

International Journal of Mathematical Archive-2(1), Jan. - 2011, Page: 163 -168 Available online through www.ijma.info

GENERALIZED R-WEAKLY COMMUTING MAPPINGS IN NON- ARCHIMEDEAN MENGER SPACE

Piyush Tripathi and Ajita pathak

Amity University

(Deptt. of Amity School of Engineering and Technology) Viraj Khand 5 Gomti Nagar Lucknow (U.P.) India Email*: Piyush.tripathi2007@gmail.com, pathak ajita@rediffmail.com

(Received on: 30-12-10; Accepted on: 08-01-11)

ABSTRACT:

We have initiated the concept of generalized R- weakly commuting mappings in non- Archimedean probabilistic metric space for the first time. In fact Sessa initiated weakly commuting mappings in a metric space, Singh and Pant defined the same idea in more general setting of probabilistic metric space. Common fixed point theorems have been obtained by using the concept of generalized R- weakly commuting mappings in non- Archimedean Menger probabilistic metric space in the present paper.

1. INTRODUCTION:

The existence of fixed point theorems for mappings in probabilistic metric space have been obtained by Lee [5], Istratescu [4], Hadzic [3], Singh and Pant [6], [7] Chang [1], and Cho, Sik, Ha and Chang [2] etc. S Sessa [8] has given the concept of weakly commuting mappings and has obtained some fixed point theorems in metric space.

Using the above said concept of Sessa [S 5] was generalized by Singh and Pant [6] by introducing commuting mappings in probabilistic metric space. The above mentioned idea forced us to introduce the definition of generalized R- weakly commuting mappings in non- Archimedean probabilistic metric space. As a consequence of this definition we have obtained some common fixed point theorems in non- Archimedean Menger probabilistic metric space.

NOTE: Through out this paper we consider (X,F,t) a complete non-Archimedean Menger probabilistic metric space of type C_g introduced in [2].

DEFINITION [6]: Two self-mappings f and g on a probabilistic metric space X will be called weakly commuting if $F_{fgp,gfp}(x) \ge F_{fp,gp}(x) \ \forall \ p \in X$ and x > 0.

DEFINITION: Two self mappings f and g on a non-Archimedean probabilistic metric space X will be called generalized R-weakly commuting if there exist a real number

$$R > 0$$
 such that $g(F_{fgp,efg}(Rx)) \le g(F_{fg,eg}(x)) \ \forall \ p,q \in X \text{ and } x > 0$.

The following lemma proved by Cho, Sik, Ha and Chang [2].

LEMMA [2]: Let $\{p_n\}$ be a sequence in X such that

 $\lim_{n\to\infty} F_{p_n,p_{n+1}}(x) = 1 \ \forall \ x>0$. If the sequence $\{p_n\}$ is not a Cauchy sequence in X, then there exist $\mathcal{E}_0>0$, $t_0>0$, two sequence $\{m_i\}$ and $\{n_i\}$ of positive integers such that

(i)
$$m_i > n_i + 1$$
 and $n_i \to \infty$ as $i \to \infty$

(ii)
$$g(F_{p_{m:},p_{n}}(t_0)) > g(1-\varepsilon_0)$$
 and $g(F_{p_{m:},p_{n:}}(t_0) \le g(1-\varepsilon_0)$

REMARK: If sequence $\{p_n\}$ is not a Cauchy sequence in X and $\lim_{n\to\infty} g(F_{p_n,P_{n+1}}(x)=0)$, then

$$g(1-\mathcal{E}_0) < g(F_{p_{m:},p_{n:}}(t_0)) \leq g(F_{p_{m:},p_{m:-1}}(t_0)) + g(F_{p_{m:-1},p_{n:}}(t_0)) \ .$$

Taking $i \to \infty$, $\lim_{i \to \infty} g(F_{p_{m_i}, p_{n_i}}(t_0)) = g(1 - \mathcal{E}_0)$ (1)

^{*}Corresponding Author: Piyush Tripathi; E-mail: Piyush.tripathi2007@gmail.com

Again,

$$g(F_{p_{m,},p_{n,}}(t_0)) \le g(F_{p_{m,},p_{m,-1}}(t_0)) + g(F_{p_{m,-1},p_{n,-1}}(t_0)) + g(F_{p_{n,-1},p_{n,}}(t_0))$$

and

$$\begin{split} g(F_{p_{m_{i-1}},p_{n_{i-1}}}(t_0)) &\leq g(F_{p_{m_{i-1}},p_{m_i}}(t_0)) + g(F_{p_{m_i},p_{n_i}}(t_0)) + g(F_{p_{n_i},p_{n_{i-1}}}(t_0)) \text{ . Taking } \quad i \to \infty \;, \\ \lim_{i \to \infty} g(F_{p_{m_{i-1}},p_{n_{i-1}}}(t_0)) &= g(1-\mathcal{E}_0) \end{split} \tag{2}$$

Also,

$$\begin{split} g(F_{p_{n_{i-1}},p_{m_{i+1}}}(t_0)) &\leq g(F_{p_{n_{i-1}},p_{n_i}}(t_0)) + g(F_{p_{n_i},p_{m_i}}(t_0)) + g(F_{p_{m_i},p_{m_{i+1}}}(t_0)) \\ &\text{and} \\ g(F_{p_{m_i},p_{n_i}}(t_0)) &\leq g(F_{p_{n_i},p_{n_{i-1}}}(t_0)) + g(F_{p_{n_{i-1}},p_{m_{i+1}}}(t_0)) + g(F_{p_{m_{i+1}},p_{m_i}}(t_0)) \,. \end{split}$$

Taking $i \to \infty$ and from (1), (2) we have

$$\lim_{t \to \infty} g(F_{p_{m+1}, p_{m+1}}(t_0)) = g(1 - \mathcal{E}_0)$$
(3)

At last

$$g(F_{p_{m},p_{n}}(t_0)) \le g(F_{p_{m},p_{n-1}}(t_0)) + g(F_{p_{n-1},p_{n}}(t_0))$$

and

$$g(F_{p_{m_i},p_{n_{i-1}}}(t_0)) \leq g(F_{p_{m_i},p_{n_i}}(t_0)) + g(F_{p_{n_i},p_{n_{i-1}}}(t_0)) \,.$$

As $i \rightarrow \infty$ and from (1), (2)

We have

$$\lim_{t \to \infty} g(F_{p_m, p_{m-1}}(t_0)) = g(1 - \mathcal{E}_0) \tag{4}$$

- **1.2 LEMMA** [2]: If $\varphi:[0,\infty) \to [0,\infty)$ is a function such that φ is upper semi continuous from the right and $\varphi(t) < t$ for all t > 0, then
 - (a) For all $t \ge 0$, $\lim_{n \to \infty} \varphi^n(t) = 0$, where $\varphi^n(t)$ is the *n*-th iteration of $\varphi(t)$.
 - (b) If $\{t_n\}$ is a non-decreasing sequence of real numbers and $t_{n+1} \le \varphi(t_n), n = 1, 2, \dots$

then $\lim_{n\to\infty} t_n = 0$. In particular, if $t \le \varphi(t)$ for all $t \ge 0$, then t = 0.

2 MAIN RESULTS:

- **2.1 THEOREM:** Suppose (X,F,t) be a complete non- Archimedean Menger space and $f,h:X\to X$ be two R- weakly commuting mappings satisfying,
- (1) $\forall x > 0$, $g(F_{fp,fq}(x)) \le \varphi(g(F_{hp,hq}(x)))$, where $\varphi:[0,\infty) \to [0,\infty)$ is a function such that φ is upper semi continuous from the right and $\varphi(t) < t$ for all t > 0.
- (2) $f(X) \subset h(X)$ and f is continuous. Then f and h have unique common fixed point.

PROOF: Let $p_0 \in X$, choose $p_1 \in X$ such that $f(p_0) = h(p_1)$, because $f(X) \subset h(X)$, so we can construct a sequence $\{p_n\}$ such that $f(p_n) = h(p_{n+1})$, $n = 1, 2, \dots$

Now,

$$g(F_{fp_n,fp_{n+1}}(x)) \le \varphi(g(F_{hp_n,hp_{n+1}}(x))) \Rightarrow g(F_{fp_n,fp_{n+1}}(x)) \le \varphi(g(F_{fp_{n-1},fp_n}(x))), \text{ so by lemma } 1.2$$

$$\lim_{n\to\infty} g(F_{fp_n,fp_{n+1}}(x)) = 0.$$

 $\{fp_n\}$ is a Cauchy sequence. If $\{fp_n\}$ is not a Cauchy sequence then $\exists \epsilon_0 > 0, t_0 > 0$ and set of positive integers $\{m_i\}, \{n_i\}$ and then we can apply the above remark for the sequence $\{fp_n\}$. We get $\lim_{i \to \infty} g(F_{fp_m, fp_{m+1}}(t_0)) = g(1-\varepsilon_0)$ and

$$\lim_{t\to\infty} g(F_{fp_{mi},fp_{ni}}(t_0)) = g(1-\mathcal{E}_0)$$
, so

$$g(F_{fp_{m:}.fp_{n:+1}}(t_0)) = \varphi(g(F_{hp_{m:}.hp_{n:+1}}(t_0))) < g(F_{hp_{m:}.hp_{n:+1}}(t_0))$$

$$g(F_{fp_{m_i},fp_{m+1}}(t_0)) < g(F_{fp_{m_i-1},fp_{n_i}}(t_0)) \text{ taking } i \to \infty \text{ we get } g(1-\mathcal{E}_0) < g(1-\mathcal{E}_0)$$

Which is not possible so $\{fp_n\}$ is a Cauchy sequence.

Since (X,F,t) is complete, $fp_n \to z \in X$, $hp_n \to z$. Due to continuity of f, $f\!f\!p_n \to f\!z$ and $f\!h\!p_n \to f\!z$. Since f and h are R- weakly commuting so, $g(F_{f\!h\!p_n,h\!f\!p_n}(Rx)) \le g(F_{f\!p_n,h\!p_n}(x))$, $\forall x > 0$, taking $n \to \infty$ we get,

$$g(F_{fz,hfp_n}(Rx)) \leq g(F_{z,z}(x)) = 0, \forall x > 0 \Rightarrow g(F_{fz,hfp_n}(Rx)) = 0 \Rightarrow hfp_n \rightarrow fz$$

z is a common fixed point of f and h, first we prove that z = fz otherwise

$$\begin{split} g(F_{fp_n,ffp_n}(x)) &\leq \varphi(\ g(F_{hp_n,hfp_n}(x))),\ \forall x>0\ , \text{taking } n\to\infty \text{ we get} \\ g(F_{z,fz}(x)) &\leq \varphi(\ g(F_{z,fz}(x))) < (\ g(F_{z,fz}(x))), \text{ which is not possible so } z=fz \end{split}$$

Again, since $f(X) \subset h(X)$ so $\exists z_1 \in X$ such that $z = fz = hz_1$, then

$$g(F_{ffp_n,fz_1}(x)) \le \varphi(g(F_{hfp_n,hz_1}(x)))$$
, taking $n \to \infty$ we get $g(F_{fz,fz_1}(x)) \le \varphi(g(F_{fz,fz}(x))) = 0$ so $fz = fz_1 = hz_1 = z$

Now,

$$g(F_{fz,hz}(Rx)) = \varphi(g(F_{fhz,hfz}(Rx))) \le g(F_{fz,hz}(x)) = 0 \Rightarrow g(F_{fz,hz}(Rx)) = 0 \Rightarrow fz = hz = z$$

Therefore z is a common fixed point of f and h. For uniqueness suppose z_1, z_2 are two common fixed point of f and h. Then

$$g(F_{z_1,z_2}(x)) = g(F_{fz_1,fz_2}(x)) \leq \varphi(g(F_{hz_1,hz_2}(x))) \Rightarrow g(F_{z_1,z_2}(x)) \leq \varphi(g(F_{z_1,z_2}(x)) < g(F_{z_1,z_2}(x)).$$
 Which is not possible so $z_1 = z_2$

2.2 THEOREM: Suppose (X, F, t) be a complete non- Archimedean Menger space and $f, h: X \to X$ be two R- weakly commuting mappings satisfying:

$$(1) \ g(F_{fp,fq}(x)) \leq \varphi(\max\{g(F_{fp,hp}(x)),g(F_{fq,hq}(x)),g(F_{hp,hq}(x)),g(F_{fp,fq}(x))\})$$

(2) $f(X) \subset h(X)$ and f is continuous.

Then f and h have unique common fixed point.

PROOF: Since $f(X) \subset h(X)$, so we can construct a sequence $\{p_n\}$ such that $f(p_n) = h(p_{n+1})$, n = 1,2... First we show that $\{fp_n\}$ is a Cauchy sequence,

$$\begin{split} &g(F_{fp_n,fp_{n+1}}(x)) \leq \varphi(\max\{\,g(F_{fp_n,hp_n}(x)),g(F_{fp_{n+1},hp_{n+1}}(x)),g(F_{hp_n,hp_{n+1}}(x)),g(F_{fp_n,fp_{n+1}}(x))\})\\ &g(F_{fp_n,fp_{n+1}}(x)) \leq \varphi(\max\{\,g(F_{fp_n,fp_{n-1}}(x)),g(F_{fp_{n+1},fp_n}(x)),g(F_{fp_{n-1},fp_n}(x)),g(F_{fp_n,fp_{n+1}}(x))\})\\ &g(F_{fp_n,fp_{n+1}}(x)) \leq \varphi(\max\{\,g(F_{fp_n,fp_{n-1}}(x)),g(F_{fp_n,fp_{n+1}}(x))\}). \end{split}$$

$$\begin{split} &\text{If} \quad g(F_{fp_n,fp_{n-1}}(x)) \leq g(F_{fp_n,fp_{n+1}}(x)) \quad \text{then} \quad g(F_{fp_n,fp_{n+1}}(x)) \leq & \varphi(g(F_{fp_n,fp_{n+1}}(x))) \text{ ,so} \quad \text{by lemma} \quad 15.1.2 \\ &\lim_{n \to \infty} g(F_{fp_n,fp_{n+1}}(x)) = 0 \text{ , again if } g(F_{fp_n,fp_{n-1}}(x)) \geq g(F_{fp_n,fp_{n+1}}(x)) \text{ then } g(F_{fp_n,fp_{n+1}}(x)) \leq \varphi(g(F_{fp_n,fp_{n+1}}(x))) \text{ so} \\ & \text{again by lemma} \quad 5.1.2 \quad \lim_{n \to \infty} g(F_{fp_n,fp_{n+1}}(x)) = 0 \,. \end{split}$$

 $\{fp_n\}$ is a Cauchy sequence. Suppose $\{fp_n\}$ is not a Cauchy sequence then $\exists \epsilon_0 > 0, t_0 > 0$ and set of positive integers $\{m_i\}, \{n_i\}$ and then we can apply the above remark for the sequence $\{fp_n\}$. We get, $\lim_{i \to \infty} g(F_{fp_m, fp_n}, (t_0)) = g(1 - \varepsilon_0)$,

$$\lim_{i\to\infty} g(F_{fp_{m-1}p_{m-1}}(t_0)) = g(1-\mathcal{E}_0),$$

Now,

$$\begin{split} &g(F_{p_{n_{i}+1},P_{m_{i}}}(t_{0})) \leq \varphi \operatorname{Max} \mid g(F_{fp_{n_{i}+1},hP_{n_{i}+1}}(t_{0}),g(F_{fp_{m_{i}},hP_{m_{i}}}(t_{0}),g(F_{hp_{n_{i}+1},hP_{m_{i}}}(t_{0}),g(F_{fp_{n_{i}+1},fP_{m_{i}}}(t_{0})) \mid g(F_{fp_{n_{i}+1},Pp_{m_{i}}}(t_{0}),g(F_{fp_{m_{i}+1},fP_{m_{i}}}(t_{0}),g(F_{fp_{m_{i}+1},fP_{m_{i}}}(t_{0}),g(F_{fp_{n_{i}+1},fP_{m_{i}}$$

Taking $i \to \infty$ we get, $g(1-\varepsilon_0) \le \varphi(\max\{0,0,g(1-\varepsilon_0),g(1-\varepsilon_0)\}) \le \varphi(g(1-\varepsilon_0))$

i.e. $g(1-\mathcal{E}_0) < g(1-\mathcal{E}_0)$ which is not possible hence { fp_n } is a Cauchy sequence.

Since (X,F,t) is complete, $fp_n \to z \in X$, $hp_n \to z$. Due to continuity of f, $ffp_n \to fz$ and $fhp_n \to fz$. Since f and h are R-weakly commuting so, as theorem 2.1 $hfp_n \to fz$.

z is a common fixed point of f and h, first we prove that z = fz otherwise,

$$g(F_{fp_n, ffp_n}(x)) \le \varphi(\max\{g(F_{fp_n, hp_n}(x)), g(F_{ffp_n, hfp_n}(x)), g(F_{hp_n, hfp_n}(x)), g(F_{fp_n, ffp_n}(x))\}).$$

Taking $n \to \infty$ we get, $g(F_{z,fz}(x)) \le \varphi(\max\{g(F_{z,z}(x)), g(F_{fz,fz}(x)), g(F_{z,fz}(x)), g(F_{z,fz}(x))\})$ i.e. $g(F_{z,fz}(x)) \le \varphi(g(F_{z,fz}(x))) < g(F_{z,fz}(x))$, which is not possible so z = fz.

Again, since $f(X) \subset h(X)$ so $\exists z_1 \in X$ such that $z = fz = hz_1$. Again we show that $z = fz = hz_1 = fz_1$, otherwise

$$\begin{split} g(F_{\mathit{ffp}_n,\mathit{fz}_1}(x)) &\leq \varphi(\max\{g(F_{\mathit{ffp}_n,\mathit{hfp}_n}(x)),g(F_{\mathit{fz}_1,\mathit{hz}_1}(x)),g(F_{\mathit{hfp}_n,\mathit{hz}_1}(x)),g(F_{\mathit{ffp}_n,\mathit{fz}_1}(x))\}), \ n \to \infty \\ g(F_{\mathit{fz},\mathit{fz}_1}(x)) &\leq \varphi(\max\{g(F_{\mathit{fz},\mathit{fz}}(x)),g(F_{\mathit{fz}_1,\mathit{hz}_1}(x)),g(F_{\mathit{fz},\mathit{fz}_1}(x)),g(F_{\mathit{fz},\mathit{fz}_1}(x))\}), \ \text{since} \\ g(F_{\mathit{z},\mathit{fz}_1}(x)) &\leq \varphi(\max\{0,g(F_{\mathit{z},\mathit{fz}_1}(x))\}) \Rightarrow g(F_{\mathit{z},\mathit{fz}_1}(x)) \leq \varphi(g(F_{\mathit{z},\mathit{fz}_1}(x))) < g(F_{\mathit{z},\mathit{fz}_1}(x)) \ . \end{split}$$

Which is not possible so $z = fz = hz_1 = fz_1$.

Again,

$$g(F_{fz,hz}(Rx)) = g(F_{fhz_1,hfz_1}(Rx)) \le g(F_{fz_1,hz_1}(x)) = 0 \Rightarrow g(F_{fz,hz}(Rx)) = 0 \Rightarrow fz = hz = z$$

Therefore z is a common fixed point of f and h. For uniqueness suppose z_1, z_2 are two common fixed point of f and h, then

$$\begin{split} g(F_{z_1,z_2}(x)) &= g(F_{fz_1,fz_2}(x)) \leq \varphi(\max\{g(F_{fz_1,hz_1}(x)),g(F_{fz_2,hz_2}(x)),g(F_{hz_1,hz_2}(x)),g(F_{fz_1,fz_2}(x))\}) \\ g(F_{z_1,z_2}(x)) &\leq \varphi(\max\{0,g(F_{z_1,z_2}(x))\}) \Rightarrow g(F_{z_1,z_2}(x)) \leq \varphi(g(F_{z_1,z_2}(x))) < g(F_{z_1,z_2}(x)) \end{split}$$

Which is not possible so $z_1 = z_2$

- **2.3 THEOREM:** Suppose (X, F, t) be a complete non-Archimedean Menger space and $f, \phi, h: X \to X$ are three mappings satisfying
- (1) The pairs (f, ϕ) and (f, h) are generalized R –weakly commuting.
- (2) $f(X) \subset \phi(X), f(X) \subset h(X)$ and f is continuous.
- $(3) g(F_{fp,fq}(x)) \le \varphi(\max\{g(F_{fp,hq}(x)), g(F_{fp,\phi q}(x)), g(F_{hp,fp}(x)), g(F_{\phi p,fp}(x))\}), \forall x > 0$
- (4) If $\exists p, q \in X$ such that $\phi p = hq = t$ then $\phi q = hp = t$

Then f, ϕ and h have unique common fixed point.

PROOF: Since $f(X) \subset \phi(X)$, $f(X) \subset h(X)$ so we can construct a sequence $\{p_n\}$ by using (4) as $fp_{n-1} = \phi p_n = hp_n$, $n = 1, 2, \dots$. First we show that $\{fp_n\}$ is a Cauchy sequence.

For x > 0,

$$\begin{split} g(F_{fp_n,fp_{n+1}}(x)) &\leq \varphi(\max\{g(F_{fp_n,hp_{n+1}}(x)),g(F_{fp_n,\phi p_{n+1}}(x)),g(F_{hp_n,fp_n}(x)),g(F_{\phi p_n,fp_n}(x))\}) \\ g(F_{fp_n,fp_{n+1}}(x)) &\leq \varphi(\max\{0,g(F_{fp_n,fp_{n-1}}(x))\}) \Rightarrow g(F_{fp_n,fp_{n+1}}(x)) \leq \varphi(g(F_{fp_n,fp_{n-1}}(x))) \end{split}$$

so by lemma 5.1.2 $\lim_{n\to\infty} g(F_{fp_n,fp_{n+1}}(x)) = 0$ for all x > 0.

 $\{fp_n\}$ is a Cauchy sequence. Suppose $\{fp_n\}$ is not a Cauchy sequence then $\exists \in_0 > 0, t_0 > 0$ and set of positive integers $\{m_i\}, \{n_i\}$ and then we can apply the above remark for the sequence $\{fp_n\}$.

We get,
$$\lim_{i\to\infty} g(F_{fp_{mi},fp_{ni}}(t_0)) = g(1-\mathcal{E}_0)$$
, $\lim_{i\to\infty} g(F_{fp_{mi},fp_{n+1}}(t_0)) = g(1-\mathcal{E}_0)$.

Again,

$$\begin{split} &g(F_{fp_{m_{i}},fp_{n_{i+1}}}(t_{0})) \leq \varphi(\max\{g(F_{fp_{m_{i}},hp_{n_{i+1}}}(t_{0})),g(F_{fp_{m_{i}},\phi p_{n_{i+1}}}(t_{0})),g(F_{hp_{m_{i}},fp_{m_{i}}}(t_{0})),g(F_{\phi p_{m_{i}},fp_{m_{i}}}(t_{0}))\})\\ &g(F_{fp_{m_{i}},fp_{n_{i+1}}}(t_{0})) \leq \varphi(\max\{g(F_{fp_{m_{i}},fp_{n_{i}}}(t_{0})),0\})\,, \text{ taking } i \to \infty \text{ we get,}\\ &g(1-\varepsilon_{0}) \leq \varphi(g(1-\varepsilon_{0})) < g(1-\varepsilon_{0})\,, \end{split}$$

which is not possible hence $\{fp_n\}$ is a Cauchy sequence.

Since (X,F,t) is complete, $fp_n \to z \in X$, $hp_n \to z$, $\phi p_n \to z$. Due to continuity of f, $ffp_n \to fz$, $fhp_n \to fz$ and $f\phi p_n \to fz$. Since The pairs (f,ϕ) and (f,h) are generalized R -weakly commuting so as above theorem 5.2.1 $hfp_n \to fz$ and $\phi fp_n \to fz$.

z is a common fixed point of f, ϕ and h, first we prove that z = fz otherwise,

$$g(F_{fp_n,ffp_n}(x)) \le \varphi(\max\{g(F_{fp_n,hfp_n}(x)),g(F_{fp_n,\phi fp_n}(x)),g(F_{hp_n,fp_n}(x)),g(F_{\phi p_n,fp_n}(x))\}), \forall x > 0$$

Taking $n \to \infty$ we get, $g(F_{z,fz}(x)) \le \varphi(\max\{g(F_{z,fz}(x)),g(F_{z,z}(x))\}), \forall x > 0$

i.e.
$$g(F_{z,fz}(x)) \le \varphi(g(F_{z,fz}(x))) < g(F_{z,fz}(x)), \forall x > 0$$
, which is not possible so $z = fz$.

Since $f(X) \subset \phi(X)$, $f(X) \subset h(X)$ so $\exists z_1, z_2 \in X$ such that $z = fz = hz_1$ and $z = \phi z_2 = fz$ i.e. by the given condition (4) $z = \phi z_2 = hz_1 = \phi z_1 = hz_2 = fz$. Again we show that $z = fz = hz_1 = \phi z_2 = fz_1 = fz_2$, for this

$$g(F_{\mathit{ffp}_n,\mathit{fz}_1}(x)) \leq \varphi(\max\{g(F_{\mathit{ffp}_n,\mathit{hz}_1}(x)),g(F_{\mathit{ffp}_n,\mathit{\phiz}_1}(x)),g(F_{\mathit{hfp}_n,\mathit{ffp}_n}(x)),g(F_{\mathit{\phifp}_n,\mathit{ffp}_n}(x))\}), \forall x > 0$$

Taking $n \to \infty$, we have

$$g(F_{fz,fz_1}(x)) \le \varphi(\max\{g(F_{fz,z}(x)),g(F_{fz,fz}(x))\}) \Rightarrow g(F_{fz,fz_1}(x)) \le \varphi(0)) \Rightarrow g(F_{fz,fz_1}(x)) = 0$$

i.e.
$$z = fz = fz_1$$
 similarly we can prove $z = fz = fz_2$ i.e. $z = fz = hz_1 = \phi z_2 = fz_1 = fz_2$

Since The pairs (f,ϕ) and (f,h) are generalized R -weakly commuting so as above theorem z=fz=hz and $z=fz=\phi z$, i.e. z is a common fixed point of f,ϕ and h. For uniqueness suppose z_1,z_2 are two common fixed point of f,ϕ and h then

$$\begin{split} g(F_{z_1,z_2}(x)) &= g(F_{fz_1,fz_2}(x)) \leq \varphi(\max\{g(F_{fz_1,hz_2}(x)),g(F_{fz_1,\phi_2}(x)),g(F_{hz_1,fz_1}(x)),g(F_{\phi_1,fz_1}(x))\}) \\ g(F_{z_1,z_2}(x)) &\leq \varphi(\max\{g(F_{z_1,z_2}(x)),0\}) \Rightarrow g(F_{z_1,z_2}(x)) = 0 \Rightarrow z_1 = z_2 \end{split}$$

2.4 THEOREM: Suppose (X, F, t) be a complete Menger probabilistic metric space. Suppose $f, \phi_i : X \to X$ are n + 1 mappings (i = 1, 2, ..., n), satisfying,

- (a) $F_{fp,fq}(x) \le \varphi(\max\{F_{fp,\phi,q}(x), F_{\phi,p,fp}(x)\} \ \forall \ p,q \in X \ \text{and} \ x > 0, \ (i = 1, 2,n)$
- (b) $f(X) \subset \phi_i(X)$, $i = 1, 2, \dots, n$ and f is continuous.
- (c) The pairs (f, ϕ_i) , $i = 1, 2, \dots, n$ are generalized R weakly commuting mappings.
- (d) If $\exists u_1, u_2, \dots, u_n \in X$ such that $\phi u_1 = \phi u_2, \dots, \phi u_n = t$ then $\phi(\sigma(u_1)) = \phi(\sigma(u_2)), \dots, \phi(\sigma(u_n)) = t$ where $\sigma: \{x_1, x_2, \dots, x_n\} \to \{x_1, x_2, \dots, x_n\}$ are any mapping. Then there exist a unique fixed point of mappings f, ϕ_i , $(i = 1, 2, \dots, n)$. Proof is similar to as theorem 2.3.

REFERENCERS:

- 1. Chang S. S. *Basic theory and application of probabilistic metric spaces* (1), Appl. Math. And Mech. (Eng. Edition) 9 (1988), No.2, 123-133.
- 2. Cho Y. J., Ha K. S. and Chang S. S. Common fixed point theorems for compatible mappings of type (A) in non-Archimedean Menger PM-spaces, Math. Japon. 46 (1) (1997), 169-179.
- 3. Hadžić O. *A generalization of the contraction principle in probabilistic metric spaces*, Review Research Prirod. Mat. Fak. Novi Sad 10 (1980), 13-21.
- **4.** Istrătescu V. I. *On generalized complete probabilistic metric spaces*, Sem. Probab. Metric Space, Univ. Of Timisoara, No. 25 (1974).
- 5. Lee B. S. Fixed point theorems in probabilistic metric spaces, Math. Japon. 45(1) (1997), 89-96.
- 6. Singh S. L. and Pant B. D. Coincidence theorems, Math. Japon. 31 (1986), 783-789.
- 7. Singh S. L. and Pant B. D. Common fixed points of weakly commuting mappings on non –Archimedean Menger spaces, The Vikram Math. J. 6 (1985), 27-31.
- **8.** Sessa S. *On a weak commutativity condition of mappings in fixed point contractions*, Publ. Inst. Math. (N. S.) (Beograd) 32 (1982), 149-153. MR 85f:54107