On $\mathcal{M}_X\alpha\delta$-closed sets in \mathcal{M}-Structures

1V. KOKILAVANI & 2P. BASKER*

1Assistant Professor, Dept. of Mathematics, Kongunadu Arts and Science College- Coimbatore, India
2Assistant Professor, Dept. of Mathematics, Kalaiavani College of Technology- Coimbatore, India

*Correspondence Author, E-mail: baskiii2math@gmail.com

(Received on: 14-02-12; Accepted on: 06-03-12)

ABSTRACT

We introduce a new set called $\mathcal{M}_X\alpha\delta$-closed which are defined on a family of sets satisfying some minimal conditions. Further we studied the properties of $\mathcal{M}_X\alpha\delta$-closed sets.

Keywords: $\mathcal{M}_X\alpha\delta$-closed set.

1. INTRODUCTION

In 1950, H. Maki, J. Umehara and T. Noiri [3] introduced the notions of minimal structure and minimal space. Also they introduced the notion of m_X-open set and m_X-closed set and characterize those sets using m_X-cl and m_X-int operators respectively. Further they introduced m-continuous functions [11] and studied some of its basic properties. They achieved many important results compatible by the general topology case. Some other results about minimal spaces can be found in [4–11]. For easy understanding of the material incorporated in this paper we recall some basic definitions. For details on the following notions we refer to [4], [3] and [7].

In this paper we introduce $\mathcal{M}_X\alpha\delta$-closed set. Further, we obtain some characterizations and some properties.

2. PRELIMINARIES

In this section, we introduce the \mathcal{M}-structure and define some important subsets associated to the \mathcal{M}-structure and the relation between them.

Definition 2.1: [3] Let X be a nonempty set and let $m_X \subseteq P(X)$, where $P(X)$ denote the power set of X. Where m_X is an \mathcal{M}-structure (or a minimal structure) on X, if \emptyset and X belong to m_X.

The members of the minimal structure m_X are called m_X-open sets, and the pair (X, m_X) is called an m-space. The complement of m_X-open set is said to be m_X-closed.

Definition 2.2: [3] Let X be a nonempty set and m_X an \mathcal{M}-structure on X. For a subset A of X, m_X-closure of A and m_X-interior of A are defined as follows:

$$m_X\text{-cl}(A) = \bigcap \{F : A \subseteq F, X - F \in m_X\}$$

$$m_X\text{-int}(A) = \bigcup \{U : U \subseteq A, U \in m_X\}$$

Lemma 2.3: [3] Let X be a nonempty set and m_X an \mathcal{M}-structure on X. For subsets A and B of X, the following properties hold:

(a) $m_X\text{-cl}(X - A) = X - m_X\text{-int}(A)$ and $m_X\text{-int}(X - A) = X - m_X\text{-cl}(A)$.

(b) If $X - A \in m_X$, then $m_X\text{-cl}(A) = A$ and if $A \in m_X$ then $m_X\text{-int}(A) = A$.

(c) $m_X\text{-cl}(\emptyset) = \emptyset$ and $m_X\text{-int}(X) = X$.

(d) $A \subseteq B$ then $m_X\text{-cl}(A) \subseteq m_X\text{-cl}(B)$ and $m_X\text{-int}(A) \subseteq m_X\text{-int}(B)$.

(e) $A \subseteq m_X\text{-cl}(A)$ and $m_X\text{-int}(A) \subseteq A$.

(f) $m_X\text{-cl}(m_X\text{-cl}(A)) = m_X\text{-cl}(A)$ and $m_X\text{-int}(m_X\text{-int}(A)) = m_X\text{-int}(A)$.

(g) $m_X\text{-int}(A \cap B) = (m_X\text{-int}(A)) \cap (m_X\text{-int}(B))$ and $(m_X\text{-int}(A)) \cup (m_X\text{-int}(B)) \subseteq m_X\text{-int}(A \cup B)$.

(h) $m_X\text{-cl}(A \cup B) = (m_X\text{-cl}(A)) \cup (m_X\text{-cl}(B))$ and $m_X\text{-int}(A \cup B) \subseteq (m_X\text{-cl}(A)) \cap (m_X\text{-cl}(B))$.

Corresponding author: P. BASKER, E-mail: baskiii2math@gmail.com
Lemma 2.4: [7] Let (X, m_X) be an m-space and A a subset of X. Then $x \in m_X-cl(A)$ if and only if $U \cap A \neq \emptyset$ for every $U \subseteq m_X$ containing x.

Definition 2.5: [10] A minimal structure m_X on a nonempty set X is said to have the property \mathcal{B} if the union of any family of subsets belonging to m_X belongs to m_X.

Remark 2.6: A minimal structure m_X with the property \mathcal{B} coincides with a generalized topology on the sense of Lugojan.

Lemma 2.7: [5] Let X be a nonempty set and m_X an \mathcal{M}-structure on X satisfying the property \mathcal{B}. For a subset A of X, the following property hold:

(a) $A \in m_X$ iff $m_X-int(A) = A$
(b) $A \in m_X$ iff $m_X-cl(A) = A$
(c) $m_X-int(A) \in m_X$ and $m_X-cl(A) \in m_X$.

3. $\mathcal{M}_\alpha\delta$-CLOSED SETS

Definition 3.2: A subset A of an m-space (X, m_X) is called $\mathcal{M}_\alpha\delta$-closed set if $m_Xα\delta-cl(\{x\}) \subseteq m_Xα\delta-cl(A)$ whenever $A \subseteq U$ and U is m_X-open in (X, m_X).

Example 3.3: Let $X = \{a, b, c\}$. Define \mathcal{M}-structure on X as follows: $m_X = \{\emptyset, X, \{a\}\}$. Then $m_Xα\delta-open = \{\emptyset, X, \{a, b\}, \{a, c\}\}$, $m_Xα\delta-open = \{\emptyset, X, \{a, b\}, \{a, c\}\}$ and $m_Xα\delta-open = \{\emptyset, X, \{a\}\}$.

Example 3.4: Let $X = \{a, b, c\}$. Define \mathcal{M}-structure on X as follows: $m_X = \{\emptyset, X, \{a\}, \{a, b\}\}$. Then $m_Xα-open = \{\emptyset, X, \{a\}, \{a, b\}, \{a, c\}\}$, $m_Xα\delta-open = \{\emptyset, X, \{a\}, \{a, b\}, \{a, c\}\}$ and $m_Xα\delta-open = \{\emptyset, X, \{a\}\}$.

Definition 3.5: The intersection of all $m_Xα\delta-open$ subsets of (X, m_X) containing A is called the $m_Xα\delta$-kernel of A (briefly, $m_Xα\delta ker(A)$), i.e., $m_Xα\delta ker(A) = \bigcap \{G \in m_Xα\delta O(X) : A \subseteq G\}$.

Theorem 3.6: Let A be a subset of (X, m_X), then A is $m_Xα\delta$-closed if and only if $m_Xα\delta ker(A)$.

Proof: Suppose that A is $m_Xα\delta$-closed and let $D = \{S : S \subseteq X, A \subseteq S : S$ is an $m_Xα\delta open\}$.

Then $m_Xα\delta ker(A) = \bigcap_{S \in D}S$. Observe that $S \in D$ implies that $A \subseteq S$ follows $m_Xα\delta ker(A) \subseteq S$ for all $S \in D$.

Conversely, if $m_Xα\delta ker(A) \subseteq m_Xα\delta ker(A)$, take $S \in α\delta O(X, m_X)$ such that $A \subseteq S$ then by hypothesis, $m_Xα\delta ker(A) \subseteq m_Xα\delta ker(A) \subseteq S$. This shows that A is $m_Xα\delta$-closed.

Theorem 3.7: For subsets A and B of (X, m_X), the following properties hold:

(a) If A is $m_Xα\delta$-closed, then A is $m_Xα\delta$-closed.
(b) If m_X has the property \mathcal{B} and A is $m_Xα\delta$-closed and $m_Xα\delta-open$ then A is $m_Xα\delta$-closed.
(c) If A is $m_Xα\delta$-closed and $A \subseteq B \subseteq cl_{\delta}(A)$ then B is $m_Xα\delta$-closed.

Proof: (a) Let A be an $m_Xα\delta$-closed set in (X, m_X). Let $A \subseteq U$, where U is $m_Xα\delta$-open in (X, m_X). Since A is $m_Xα\delta$-closed, $m_Xα\delta(A) = A$, $m_Xα\delta cl_{\delta}(A) \subseteq U$. Therefore, A is $m_Xα\delta$-closed.

(b) Since A is $m_Xα\delta$-open and $m_Xα\delta$-closed, we have $m_Xα\delta cl_{\delta}(A) \subseteq A$. Therefore, A is $m_Xα\delta$-closed.

(c) Let U be an $m_Xα\delta$-open set of (X, m_X) such that $B \subseteq U$, then $A \subseteq U$. Since A is $m_Xα\delta$-closed, $m_Xα\delta cl_{\delta}(A) \subseteq U$.

© 2012, IJMA. All Rights Reserved

823
Now \(m_X cl_\delta(B) \subseteq m_X cl_\delta(m_X cl_\delta(A)) \subseteq U \). Therefore, \(B \) is also an \(\mathcal{M}_\alpha \delta \)-closed set of \((X, m_X)\).

Theorem 3.8: Union of two \(\mathcal{M}_\alpha \delta \)-closed sets is \(\mathcal{M}_\alpha \delta \)-closed.

Proof: Let \(A \) and \(B \) be two \(\mathcal{M}_\alpha \delta \)-closed sets in \((X, m_X)\). Let \(A \cup B \subseteq U \). Since \(A \) and \(B \) are \(\mathcal{M}_\alpha \delta \)-closed sets, \(m_X cl_\delta(A) \subseteq U \) and \(m_X cl_\delta(B) \subseteq U \). This implies that \(m_X cl_\delta(A \cup B) \subseteq m_X cl_\delta(A) \cup m_X cl_\delta(B) \subseteq U \) and so \(m_X cl_\delta(A \cup B) \subseteq U \). Therefore \(A \cup B \) is \(\mathcal{M}_\alpha \delta \)-closed.

Theorem 3.9: Let \(m_X \) be an \(\mathcal{M} \) -structure on \(X \) satisfying the property \(\mathcal{B} \) and \(A \subseteq X \). Then \(A \) is an \(\mathcal{M}_\alpha \delta \)-closed set if and only if there does not exist a nonempty \(m_X \alpha \gamma \)-closed set \(F \) such that \(F \neq \emptyset \) and \(F \subseteq m_X cl_\delta(A) \setminus A \).

Proof: Suppose that \(A \) is an \(\mathcal{M}_\alpha \delta \)-closed set and let \(F \subseteq X \) be an \(m_X \alpha \gamma \)-closed set such that \(F \subseteq m_X cl_\delta(A) \setminus A \). It follows that, \(A \subseteq X - F \) and \(X - F \) is an \(m_X \alpha \gamma \)-open set. Since \(A \) is an \(\mathcal{M}_\alpha \delta \)-closed set, we have that \(m_X cl_\delta(A) \subseteq X - F \) and \(F \subseteq X - m_X cl_\delta(A) \). Follows that, \(F \subseteq (X - m_X cl_\delta(A)) \cap (X - m_X cl_\delta(A)) = \emptyset \), implying that \(F = \emptyset \).

Conversely, if \(A \subseteq U \) and \(U \) is an \(m_X \alpha \gamma \)-open set, then \(m_X cl_\delta(A) \cap (U - U) \subseteq m_X cl_\delta(A) \cap (X - A) = m_X cl_\delta(A) \setminus A \). Since \(m_X cl_\delta(A) \setminus A \) does not contain subsets \(m_X \alpha \gamma \)-closed sets different from the empty set, we obtain that \(m_X cl_\delta(A) \subseteq U \) and this implies that \(m_X cl_\delta(A) \subseteq U \), in consequence \(A \) is \(m_X \alpha \gamma \)-closed.

Theorem 3.10: Let \((X, m_X)\) be an \(m \) -space and \(A \subseteq X \), then \(A \) is \(\mathcal{M}_\alpha \delta \)-open if and only if \(F \subseteq m_X int_\delta(A) \) where \(F \) is \(m_X \alpha \gamma \)-closed and \(F \subseteq A \).

Proof: Let \(A \) be an \(\mathcal{M}_\alpha \delta \)-open, \(F \) be \(m_X \alpha \gamma \)-closed set such that \(F \subseteq A \). Then \(X - A \subseteq X - F \), but \(X - F \) is \(m_X \alpha \gamma \)-closed and \(X - A \) is \(\mathcal{M}_\alpha \delta \)-closed implies that \(m_X cl_\delta(X - A) \subseteq X - F \). Follows that \(X - m_X int_\delta(A) \subseteq X - F \). In consequence \(F \subseteq m_X int_\delta(A) \).

Conversely, if \(F \) is \(m_X \alpha \gamma \)-closed, \(F \subseteq A \) and \(F \subseteq m_X int_\delta(A) \). Let \(X - A \subseteq A \) where \(U \) is \(m_X \alpha \gamma \)-open, then \(X - U \subseteq A \) and \(X - U \) is \(m_X \alpha \gamma \)-closed. By hypothesis, \(X - A \subseteq m_X int_\delta(A) \). Follows \(X - m_X cl_\delta(X - A) \subseteq U \). Therefore, \(X - A \) is \(\mathcal{M}_\alpha \delta \)-closed and hence \(A \) is \(\mathcal{M}_\alpha \delta \)-open.

REFERENCES

[14] V. Kokilavani and P. Basker, *Application of $\alpha\delta$-closed sets*, (Accepted)