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ABSTRACT:

We have initiated the concept of generalized R- weakly commuting mappings in non- Archimedean probabilistic metric space for
the first time. In fact Sessa initiated weakly commuting mappings in a metric space, Singh and Pant defined the same idea in more
general setting of probabilistic metric space. Common fixed point theorems have been obtained by using the concept of
generalized R- weakly commuting mappings in non- Archimedean Menger probabilistic metric space in the present paper.

1. INTRODUCTION:

The existence of fixed point theorems for mappings in probabilistic metric space have been obtained by Lee [5], Istratescu [4],
Hadzic [3], Singh and Pant [6], [7] Chang [1], and Cho, Sik, Ha and Chang [2] etc. S Sessa [8] has given the concept of weakly
commuting mappings and has obtained some fixed point theorems in metric space.

Using the above said concept of Sessa [S 5] was generalized by Singh and Pant [6] by introducing commuting mappings in
probabilistic metric space. The above mentioned idea forced us to introduce the definition of generalized R- weakly commuting
mappings in non- Archimedean probabilistic metric space. As a consequence of this definition we have obtained some common
fixed point theorems in non- Archimedean Menger probabilistic metric space.

NOTE: Through out this paper we consider (X,F,f) a complete non-
Archimedean Menger probabilistic metric space of type C o introduced in [2].

DEFINITION [6]: Two self-mappings f and g on a probabilistic metric
space X will be called weakly commuting if F, . (x)2F, (x) Vpe X andx>0.

DEFINITION: Two self mappings f and g on a non- Archimedean probabilistic metric space X will be called generalized R-
weakly commuting if there exist a real number

R>0 suchthat g(F,, . (Rx)) < g(F;, , (x)) Vp,ge X andx>0.

The following lemma proved by Cho, Sik, Ha and Chang [2].

LEMMA [2]: Let {p,} be a sequence in X such that

lim F, . (x) =1V x>0.If the sequence { p, } is not a Cauchy sequence in X, then there exist £, >0, 7, >0, two
sequence {m, } and {n, } of positive integers such that

({)ym>n,+1landn, — o0 asi—>oo

@) g(F, , (1) >g(-g&)andg(F,  (t)<g(-¢&)

REMARK: If sequence{ p, } is not a Cauchy sequence in X and lim, . g(F, , (x)=0, then

gl-¢g)<g(F, , (G)<gF, , @)+eF, (&) .
Taking i —> o, lim_,. g(F, , (t,))=g(1-&) 1)
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Again,
g( Fpml ” (t,) < g( Fpm‘_ . N+ g(F S )+ g(F S (7))
and
g (Fpm,.,l - (t,)<g (FpmH . t)N+g (Fpm[ 2, (t)N+g (Fp”‘ Pres (t,)) . Taking i —> oo,
lim, g (Fpm,,, . () =g(l-¢) (2)
Also,

gF, . )=glF, , (tG)+g(F,  E)+g(F, , (&)
and
gk, , W)=g(F, , )+, , (&)+g(F,
Taking i — oo and from (1), (2) we have

(1))

izt P

lim__g(F, , (t,)=g(1-&) @
At last
g(F, , @)=g(F, , (t)+g(F, , (%))
and
g(F, , WGN=gF, , (t)+eg(F, , (1))
As 1 —> oo and from (1), (2)

We have
lim,_. g(F, , (t,)=g(-&) @)

1.2 LEMMA [2]: If @ : [0,00) — [0, o0) is a function such that ¢ is upper semi continuous from the right and @(¢) <¢ for all
t> 0, then
(a) Forallt20,lim,_,_ ¢"(¢) =0, where ¢"(t) is the n-th iteration of ¢(t).

(b) If {z,} is a non-decreasing sequence of real numbers and 7, < @(t ),n=12,.........
then lim ¢ =0.In particular, if t < ¢@(t) for all# 20, thenr=0.

2 MAIN RESULTS:
2.1 THEOREM: Suppose (X,F,f) be a complete non- Archimedean Menger space and f,h: X — X be two R- weakly
commuting mappings satisfying,

WV x>0, g(F;, , (0) <@( g(F,,,,(x))), where ¢:[0,00) —[0,00) is a function such that @ is upper semi
continuous from the right and @(f) <t forall ¢ > 0.
(2) f(X) < h(X) and fis continuous.Then f and i have unique common fixed point.

PROOF: Let p, € X , choose p, € X suchthat f(p,)=h(p,),because f(X) h(X), sowe can construct a sequence
{p,} suchthat f(p,)=h(p, ).n=12................

Now,

g(FanJPM (x) < ¢( g(Fh Dy xX)n= g(Fﬁ,n,pr (x) < ¢( g(Fan-wan (x))), so by lemma 1.2
lim, . g(F, 4  ()=0.

{fp, }is a Cauchy sequence. If { fp, } is not a Cauchy sequence then 3€,> 0,7, >0 and set of positive integers {m, },{n, }
and then we can apply the above remark for the sequence { fp, }.We get lim,_,_ g(F, o (t,))=g(—¢,) and

lim,,. g(F, , (1)) =81-&),s0
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g§(Fy, 4, ) =0g(F,, \, (@))<gF, , (&)

g(Fwa.wa (t,)) < g(Ffp”prnl (¢,)) taking i — oo we get g(1-¢,) < g(l—¢,)
Which is not possible so { fp, } is a Cauchy sequence.

Since (X,F,t) is complete, fp, — z€ X,hp, — z. Due to continuity of f, ffp, — fz and fhp, — fz . Since f and h are

R- weakly commuting so, (F, . (Rx))< g(F, ,,

8(Fp 1 (RX) S g(F, (x)=0,Vx>0= g(F, ,, (Rx))=0= hfp, = fz

(x), Vx>0, taking n — oo we get,

z is a common fixed point of f'and A, first we prove that z = fz otherwise

g(Ffp”,ﬁpﬂ (X)) < ¢o( g(thﬂthp” (x))), Vx>0, taking n — oo we get
8(F,_.(x) S @( g(F_ . (x))<(g(F, . (x))), which is not possible so z = fz

Again, since f(X) c h(X) so 3z, € X suchthat z = fz = hz,, then

g(Fffpn,le (x) < o( g(Fhfpn’th (x))), taking n — oo we get
§(F, . (X)) S@P(g(F,, (X))=0s0 fz=fz,=hz, =2

Now,

g(F ., (R0)=@( §(Fp, 4o, (RX)) S g(F, , (x)=0= g(F ., (R)=0= fz=hz=z
Therefore z is a common fixed point of fand 4. For uniqueness suppose Z,, 2, are two common fixed point of fand 4. Then

g(F, () =g(F, . (D) SPg(F, . ()= g(F. ()< @(g(F,  (x)<g(F, (x).
Which is not possible so z, = z,

2.2 THEOREM: Suppose (X,F,f) be a complete non- Archimedean Menger space and f,h:X — X be two R- weakly
commuting mappings satisfying:

(D g(Ffp,fq (X)) < ¢( max { g(Ffp,hp (X)), g(qu,hq (X)), g(th,hq (X)), g(Ff,,,fq (X)) )]
(2) f(X) < h(X) and fis continuous.

Then f and & have unique common fixed point.

PROOF: Since f(X) < h(X), so we can construct a sequence { p, } suchthat f(p,)="h(p,,,),

n=1.2... First we show that { fp, }is a Cauchy sequence,

g(F;, 4 ()< @(max{ g(F, . (x)),8(F, ., ()8, , (0),8F, , (X))}
gF, o (X)) S@(max{ g(F;, . (0),8(F, o (x)),8(F; . (0),g(F, o (X))}
g(F, 4 (X)) S@(max{g(F, . (0),8(F, . (X)).
i g(F, , (O)<gF, . (X)) then gF, . ()<  @g(F, , (X))so by lemma 1512

lim, . g(F, 4  ())=0, again if g(F, , (x)2g(Fy ; (x))then g(Fy, , (X)) <@(g(Fy ; (X)))so

again by lemma 5.1.2 lim, ,_ g(F,, . (x))=0.
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{ fp, } is a Cauchy sequence. Suppose { fp, }is not a Cauchy sequence then J& ;> 0,7, >0 and set of positive integers
{m,},{n,;} and then we can apply the above remark for the sequence { fp, }. We get, lim, | g(Ffp,,,,,fp,,, (t,) =g(l—g,),

lim,, g(Fy, 4,  (t)=g(l-&)),

Now,

g(F, p ()< @Max{g(Fy  p (1):8(Fy ,p (1,),8(F,, up (), 8(Fy 1 (1))}

,,,,,

g (Fp”i“ ’P'"i (to )) S ¢ Max{ g(F‘f'D”i*1 ’fPVli (IO ), g(Ffpm,' ’fPWi’l (IO ), g(Ffpn, 'me,'fl (to )’ g(Ffpn,+] ’.me, (to) }
Taking i — cowe get, g(1—&,) < @ (max {0,0,g(1-¢,),g(0—-€,) h<p(g(l-¢,))
ie. g(1—¢,) < g(1—¢&,) which is not possible hence { fp, }is a Cauchy sequence.

Since (X,F,1) is complete, fp, —> z€ X,hp, — z . Due to continuity of f, ffp, — fz and fhp, — fz . Since fand h are R-
weakly commuting so, as theorem 2.1 hfp, — fz .

z is a common fixed point of f and A, first we prove that z = fz otherwise,
g(Ffp",ﬂp” ()C)) < (D(max{g(Fﬁ,",hpn ()C)), g(Ff]pn,hfp" ()C)), g(Fhthan ()C)), g(Fwafﬁ’n ()C))}) .

Takingn — cowe get, g(F, , (x) < @(max{g(F__ (x)),8(F, . (x)),8(F, [ (x)),8(F . (x)})
ie. g(F. .(x) S @(g(F, . (x))) < g(F, . (x)),which is not possible so z = fz.

Again, since f(X) C h(X) so 3z, € X suchthat 7 = fz = hz,. Again we show that 7 = fz = hz,= fz,, otherwise

8(Fy, 1 () < @(max{g(Fy, ;. (X)), 8(F, 4. (X)), 8(Fy, 4 (), 8(Fy, o (X)}), n—> o0
8(Fy . (%) < @(max{g(F, .(x)),g(F, ;. (X)), 8(F, . (x)),8(Fy . (x))}),since z= fe=hz,
g(F. . (%) < p(max{0,g(F. . (0))}) = g(F. ;. (X)) < @(g(F_ . (x))) < g(F, . (x)).

Which is not possible so z = fz = hz,= fz,.

Again,
g(F 6 hz (Rx)) = g(Fﬂ,;l,hﬁl (Rx)) < g(Ffz],th (x)=0= 8(Ffz,hz (Rx)=0= fz=hz=z2

Therefore z is a common fixed point of f and /. For uniqueness suppose Z,, Z, are two common fixed point of f and #, then

g(F.  ()=g(F, . ()< @max{g(F, , ().g(F, . (0)g(F, , (OgF. . (D)
g(F, (1) < pmax(0,g(F, _ ()N = g(F, _ (0))<@(g(F, _ ()< g(F, (%)
Which is not possible so z, = z,

2.3 THEOREM: Suppose (X,F,f) be a complete non- Archimedean Menger space and f,@,h: X — X are three mappings
satisfying

(1) The pairs (f,¢) and (f,h) are generalized R —weakly commuting.

) f(X)co(X), f(X)Th(X) and fis continuous.

3 g(F,, (1) < P(max( g(F,y (1)), 8(F o (1)), 8(Fyy (X)), 8(F, (1)) . Var > 0
(4)If dp,g€ X suchthat gp =hg =1t then g =hp =t

Then f,@ and h have unique common fixed point.
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PROOF: Since f(X)c@(X),f(X)Ch(X)so we can construct a sequence{p,} by using (4) as
P, =@, =hp,,n=12,...... . First we show that { fp, }is a Cauchy sequence.

For x>0,
g(F, . (x)<@max{g(F, , (x0),8(F;, ,, (0).8(F, , (x)).8(F,,  (x)})

8(Fy, py,, () < @(max{0, g (Fy, ,, (ND = g(Fy, 4, () <@(g(F, 4 (X))

sobylemma5.1.2 lim, . g(F, (x))=0 forallx>0.

s JPns1

{ fp, } is a Cauchy sequence. Suppose { fp, } is not a Cauchy sequence then J& ;> 0,7, >0 and set of positive integers

{m,},{n;} and then we can apply the above remark for the sequence { fp, }.

We get, limi—}oo g(Ff s SO0 (to ) =g(l- ‘90)’ limi_m g(Ff s St (to)) = g(l_go) .

Again,
§(Fy o () S@max({g(F, . ().8(F, o ().8(F,, o ().8(F, . (t,))

g(Ffpm‘ Soun )< (o(max{g(Ffpm’)fpni (t,)),0}) , taking i — oo we get,
g-&)=<p(gl-¢))) <gl=¢,).

which is not possible hence { fp, }is a Cauchy sequence.

Since (X,F,r) is complete, fp, = z€ X,hp, = z,@p, — z. Due to continuity of f, ffp, — fz. fhp, = fz and
fop, = fz. Since The pairs (f,@) and (f,h) are generalized R —weakly commuting so as above theorem 5.2.1

hfp, — fz and @fp, — fz.
z is a common fixed point of £, @ and h, first we prove that z = fz otherwise,

g(F, , (0)< pmax{g(F,, ,, (&(F, o () g(F, . (0),g(Fy , (X)}),Vx>0
Taking 1 — oo we get, g(FZ,fZ (x)) < ¢(max{g(FZ,fZ (X)), g(F,.(x)}),Vx>0

ie. g(F_ . (x) S @(g(F, . (x)) < g(F, . (x)), Vx>0, which is not possible so z =z

Since f(X)C@(X), f(X)C h(X) so Jz,,z, € X suchthat = fz = hz,and z = ¢z, = fz i.. by the given condition
(4) z=¢z, = hz, = ¢z, = hz, = fz. Again we show that z = fz = hz, = ¢z, = fz, = fz, . for this

g(Fy . (X)) < @(max{g(Fy , (0)),8(Fg , (X)),8(Fy, 4 (0),8(Fy 4 ())}),Vx>0
Taking 1 — oo, we have

g(F, ;. (%) < p(max{g(F, (x)),8(F, . (N} = g(F, . (0))<90) = g(F, . (x)=0

ie. 7= fz = fz, similarly we can prove 2 = fz = fZ,ie. 2= fz = hz, = @2, = fz, = f2,

Since The pairs (f,9) and (f,h) are generalized R —weakly commuting so as above theorem z = fz =hz and

Z= fz=¢z,ie.zisacommon fixed point of f, @ and h. For uniqueness suppose Z,, Z, are two common fixed point of , ¢ and
h then
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g(F, ()= g(F, . ()< @max({g(F, . ()),g(F, . () g(F, . ()),g(Fy . (D))
g(F, . (x) < p(max{g(F, _(x)O) = g(F,  (x))=0=z =z,

21,22

2.4 THEOREM: Suppose (X, F,?) be a complete Menger probabilistic metric space. Suppose f, ¢l : X — X are n +1 mappings
(i=1,2....n), satisfying,

(a) F;, (%)< ¢(maX{Ffpm(x), F@pyfp(x)} Vp,ge X andx>0, (i=1,2........ n)

b)Y fF(X)CP(X),i=12,ccceie n and f is continuous.

(c) The pairs (f,0),i=1,2,..ccccceceeeenn. n are generalized R - weakly commuting mappings.

(d) If Ju,,u,,......... u, € X such that gu, = gu,......... =¢u, =t then ¢(o(u,)) = p(0(u,)),......... =¢(o(u,)) =t
where O :{x,,X,....... X, =>{x,%. ... X, } are any mapping. Then there exist a unique fixed point of mappings f, @, ,
(i=1,2.......... n)

Proof is similar to as theorem 2.3.
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