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ABSTRACT

Systems of simultaneous second-order non-linear ordinary differential equations with boundary conditions at two
points are solved. The non-linear equations in porous catalyst particles are solved analytically using Homotopy
perturbation method. Herein, we report the approximat analytical expression of the concentration of the components in
terms of dimensionless parameters.
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1. INTRODUCTION

In the study of problems with mass and heat diffusion, one frequently desires to solve second order non-linear ordinary
differential equations involving conditions at two points. Well two point boundary value problems are more difficulties
in analytical solution that initial value problems do. The object of this paper is to derive the analytical solution of
simultaneous second-order non-linear ordinary equations with boundary conditions at two points.

Three simultaneous non-linear ordinary differential equations describing the steady state of two consecutive reactions
occurring non-isothermally within porous catalyst particles. The numerical solution to the corresponding parabolic
partial differential equations was based on the one proposed by Saul’yev [2]. In the study of stability problems of
reactors and catalyst particles, one has to use the actual capacity terms and the transient solutions are as important as
the steady-state solutions.

There are a number of numerical methods for finding the solution of two ordinary differential equations describing a
simple reaction in porous particles. This problem is relatively simple, because, as shown by Damkohler [4] and Prater
[5], the concentration of reactant can be expressed as a function of temperature, so one only has to solve one
differential equation for energy balance. This problem was solved by Weisz and Hicks [6], and Carberry [7] who used
digital computers, and by Tinkler and Metzner [8] who used an analog computer. Schilson and Amundson [9] used
iterative methods, which require fairly good initial approximations (one or two straight lines) to be heat generation
functions in order to obtain the final results. Recently, Shean-Lin Liu [1] used the relaxation method of Henyey [10] to
solve a problem of two consecutive first-order irreversible chemical reactions occurring at steady-state with porous
catalyst particles. Henyey [10] introduced a relaxation method for the numerical solution of the first-order non-linear
partial differential equations describing stellar evolution. J. H. He solved the corresponding difference equations by the
Newton-Raphson method.

2. MATHEMATICAL FORMULATION OF THE PROBLEM
Suppose that two consecutive first-order reactions, A—5 5B—*2 5C take place in a porous catalyst pellet of

spherical shape. The steady-state intraparticle concentrations of A and B, and the temperature T , can be described by
the following dimensionless differential equations [1].

2
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Where A and B are the dimensionless concentrations of components A and B, respectively, T is the dimensionless
temperature, X is the dimensionless radius, and @,, ;; and S, (i =1,2) are the kinetic parameters as defined in the

notation. The boundary conditions are

A=1 B=0, T=0, when x=1 (4)

d—A:O,d—Bzo,d—T:O when x=0 (5)
dx dx dx

The concentration of component C(X) can be written as
C(x)=1-A(x)-B(x) 6)

3. ANALYTICAL SOLUTION OF THE PROBLEM

Recently, many authors have applied the Homotopy perturbation method (HPM ) to solve the non-linear problem in
physics and engineering sciences [16-19]. Recently this method is also used to solve some of the non-linear problem in
physical sciences [20-23]. This method is a combination of homotopy in topology and classic perturbation techniques.
Ji-Huan He used to solve the Lighthill equation [24], the Diffusion equation [25] and the Blasius equation [26]. The
HPM is unique in its applicability, accuracy and efficiency. The HPM uses the imbedding parameter p as a small
parameter, and only a few iterations are needed to search for an asymptotic solution. Solving equations (1) to (5) using
Homotopy-perturbation method (Appendix A) we get the solution as

_M_l sinh(¢,x) dika, . el
A(x) = " _XLinh(qﬁl) +sinh2(¢1)[smh(¢lx) xsmh(¢1)]} %

$°D’ {sinh(@x)_sinh(¢1x)}{x_sinh(¢2x)]
(¢12—¢22) sinh(¢,)  sinh(¢,) sinh(¢,)

Bpo_ Y2 _ 1| | A'Dke(d —sinh(4))  ¢’Dka,
X X bisinn?() g (k+Dsinh()

_[ b 4 j{ 4" Dka, ]
sinh(g,)  sinh(g) \ (k + (4 - 4,°) ) |

psinh(@x) = B,D {cxﬁzsinh«zﬁlx)_qﬁfsinh(@x)}+
sinh(d))  (4°-9,°)| sinh(4,) sinh(¢,)

sinh(¢) sinh(¢l)}( _sinh(¢,x) N x® sinh(¢1x)} N

(8)

T(x)=y37‘x):(ﬂ1+ﬂ20')x—

©)

¢ 6 ' 6

_[1 1 ] x*  sinh(¢,x) } {x—xs}
\6 ¢ 6 ¢,"sinh(¢,) 6

where the constants k, |, m, and n are given in the equations (A35) — (A38).

';|
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4. DISCUSSION

Figures 1(a) and (b) represents the dimensionless concentration A(X) of the component A  for different values of
dimensionless parameter ¢, and «,. From these figures, it is evident that the values of the concentration decreases
when dimensionless parameters ¢, and o, increases. Figures 2(a) and (b) shows the concentration B(X) of the
component B versus the dimensionless radius X for various values of dimensionless parameters ¢; and ¢, . From
these figures, it is obvious that the values of the concentration decreases when dimensionless parameters ¢, and «,
increases.  The dimensionless temperature T(X) versus the dimensionless radius X for various values of
dimensionless parameters o, and o, is plotted in figure 3 (a) and (b). Initially the temperature T increases and
reaches the maximum value at X = 7.5 and then decreases. In this figure, it is inferred that the value of the
temperature increases when the parameter ¢; and ¢, increases. Figure (4) show the dimensionless concentrations of
components A and B versus the dimensionless radius X using the equation (5) for the fixed values of the parameters.

5. CONCLUSIONS

The time independent non-linear reaction-diffusion equation in membrane has been solved analytically. Analytical
expressions for the concentrations are derived by using the HPM. The primary result of this work is simple

approximate calculations of concentration for all values of dimensionless parameter ¢, and¢,. The HPM is an

extremely simple method and it is also a promising method to solve other non-linear equations. This method can be
easily extended to find the solution of all other non-linear equations.
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Appendix A
In this Appendix, we indicate how the equations (7), (8) and (9) in this paper are derived. To find the solution of
equations (1) - (3), then it can be transformed into simple forms by putting

y, = AX, ¥y, =BX, y, =TX (A1)
We obtain
dZY1 2 01Y;
—_— expl ——=—1|=0 A2
dXZ ¢l yl p (X+ y3) ( )
szz 2 a,y,; 2 - a1y,
— exp| ————— |+ D expl ——=—|=0 A3
e $," Y, eXp (X+V,) A p (X+ Y2) (A3)
d2Y3 2 a1y, 2 a,y,
— —=2=° =0 A4
dX2 +ﬂ1¢1 Y. €Xp (X+ y3) +ﬁ2¢2 Y, €EXp (X+ y3) (A4)
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The boundary conditions becomes

y;=1 y,=0, y,=0, when x=1 (A5)
y,=0,y,=0, y; =0, when x=0 (A6)
When —21¥3 L% Y3 pe small, then equations (A2), (A3) and (A4) reduces to
(X+Yys)  (X+VYs)
d 2Y1 2 oy
- 1+——22_1=0 A7
dx? hh (X+Y,) (A7)
d2y2_¢ Zy l+ a2y3 +¢2y D' 1+ aly3 :O (A8)
d¢ T (xyy) ] T (x+Ys)
85 s gty 1425 pgty, 1022 | g (A9)
dx? (X+Ys) (X+Y3)

We construct the Homotopy for the above three equations as follows:

d’y, ., d’y, o #iviayy
1— L_ + L_ R CR e L EREX] A10
( p)|: dXZ ¢1 y1:| p[ dXZ ¢1 yl (X+ y3) ( )
o | o]
d 2y dx)gz _¢22y2 + ¢12 y,D - ¢2(ij y2 ;/3
a- P){ i =0, Y, +¢12y1D1+ o, =0 (A11)
X 4 ¢ y,D oy,
(X+Y;) )
d 2
dzy dT)gs+,Bl¢1ZY1 +,B2¢22)’2
(1—p){—3+ﬂ¢2y +ﬂ¢2y}+p =0 (AL2)
dx? i e +a1:81¢12y1y3 +a2ﬂ2¢22y2y3
(X+Y3) (X+Y;)
The approximate solutions of (A7), (A8) and (A8) are
Yy = Yio + BYyy + PPYpp F e (A13)
Yo = Yoo + PYay + P2 Yoy +eveeernns (A14)
Vs = Yoo + PYar + P Yoy oo (A15)

Substituting the equations (A13) to (A15) into equations (A10) to (A12) we have

d’(Yy + PYyy +...)
dx?

) (Yap + BYay o) (Yo + Py +oonr)
X+ (yso + PYs, +...)

—" (Yoo + PYyy +---)
(1— p) dz(ylo + pyll +) 1 10 11

dx?

_¢12(y1o + Yoy o) [P =0 (A16)
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_¢22(y20 + 0y +"'-)4'¢12D|(Y10 + Yy +-.)

- p){d (Yoo + PYzr +-)

dx?
d2(y,, + +.. . ]
ao dxgyﬂ ) _¢22(y20 + Yy o ) +¢1ZD (Yao + Yo +oos) =
+p ¢22a2(Y20 + Yo+ )(Yag + Yag +oenr) 4 ¢12a1D'(Y10 +Yi o) (Yo + Yoy +-0000) ~0
X+ (Yao + Yoy +--00) X+ (Yao + Yoy +-00)
d2(y., + Fo
(1- p){ Va dfzy” b B Vio + PYus )+ Bty (Vo + Y +----)}
A2 (Y., + ¥.. |
(a0 dxgy3l ) + ﬂ1¢12(Y10 Yt )+ ﬂ2¢22 (Yoo + Yor +eeen) =
+ p alﬂ1¢12(y10 + yll +"')(y30 + y31 Tt ) + a2ﬂ2¢22(y20 + y21 +"')(y30 + y3l T ) — O
X+ (Vg0 + Yap +-00) X+ (Ygo + Yar +-00)

Comparing the coefficients of like powers of p in equation (A16) we get

o.d%yy,

p-: dx2 _¢12y10 =0
1. dzyn 2 ¢12051Y1o Y30 _
p -—2—¢1 1m0 N
dx (X+ Yq0)
Comparing the coefficients of like powers of p in equation (A17) we obtain.
d?y .
po : 220 _¢22yzo +¢1ZY10D =0
dx
d?y ) Yo Ya | # VD Y
L 221—¢22y21+¢12y11D _ 72 J20d30 | 71 Y10 130
P dx (X+ Yq) (X+Ys3)

Comparing the coefficients of like powers of P in equation (A18) we have

2

d
p°: d)z/zso +ﬂ1¢12 Y10 +ﬂ2¢2ZY2o =0

d? Ya1 2 2 a1ﬂ1¢12 Y10 Y30 azﬁz¢22 Y20 Y30
+ + + +
ob:| Bt Vi, + Boty Yo (X+ Ya0) (X+ Ya0) ~0

The initial approximations are as follows

x=1, y10(1)=1, y20(1)=0, y30(1)=0
y1i(1)=o, y2i(1):01 y3i(1):Ovi:1!213""
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x=0, Y10 (0) =0, Y (0) =0, Y30 (0) =0 (A27)

¥:i(0)=0, y,(1)=0, y;(0)=0,i=123. (A28)

Solving the equations (A19) to (A24) and using the boundary conditions (A25) to (A28), we can obtain the following
results:

_sinh(¢,x)
0= Sinh(g) -
3 ¢ ka, . vei
Yy, = —Sinh2(¢l)[3|nh(¢lx) xsinh(¢,)] (A30)
yoo D [si_nh(qﬁzx)_si_nh(qﬁlx)} (AsD)
(4° —¢,") | sinh(g,) ~ sinh(¢,)

#’Dkay (g —sinh(@))  4'Dkey

y {X_sinh(@x)‘ ¢, sinh”(4,) ¢," (k+Dsinh(4,) )
2 sinh(¢2)__( 4, 4 )[ 4,°D'ka, )
sinh(g,)  sinh(4) \ (k+D(4" - ¢,") ) |
_ o _Bisinh(x)  BD" | #*sinh(gx) 4 sinh(g,X)
o S D) i) +(¢f—¢:){ () sinh(g,) } -
y zll[sinh(m_sinh(¢1)]x_sinh(¢1X)+ x33inh(¢1x)} +m[{£ L jx_x_ﬂM}
N #’ 6 0’ 6 6 ¢/) 6 gfsinng)]
]
+n
6
Where
k=ﬁ1+ﬂ2D'_ -181¢1 + IBZD -¢1¢2 _ -¢2¢l (A35)
sinh(4)  (4,” - ¢,") | sinh(¢,)  sinh(¢,)
_a, B’k (A36)
~ sinh?(g,)

¢13D'0£1(¢1 —sinh(¢,) ¢13Dla1 _[(¢2 ¢12Dla2 ]( ¢, 4 ﬂ (A37)

BESnNA(E) ¢ (k+ D)sinn(gh) —¢,5)(k+1) )\ sinh(g,) sinh(g,)

y a1ﬂ1¢13+(062ﬂ2¢12¢22D'}( b & J
| sinh(#) (8° —¢,°) Jsinh(g,) sinh(g4)

B L n . P
(1+ p+5,D+D - Sinh(¢l)]

m= ,Bzu(bz{

(A38)
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According to the HPM, we can conclude that

Y1 = Ip'inl yl(X) =Yt Yu (A39)
Yo =lim y,(X) = Yz + Yo (A40)
Y; = IpiLq Y3 (X) =Yt Yy (A41)

After putting equations (A29) and (A30) into equation (A39) and equations (A31) and (A32) into equation (A40) and
equations (A33) and (A34) into equation (A41), we obtain the following solutions.

:(X) = {smh(@x) N g ke,

S s (@) [sinh(4,x) - xsinh(¢1)]} (A42)

¢°D [sinh(¢2x) ~ sinh(¢lx)} .\ {X ~ sinh(¢2x)}

(¢12_¢22) sinh(g,)  sinh(g,) sinh(g,)
v, (x) = ¢ D k0§1(-¢1_25inh(¢1))+ . ¢ D k-al (A43)
#,” sinh?(¢,) #,” (k +1)sinh(g,)
_[ b & J( ¢12lea2 J
| \sinh(g,) sinh(4) | (k+D(" -4,")) | |
- N Bisinh(@x)  B,D | #’sinh(gXx) ¢° sinh(g,x)
Vo) = A+ DX = G +(¢f—¢;){ sinh(4)  sinh(g,) } (Asa)

¢ 6 ¢ 6
+ mKl —iz]X _x + sinh(qﬁzx) } + n{x — XT
6 ¢, 6 ¢, sinh(¢,) 6

Appendix B. Nomenclature

. IKsinh(qﬁl) ~ sinh(¢1)}( _sinh(gx) | x° sinh(¢lx):|

Symbol | Meaning
A Dimensionless concentration of the component A.
B Dimensionless concentration of the component B
X Dimensionless radius
a, Dimensionless activation energy of the component A
a, Dimensionless activation energy of the component B
yon Dimensionless degree of thermicity of the component A
5, Dimensionless degree of thermicity of the component B
& Dimensionless Thiele modulus of the component A .
9, Dimensionless Thiele modulus of the component B .
D, Effective diffusivity of the component A
Dg Effective diffusivity of the component B
D' | D,

DB
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Figure: 1(a)
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Figure 1: Influence of dimensionless activation energies ¢;, &, on the dimensionless concentration of component
A\ obtained from the equation (7). The curve is plotted for some fixed values of ¢,, &,, f,, [, and D',
@ ¢,=3 ¢,=2 p, =23 p,=—4 D =1,

(b) ¢ =4, ¢,=3 p,=3 B,=-4 D =1
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Figure: 2(a)
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Figure: 2(b)

0.35

0.3

0.25

Dimensionless concetitration of component B
=
(]
\
|
|

015 F

0.1

0.0s -

ke
I

ke
I
[
LA

V=& =.001,01.1

yay=ay =1

f=4=38=538=-4D0 =1

1 | |
a 0.1 0.2 03 04 o5 0B 07 g 09 1

Ditm enisionless radive x

Figure 2: Influence of dimensionless activation energies ¢, &, on the dimensionless concentration of component

B obtained from the equation (8). The curve is plotted for some fixed values of @, &,, f3,, 3, and D’ ,

@ ¢ =3 9¢,=2 p,=3 p,
b ¢ =4, ¢,=3 p, =23 p,
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Figure: 3(a)
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Figure 3: Influence of dimensionless activation energies &;, &, on the dimensionless temperature T obtained from
the equation (9). The curve is plotted for some fixed values of ¢, @,, f,, £, and D ,

@ ¢ =5 ¢,=3, p,=.3 B,=-4, D=1,

b) ¢, =5, ¢,=4, =4, B,=-5 D =1
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Figure 4: Influence of dimensionless activation energies ¢, «,, Thiele modulus ¢, @, and dimensionless degree of

thermicities /3, /3, and D" =1 of the dimensionless concentrations A, B & C obtained from the equations (6),
(7) and (8).
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Figure 5: Influence of the dimensionless activation energies ¢t;, ¢, Thiele modulus ¢, , @,, dimensionless degree

of thermicities £, /S, and D =1, of dimensionless temperature T obtained from equation (8).
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