\psi_s} \sum_{k \in \sigma} \left(\overline{d} \left(\Delta_v^u X_k, \overline{0} \right) \right)^p \leq \frac{1}{\phi_s} \sum_{k \in \sigma} \left(\overline{d} \left(\Delta_v^u X_k, \overline{0} \right) \right)^p \text{ for each s.}$$

Now

$$\sup_{s\geq 1} \sup_{\sigma\in C_s} \frac{1}{\psi_s} \sum_{k\in\sigma} \left(\overline{d}\left(\Delta_u^u X_k, \overline{0}\right)\right)^p \leq K \sup_{s\geq 1} \sup_{\sigma\in C_s} \frac{1}{\phi_s} \sum_{k\in\sigma} \left(\overline{d}\left(\Delta_u^u X_k, \overline{0}\right)\right)^p$$

156

T. BILGIN and V.A. Khan*/ A new type of difference sequence spaces of fuzzy real numbers/IJMA- 2(1), Jan.-2011, Page: 154-158 Hance Corollary 2.4: $m(\Delta^u_{\mu}\phi, p)^F = m(\Delta^u_{\mu}\psi, p)^F$ if and only if

$$\sup_{s\geq 1} \sup_{\sigma\in C_s} \frac{1}{\Psi_s} \sum_{k\in\sigma} \left(\overline{d}\left(\Delta_u^u X_k, \overline{0}\right)\right)^p < \infty$$

Therefore $X \in m(\Delta_u^u \Psi, p)^F$. Conversely, let $m(\Delta_u^u \phi, p)^F \subseteq m(\Delta_u^u \Psi, p)^F$ and suppose that

$$\sup_{s\geq 1}\left(\frac{\phi_s}{\Psi_s}\right) = \infty \,.$$

Then there exists a increasing sequence (s_i) of naturals number $\begin{pmatrix} \phi_{s_i} \end{pmatrix}$

such that $\lim \begin{pmatrix} \varphi_{s_i} \\ \psi_{s_i} \end{pmatrix} = \infty$. Now for every $B \in R^+$, the set of

positive real numbers, there exists $i_0 \in |\mathbf{x}|$ such that $\frac{\phi_{s_i}}{\psi_{s_i}} > B$

for all $s_i \ge i_0$. Hence $\frac{1}{\psi_{s_i}} > \frac{B}{\psi_{s_i}}$ and so that

$$\frac{1}{\boldsymbol{\psi}_{s_i}} \sum_{k \in \sigma} \left(\overline{d} \left(\Delta_u^u \boldsymbol{X}_k, \overline{0} \right) \right)^p \frac{B}{\boldsymbol{\psi}_{s_i}} \sum_{k \in \sigma} \left(\overline{d} \left(\Delta_u^u \boldsymbol{X}_k, \overline{0} \right) \right)^p$$

for all $s_i \ge i_0$. Now taking supremum over $s_i \ge i_0$ and $\sigma \in C_s$ we get

$$\sup_{s\geq 1} \sup_{\sigma\in C_s} \frac{1}{\psi_{s_i}} \sum_{k\in\sigma} \left(\overline{d}\left(\Delta_u^u X_k, \overline{0}\right)\right)^p > B \sup_{s\geq 1} \sup_{\sigma\in C_s} \frac{1}{\phi_{s_i}} \sum_{k\in\sigma} \left(\overline{d}\left(\Delta_u^u X_k, \overline{0}\right)\right)^p.$$
(2.2.1)

Since (2.2.1) holds for all $B \in R^+$ (we may take B sufficiently large) we have

$$\sup_{s\geq 1} \sup_{\sigma\in C_s} \frac{1}{\psi_{s_i}} \sum_{k\in\sigma} \left(\overline{d}\left(\Delta_u^u X_k, \overline{0}\right)\right)^p = \infty$$

When $X \in m \left(\Delta_u^u \phi, p \right)^F$ with

$$0 < \sup_{s \ge 1} \sup_{\sigma \in C_s} \frac{1}{\phi_{s_i}} \sum_{k \in \sigma} \left(\overline{d} \left(\Delta_u^u X_k, \overline{0} \right) \right)^p < \infty$$

Therefore $X \notin m(\Delta_u^u \psi, p)^F$. This contradict to $m(\Delta_u^u \phi, p)^F \subseteq m(\Delta_u^u \psi, p)^F$.

Hence $\sup_{s\geq 1}\left(\frac{\phi_s}{\psi_s}\right) < \infty$.

Form Theorem 2.3, we get the following result.

$$0 < \inf_{s \ge 1} \left(\frac{\phi_s}{\psi_s} \right) \le \sup_{s \ge 1} \left(\frac{\phi_s}{\psi_s} \right) < \infty.$$

Theorem 2.5: $l_p (\Delta_u^u)^F \subseteq m(\Delta_u^u, \phi, p)^F \subseteq l_\infty (\Delta_u^u)^F$ **Proof:** Since $m(\Delta_u^u, \phi, p)^F = 1_p (\Delta_u^u)^F$ for $\phi_n = 1$, for all |x|, then

$$l_p \left(\Delta_u^u \right)^F \subseteq m \left(\Delta_u^u, \phi, p \right)^F$$

Now suppose that $X \in m(\Delta_u^u, \phi, p)^F$. Then we have

For s = 1,

 $\overline{d}(\Delta_{u}^{u}, X_{k}, \overline{0}) < K\phi_{1}$, for all $k \in \mathbb{N}$ and for some positive integer K.

Thus $X \in l_{\infty} \left(\Delta_{u}^{u} \right)^{F}$. This completes the proof of Theorem.

The proof of the following result is obvious.

Corollary 2.6: If
$$0 , then
 $m(\Delta_u^u, \phi, q)^F \subseteq m(\Delta_u^u, \phi, p)^F$.$$

Theorem 2.7: The sequence space $m(\Delta_u^u, \phi, p)^F$ is not solid for 0 .

Proof: The proof follows from the following example. Take u = 3, u = 1, p = 2 and $\phi_s = 1$, for all $s \in |x|$. Let $X_k = \overline{I}$ for all $k \in \mathbb{N}$. Then we have, $\overline{d}(\Delta^3 X_k, \overline{0}) = 0$ for all $k \in \mathbb{N}$. Hence

$$\sup_{\geq 1} \sup_{\sigma \in C_s} \frac{1}{\phi_{s_i}} \sum_{k \in \sigma} \left(\overline{d} \left(\Delta_u^u X_k, \overline{0} \right) \right)^p = 0$$

This implies that, $(X_k) \in m(\Delta^3 \phi, 2)^F$. Consider the sequence (α_k) of scalars defined by

$$\alpha_k = \begin{cases} 1 & \text{, for } k \text{ is even,} \\ 0 & \text{, otherwise.} \end{cases}$$

So
$$\overline{d}(\Delta^3 \alpha_k X_k, \overline{0}) = 1$$

$$\sup_{s \ge 1} \sup_{\sigma \in C_s} \frac{1}{\phi_{s_i}} \sum_{k \in \sigma} \left[\overline{d} \left(\Delta_u^u X_k, \overline{0} \right) \right]^p = \sup_{s \ge 1} \sup_{\sigma \in C_s} \frac{1}{1} \sum_{k \in \sigma} [1]^p = \sup_{s \ge 1} \sup_{\sigma \in C_s} s = \infty.$$

Implies that $(\alpha_k x_k) \notin m (\Delta^3, \phi, 2)^F$. Hence $m (\Delta_u^u, \phi, p)^F$ is not solid.

Theorem 2.8 The sequence space $m(\Delta_u^u, \phi, p)^F$ is not symmetric for 0 .

T. BILGIN and V.A. Khan/A new type of difference sequence spaces of fuzzy real numbers/IJMA- 2(1), Jan.-2011, Page: 154-158* **Proof:** The proof follows from the following example. [8] Know., J.S. On statistical and p- Cesaro convergence

Take u = 1 $\phi_s = 1$, for all $s \in |x|$. Let $X_k = \overline{I}$ for all $k \in \mathbb{N}$ Then we have, $\overline{d}(\Delta X_k, \overline{0}) = 1$ for all $k \in \mathbb{N}$. Let (Y_k) be rearrangement of (X_k) such that

$$(Y_k) = (X_1, X_2, X_4, X_3, X_9, X_5, X_16, X_6, X_25...)$$

This implies that

$$\sup_{s\geq 1} \sup_{\sigma\in C_s} \frac{1}{\phi} \sum_{k\in\sigma} \left[\overline{d} \left(\Delta_u^u Y_k, \overline{0} \right) \right]^p = \infty \,.$$

Hence $(Y_k) \notin m(\Delta_u^u, \phi, p)^F$. Hence $m(\Delta_u^u, \phi, p)^F$ is not symmetric.

REFERENCES:

[1] Kizmaz, H. On certain sequence spaces, Canad. Math. Bull.24 (2) (1981): 169-176.

[2] Zadeh, L.A. Fuzzy sets, information and control, vol 8(3) (1965): 338-353

[3] Matloka, M. sequence of fuzzy numbers, BUSEFAL, vol 28(1986): 28-37.

[4] Tripathy, B.C. and Nanda, S. Absolute value of fuzzy real number and fuzzy sequence spaces, Jour. Fuzzy Math., 8(4) (2000), 883-892.

[5] Nuray, F. and Savas, E. statistical convergence of sequence of fuzzy real numbers, Math. Slovaca, 45(3) (1995), 269-273.

[6] Bilgin, T. Lacunary strongly Δ - convergent sequnces of fuzzy numbers, Information Science. 160 (1-4) (2004), 201-206.

[7] Altin, Y., Et, M. and Colak, R. Lacunary statistical and Lacunary strongly convergence of generalized difference sequence of fuzzy numbers, Comput. Math. Appl., 52(6-7) (2006), 1011-1020.

[8] Know., J.S. On statistical and p- Cesaro convergence of fuzzy numbers, Korean J. Compute. & Appl. Math., 7(1) (2000), 195-203.

[9] Kaleva, O. and Seikkala, S. On fuzzy metric spaces, Fuzzy Sets and Ststems, 12 (1984), 215-229.

[10] Et, M. and Colak, R. On some generalized difference sequence spaces, Soochow J. of Math.21 (1995), 337-386.

[11] Colak, R. Et, M. on some difference sequence sets and their topological properties, Bull. Malaysian Math. Sci. Soc. 28(2) (2005): 125-130.

[12] Tripathy, B.C. and Esi, A. A new type of difference sequence spaces, International Journal of Science and Technology, 1(1) (2006), 11-14.

[13] Et, M. and Esi, A. On Köthe Toeplitz duals of generalized difference sequence spaces, Bull. Malaysian Math. Sci. Soc., 24 (11) (2000): 25-32.

[14] Et, M .Altin, Y., and Altinok, H. On almost statistical convergence of generalized difference sequences of Fuzzy numbers, Math. Model. Anal., 10(4) (2005), 345-352.

[15] Khan, V.A. New Lacunary Strongly Sammable Difference Sequences and Δ_{μ}^{m} – Lacunary Almost Statistical

Convergence, Vietnam Journal of Mathematics 36 (4) (2008): 405-413.

[16] Khan, V.A. A new type of difference sequence spaces. Appl. Sci. 12 (2010), 102-108.

[17] Mursaleen. Some geometrical properties of a new sequence space related to l_p , Bull. Aust. Math. Soc., 67 (2003), 343-347.

[18] Sargent, W.L.C. Some sequence spaces related to the l_p spaces, J. London Math. Soc., 35 (1960), 161-171.

[19] Tripathy, B.C. and Sen, M. On a new class of sequences related to the space l_p , Tamkang J. Math. 33(2), (2002), 167-171.

[20] Esi. and Isik, M. Some generalized difference sequence spaces, Thai Journal of Mathematics, 3(2) (2005): 241-247.

[21] ET, M., Altinok, H. and Altin, Y. On some generalized sequence spaces, Applied Mathematics and computation, 154(1) (2004), 167-173.