
International Journal of Mathematical Archive-3(3), 2012, Page: 826-837 
 Available online through www.ijma.info  ISSN 2229 – 5046 

International Journal of Mathematical Archive- 3 (3), Mar. – 2012                                                                                                             826 

 
SOME FIXED POINT THEOREMS IN TWO METRIC SPACES 

 
T. Veerapandi* 

Associate Professor of Mathematics, P.M.T. College Melaneelithanallur-627953, India 
E-mail: tveerapandi@ymail.com 

 
T. Thiripura Sundari 

Department of Mathematics, Sri K.G.S Arts College Srivaikuntam, India 
E-mail: thiripurasundari.1974@gmail.com 

 
J. Paulraj Joseph 

Associate Professor of Mathematics, Manonmaniam Sundaranar University, Tirunelveli, India 
E-mail: jpaulraj_2003@yahoo.co.in 

 
(Received on: 16-02-12; Accepted on: 13-03-12) 

________________________________________________________________________________________________ 
 

ABSTRACT 
In this paper we prove some fixed point theorems for generalized contraction mappings in two complete metric spaces. 
Here we extend some results due to B. Fisher. 
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1. INTRODUCTION. 

  
Some authors proved many kinds of fixed point theorems for contractive type mappings and non-expansive mappings 
([1]-[4]). In [5] and [6], B. Fisher proved some theorems in two complete metric spaces as follows:    
 
Theorem 1.1: [5] Let (X, d) and (Y, e) be complete metric spaces. If T is a mapping from X into Y and S is a mapping 
from Y into X, satisfying the following conditions: 
 
               e(Tx, TSy) ≤ c . max{d(x, Sy), e(y, Tx), e(y,TSy)}         
               d(Sy, STx) ≤ c . max{e(y, Tx), d(x, Sy), d(x, STx)}  
          
for all x in X and y in Y. where 0 ≤ c < 1, then ST have a unique fixed point z in X and TS has a unique fixed point w 
in Y. Further, Tz = w and Sw = z.  
 
In this paper we prove some fixed point theorems in two complete metric spaces. Our aim is to extend the results of B. 
Fisher [4] and [5]. The following definitions are necessary for the present study.  
 
Definition1.2: A sequence {xn} in a metric space (X, d) is said to be convergent to a point x ∈ X if given ∈> 0 there 
exists a positive integer n0 such that d(xn,x) < ∈ for all n ≥ n0. 
 
Definition1.3: A  sequence {xn} in a metric space (X, d)  is said to be a Cauchy sequence in X if given ∈>0 there exists 
a positive integer n0 such that d(xm, xn) < ∈ for all m, n ≥ n0 . 
 
Definition1.4: A metric space (X, d) is said to be complete if every Cauchy sequence in X converges to a point in X. 
 
Definition1.5: Let X be a non-empty set and f: X → X be a map. An element x in X is called a fixed point of X   
 f(x)= x . 
 
Definition1.6: Let X be a non-empty set and f, g: X → X be two maps. An element x in X is called a common fixed 
point of f and g if f(x) = g(x) = x. 
________________________________________________________________________________________________ 
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2 MAIN RESULTS: 
 
Theorem2.1: Let (X, d) and (Y, e) be complete metric spaces. If T is a mapping from X into Y and S is a mapping 
from Y into X satisfying the following conditions: 
 

e(Tx, TSy) ≤ c1. max{d(x, Sy), e(y, Tx) + e(y, TSy)}                                                                                        (1) 
 

              d (Sy, STx) ≤ c2. max {d(x, Sy) + d(x, STx), e(y, Tx)}                                                                                      (2) 
 
for all  x in X and y in Y where 0 ≤ c 1 < 1 and 0 ≤ c2 < 1, then ST has a unique fixed point z in X and TS has a unique 
fixed point w in Y. Further Tz = w and Sw = z. 
 
Proof:  Let x0 be an arbitrary point in X. Define a sequence {xn} in X and a sequence {yn} in Y, as follows: 
 
                          xn = (ST)n x0 ,  yn = T(xn-1) for n = 1,2,… .  
We have   
 
          d(xn, xn+1)   =  d((ST)n x0 , (ST)n+1 x0)) 

= d(S(T(ST)n-1 x0 , ST(ST)n x0 ) 
= d(ST(xn-1), STxn) 
= d(Syn, STxn) 
≤ c2. max{d(xn, Syn) + d(xn, STxn), e(yn, Txn)}   (since by (2))   

                             = c2. max{d(xn, xn) + d(xn, xn+1), e(yn, yn+1)} 
= c2. max{d(xn, xn+1), e(yn, yn+1)} 

                             ≤ c2. e(yn, yn+1)   
  
Now       
     
          e(yn, yn+1)   =  e(Txn-1, Txn) 
                             = e(Txn-1, TSyn) 
                             ≤ c1. max{d(xn-1, Syn), e(yn,Txn-1) + e(yn, TSyn)}  (since by (1)) 
                             = c1. max{d(xn-1, xn), e(yn, yn) + e(yn, yn+1)} 
                             ≤ c1. d(xn-1, xn)                
Hence 
           
          d(xn, xn+1)   ≤ c1c2. d(xn-1, xn) 
                                
                             ≤ (c1c2)n d(x0, x1)  → 0 as n→∞        (since 0 ≤ c1c2 < 1) 
 
Thus {xn} is a Cauchy sequence in (X, d). Since (X, d) is complete, it converges to a point z in X. Similarly, we can 
prove that the sequence {yn} is also a Cauchy sequence in (Y, e). Since (Y, e) is complete, it converges to a point w in 
Y.  
 
Now we prove Tz = w  
 
Suppose Tz ≠ w.  
 
We have 
 
            e(Tz, w)  =  

∞→n
lim  e(Tz, yn+1) 

                           =   
∞→n

lim   e(Tz, TSyn) 

                           ≤   
∞→n

lim   c1.max{d(z, Syn), e(yn,Tz) + e(yn, TSyn)} 

                           =  
∞→n

lim  c1.max {d(z, xn) , e (yn, Tz) + e(yn , yn+1)} 

            ≤   c1.e( Tz, w)    
                         <  e(Tz, w)  (since 0 ≤ c1 < 1), which is a contradiction. 
 

Thus Tz = w. 
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Now we prove Sw = z. 
 
Suppose Sw ≠  z.  
 
We have   
          d(Sw, z)   =  

∞→n
lim  d(Sw, xn+1)     

                           =  
∞→n

lim  d(Sw, STxn)     

                           ≤  
∞→n

lim c2.max{d(xn, Sw) + d(xn, STxn), e(w, Txn)} 

                    = 
∞→n

lim c2.max{d(xn, Sw) + d(xn, xn+1), e(w, yn+1)} 

                           ≤  c2. d(Sw, z) 
                           <  d(Sw, z)  (since 0 ≤ c2 <1), which is a contradiction. 
 
Thus  Sw = z. 
 
We have STz = Sw = z and TSw = Tz = w. Thus the point z is a fixed point of ST in X and the point w is a fixed point 
of TS in Y. 
 
Uniqueness:   Let z΄ ≠  z be another fixed point of ST in X. 
 
We have  
             d(z, z΄)  = d(STz, STz΄)   
                          ≤ c2. max{d(z΄, STz) + d(z΄, STz΄), e(Tz, Tz΄)} 
                          = c2.max{d(z΄, z), e(Tz,Tz΄)} 
                          ≤ c2.e(Tz, Tz΄)   
                                      
Also we have 
        e(Tz, Tz΄)  =  e(Tz, TSTz΄) 
                          ≤  c1.max{d(z, STz΄), e(Tz΄,Tz) + e(Tz΄, TSTz΄)} 
             = c1.max {d(z, z΄) , e(Tz΄, Tz)} 
                          ≤ c1.d (z, z΄)                           
Hence 
 
           d(z, z΄) ≤ c1c2.d(z, z΄) < d( z, z΄)  (since c1c2 < 1),  which is a contradiction. 
 
Thus   z = z΄. 
 
So the point z is a unique fixed point of ST. Similarly, we prove the point w is also a unique fixed point of TS. This 
completes the proof 
                                                                                                                                                                                                       
Remark 2.2: If (X, d) and (Y, e) are the same metric spaces, then by the above theorem 2.1, we get the following 
theorem, as corollary. 
 
Corollary2.3: Let (X, d) be a complete metric space. If S and T are mappings from X into itself                                    
satisfying the following conditions: 
 

d(Tx, TSy) ≤ c1. max{d(x, Sy), d(y, Tx) + d(y, TSy)}          
              d(Sy, STx) ≤ c2. max{d(x, Sy) + d(x, STx), d(y, Tx)}     
      
for all x, y in X where 0 ≤ c 1, c2 < 1, then ST has a unique fixed point z in X and TS has a unique  fixed point w in X. 
Further, Tz = w and Sw = z and if z = w, then z is the unique common fixed point of S and T. 
 
Theorem2.4: Let (X, d) and (Y, e) be two complete metric spaces. If T is a mapping from X into Y and S is a mapping 
from Y into X satisfying the following conditions 
 

e(Tx, TSy) ≤ c1. max{d(x, Sy), e(y, Tx) ,e(y, Tx) + e(y, TSy)}                                                                                (1) 
d(Sy, STx) ≤ c2.max {e(y, Tx), d(x, Sy), d(x, Sy) + d(x, STx)}                                                                                (2) 
 

for all  x in X and y in Y where 0 ≤ c 1 < 1 and 0 ≤ c2 < 1, then ST has a unique fixed point z in X and TS has a unique 
fixed point w in Y. Further Tz = w and Sw = z. 
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Proof:  Let x0 

 be an arbitrary point in X. Define a sequence {xn} in X and a sequence {yn} in  Y, as follows: 
 
                 xn = (ST)n x0 ,  yn = T(xn-1)  for n = 1,2,… .  
 
Now we have 
             d(xn, xn+1)     = d((ST)n x0,  (ST)n+1 x0)) 
                                  = d(S(T(ST)n-1 x0,  ST(ST)n x0 ) 

     = d(ST(xn-1),  STxn) 
     = d(Syn,  STxn ) 

                                  ≤ c2.max{e(yn, Txn) , d(xn,  Syn), d(xn, Syn) + d(xn, STxn)} 
                                  = c2.max{e(yn, yn+1), d(xn,  xn) , d(xn, xn) + d(xn, xn+1)} 
                                  = c2.max{e(yn, yn+1) , 0, d(xn, xn+1)} 

                           ≤ c2. e(yn,  yn+1)     
                   

Now    
                e(yn, yn+1)    = e(Txn-1,  Txn) 
                                = e(Txn-1,  TSyn) 
                                    ≤ c1.max{d(xn-1,Syn), e(yn,Txn-1),  e(yn,Txn-1) + e(yn,  Syn)} 
                                   = c1.max{d(xn-1, xn), e(yn,  yn), e(yn,  yn) + e(yn, yn+1)} 

                            ≤ c2. d(xn-1,  xn)     
           

Hence 
                 d(xn,  xn+1)  ≤ c1c2. d(xn-1,  xn) 
                                      
                                    ≤ (c1c2)n d(x0 , x1) → 0 as n→∞      (since 0≤ c1c2 <1) 
 
Thus {xn} is a Cauchy sequence in (X, d). Since (X, d) is complete, it converges to a point z in X. Similarly, we can 
prove that the sequence {yn} is also a Cauchy sequence in (Y, e). Since (Y, e) is complete, it converges to a point w in 
Y.  
 
Now we prove Tz = w . 
 
Suppose Tz ≠ w.  
 
We have 
               e(Tz, w)     =  

∞→n
lim  e(Tz, yn+1) 

                                  = 
∞→n

lim  e(Tz, TSyn) 

                                  ≤ 
∞→n

lim  c1.max{d(z, Syn),e(yn, Tz), e(yn, Tz) + e(yn, TSyn)} 

                                  =  
∞→n

lim    c1.max{d(z, xn), e(yn, Tz), e(yn, Tz) + e(yn, yn+1)} 

                    =  c1. max{d(z, z), e(w, Tz), e(w, Tz) + e(w,w)}  
                    =  c1. max{0, e(w, Tz), e(w, Tz)}  

                                  <  e(w, Tz)   (since 0 ≤ c1 < 1) ,which is a contradiction. 
 
Thus Tz = w. 
 
Now we prove Sw = z. 
 
Suppose Sw≠  z.  
 
We have 
                 d(Sw, z)    =  d(Sw, xn+1)     
                                   =  

∞→n
lim  d(Sw, STxn)     

                                   ≤  
∞→n

lim c2.max{e(w,Txn), d(xn,w), d(xn, Sw) + d(xn, STxn)} 

                            =  
∞→n

lim c2. max{e(w, yn+1), d(xn, Sw), d(xn, Sw) + d(xn, xn+1)}  

                            <  d(Sw, z)  (since 0 ≤ c2 < 1) ,which is a contradiction. 
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Thus Sw = z. 
 
We have STz = Sw = z and TSw = Tz = w. Thus z is a fixed point of ST in X and the point w is a fixed point of TS in 
Y. 
 
Uniqueness: Let z΄≠ z be another fixed point of ST in X.  
 
We have  
                   d(z΄, z)    =  d(STz΄, STz)   
                                  ≤  c2. max{e(Tz΄,Tz), d(z, STz΄), d(z, STz΄) + d(z. STz)} 
                                  ≤  c2. max{e(Tz΄,Tz), d(z, z΄), d(z, z΄)} 
                                  ≤  c2. e(Tz΄,Tz)    
         
Now 
              e(Tz΄,Tz) =  e(Tz΄, TSTz) 
                              ≤  c1. max{d(z΄, STz), e(Tz, Tz΄), e(Tz, Tz΄) + e(Tz, TSTz)} 
                              =  c1.max{d(z΄, z), e(Tz, Tz΄), e(Tz, Tz΄)} 
                              ≤  c1.d(z΄,z)   
               
Hence 
               d(z΄,z) ≤ c1c2.d(z΄,z) < d(z΄,z)  (since c1c2 <1),which is a contradiction. 
 
Thus z = z΄. 
 
So the point z is a unique  fixed point  of ST. Similarly, we prove the point w is also a unique point of TS. This 
completes the proof 
                                                                                                                                                                                                            
Remark2.5: If (X, d) and (Y, e) are the same metric spaces, then by the above theorem 2.4, we get the following 
theorem as corollary.   
 
Corollary2.6: Let (X, d) be a complete metric space. If S and T are mappings from X into itself satisfying the 
following conditions: 
 

d(Tx, TSy) ≤ c1. max{d(x, Sy), d(y, Tx) ,d(y, Tx) + d(y, TSy)}     
d(Sy, STx) ≤ c2.max {d(y, Tx), d(x, Sy), d(x, Sy) + d(x, STx)}    
  

for all x, y in X where 0 ≤ c 1, c2 < 1, then ST has a unique fixed point z in X and TS has a unique  fixed point w in X. 
Further, Tz = w and Sw = z and if z = w, then z is the unique common fixed point of S and T. 
 
Theorem2.7: Let (X, d) and (Y, e) be complete metric spaces. If T is a mapping from X into Y and S is a mapping 
from Y into X satisfying the following conditions 
 
      e(Tx, TSy) ≤ c1.max{d(x, Sy), e(y, Tx), e(y, TSy), d(x, STx)}                                                                                  (1) 
      d(Sy, STx) ≤ c2.max{e(y, Tx), d(x, Sy), d(x, STx), e(Tx, TSy)}                                                                                (2) 
 
 
for all  x in X and y in Y where 0 ≤ c 1 < 1and 0 ≤ c2 < 1, then ST has a unique fixed point z in X and TS has a unique 
fixed point w in Y. Further Tz = w and Sw = z. 
 
Proof: Let x0 

 be an arbitrary point in X. Define a sequence {xn} in X and a sequence {yn} in Y, as follows: 
 
                          xn = (ST)n x0 ,  yn = T(xn-1) for n = 1,2,… . 
 
We have 
 
           d(xn, xn+1)   =  d((ST)n x0, (ST)n+1 x0)) 
                 = d(S(T(ST)n-1 x0, ST(ST)n x0 ) 

 = d(ST(xn-1),  STxn) 
 =   d(Syn, STxn ) 
 ≤  c2.max{e(yn, Txn), d(xn, Syn), d(xn, STxn), e(Txn, TSyn)}  

                              =  c2.max{e(yn, yn+1), d(xn, xn), d(xn, xn+1), e(yn+1, yn+1)}                              ≤ c2.e(yn, yn+1)  
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Now 
          e(yn, yn+1)   =  e(Txn-1, Txn) 
                             = e(Txn-1 , TSyn) 
                             ≤  c1.max{d(xn-1, Syn), e(yn, Txn-1), e(yn, TSyn), d(xn-1, STxn-1)} 
                             =  c1.max{d(xn-1, xn), e(yn, yn), e(yn,  yn+1), d(xn-1, xn)} 

                      ≤  c1. d(xn-1, xn)                         
Hence  
 
          d(xn, xn+1)   ≤  c1c2. d(xn-1, xn) 

                 
                             ≤ (c1c2)n d(x0, x1) → 0 as n→∞      (since 0 ≤ c1c2 <1) 
 
Thus {xn} is a Cauchy sequence in (X, d). Since (X, d) is complete, it converges to a point z in X. Similarly, we can 
prove that the sequence {yn} is also a Cauchy sequence in (Y, e). Since (Y, e) is complete, it converges to a point w in 
Y.   
 
Now we prove Tz = w. 
 
Suppose Tz≠ w. 
 
We have    
          e(Tz, w)  =  

∞→n
lim  e(Tz, yn+1) 

                         =  
∞→n

lim   e(Tz, TSyn) 

                         =  
∞→n

lim  c1.max{d(z, Syn), e(yn, Tz),e(yn, TSyn), d(z, STz)} 

                         =   
∞→n

lim c1.max{d(z, xn), e(yn, Tz), e(yn, yn+1), d(z, STz)} 

                         =   c1.max{d(z, z), e(w, Tz), e(w, w), d(z, STz)} 
                         ≤   c1.d(z, STz)   
                
Now 
      d(z, STz)   =  

∞→n
lim d(xn, STz) 

                        = 
∞→n

lim d(Syn,,STz)  

                        ≤ 
∞→n

lim c2.max{e(yn, Tz), d(z, Syn), d(z, STz), e(Tz,TSyn)}  

                        = 
∞→n

lim c2.max{e(yn, Tz), d(z, xn), d(z, STz), e(Tz, yn+1)} 

          =  c2.max{e(w, Tz),d(z, z),d(z, STz),e(Tz, w)}  
                        ≤  c2.e(Tz, w)  
                     
Hence 
        e(Tz, w) ≤  c1c2.e(Tz, w) < e(Tz, w)  (since c1c2 < 1) which is a contradiction.   
 
Thus Tz = w. 
 
Now we prove   Sw = z. 
 
Suppose Sw≠ z. 
 
Then we have  
 
      d(Sw, z)  = 

∞→n
lim   d(Sw, xn+1) 

                     = 
∞→n

lim  d(Sw, STxn) 

                     ≤  
∞→n

lim c2.max{e(w, Txn), d(xn, Sw), d(xn, STxn), e(Txn,TSw)}        

                     = 
∞→n

lim c2.max{e(w, yn+1), d((xn, Sw), d(xn, xn+1), e(yn+1,TSw)} 

                       ≤  c2.e(w, TSw)          
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Now 
 
  e(w, TSw)  =  

∞→n
lim e(yn+1, TSw) 

                     =  
∞→n

lim e(Txn, TSw) 

                     ≤   
∞→n

lim c1.max{d(xn, Sw), e(w, Txn), e(w, TSw), d(xn,STxn)} 

                       ≤  c1.d(Sw,z)       
               
Hence  
 
       d(Sw, z)  ≤ c1c2.d(Sw, z) < d(Sw, z)  (  c1c2 < 1), which is a contradiction. 
 
Thus Sw = z. 
 

We have STz = Sw = z and TSw = Tz =  w. Thus the point z is a fixed point of ST in X and the point w is a fixed point 
of TS in Y. 
 
Uniqueness: Let z΄ ≠  z  in  X  be  another fixed point  of ST in X.  
                    
We have 
 
        d(z, z΄)   = d(Sw, STz΄) 
                       ≤ c2.max{e(w, Tz΄), d(z΄, Sw), d(z΄, STz΄), e(Tz΄,w)} 
                       ≤  c2.e(Tz΄,w)    
Now  
              
       e(Tz΄,w) = e(Tz΄, yn+1) 
                      = e(Tz΄, TSyn) 
                      ≤  c1.max{d(z΄, Syn), e(yn, Tz΄), e(yn, TSyn), d(z΄, STz΄)} 
                      ≤  c1.d(z΄, z)    
        
Hence  
 
       d(z, z΄) ≤ c1c2.d(z, z΄) < d(z, z΄)   (since c1c2 < 1),  which is a contradiction. 
 
So the point z is a unique fixed point of ST. Similarly, we prove the point w is also a unique point of TS. This 
completes the proof                 
                                                                                                                                                                                         
Remark 2.8: If (X, d) and (Y, e) are the same metric spaces, then by the above theorem 2.7,we get the following 
theorem as corollary.   
 
Corollary2.9: Let (X, d) be a complete metric space. If S and T are mappings from X into itself satisfying the 
following conditions: 
 
      d(Tx, TSy) ≤ c1.max{d(x, Sy), d(y, Tx), d(y, TSy), d(x, STx)}        
      d(Sy, STx) ≤ c2.max{d(y, Tx), d(x, Sy), d(x, STx), d(Tx, TSy)}   
    
for all x, y in X where 0 ≤ c 1, c2 < 1, then ST has a unique fixed point z in X and TS has a unique  fixed point w in X. 
Further, Tz = w and Sw = z and if z = w, then z is the unique common fixed point of S and T. 
 
Theorem 2.10: Let (X, d) and (Y, e) be complete metric spaces. If T is a mapping from X into Y and S is a mapping 
from Y into X satisfying the following conditions 
 

 e(Tx, TSy) ≤ c1.max{d(x, Sy), e(y, Tx), e(y, TSy), d(x, STx), d(Sy,STx)}                                                             (1) 
 d(Sy, STx) ≤ c2.max{e(y, Tx), d(x, Sy), d(x, STx), e(Tx,TSy), e(y,TSy)}                                                              (2) 
 

for all  x in X and y in Y where 0 ≤ c 1 < 1 and 0 ≤ c2 < 1, then ST has a unique fixed point z in X and TS has a unique 
fixed point w in Y. Further Tz =w and Sw = z. 
 
Proof:  Let x0 be an arbitrary point in X. Define a sequence {xn} in X and a sequence {yn} in Y, as follows: 
 
                          xn = (ST)n x0 ,  yn = T(xn-1)  for n = 1,2,… .   
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We have  
           d(xn, xn+1) =  d((ST)n x0 , (ST)n+1 x0)) 
       =  d(S(T(ST)n-1 x0 , ST(ST)n x0 ) 

=  d(ST(xn-1), STxn) 
=  d(Syn, STxn) 

                             ≤  c2.max{e(yn,Txn), d(xn,Syn), d(xn,STxn), e(Txn,TSyn), e(yn, TSyn)} 
                             = c2.max{e(yn, yn+1), d(xn, xn), d(xn, xn+1), e(yn+1, yn+1), e(yn, yn+1)} 

= c2. max{ e(yn, yn+1), 0,  d(xn, xn+1), 0,  e(yn, yn+1)} 
                             ≤ c2. e(yn,  yn+1)   
            
Now 
           e(yn, yn+1)   =   e(Txn-1, Txn) 
                              =   e(Txn-1, TSyn) 
                              ≤   c1. max{d(xn-1, Syn), e(yn, Txn-1) , e(yn, TSyn), d(xn-1, STxn-1), d(Syn, STxn-1)} 
                              = c1. max{d(xn-1, xn), e(yn, yn), e(yn, yn+1), d(xn-1, xn), d(xn-1, xn}} 

                       ≤ c1. d(xn-1 , xn)    
        

Hence 
            d(xn ,xn+1)  ≤  c1c2.d(xn-1, xn) 

                  
                              ≤ (c1c2)n d(x0,x1)  → 0 as n→∞     (since 0 ≤ c1c2 <1)  
 
Thus {xn} is a Cauchy sequence in (X, d). Since (X, d) is complete, it converges to a point z in X. Similarly, we can 
prove that the sequence {yn} is also a Cauchy sequence in (Y, e). Since (Y,e) is complete, it converges to a point w in 
Y.  
 
Now we prove Tz = w. 
  
Suppose Tz≠ w 
 
We have 
                  e(Tz, w)  =  

∞→n
lim e(Tz, yn+1) 

                                  = 
∞→n

lim e(Tz, TSyn) 

                                  ≤  
∞→n

lim c1.max{d(z, Syn), e(yn,Tz),e(yn,TSyn), d(z, STz), d(Syn, STz)}  

                    = 
∞→n

lim c1.max {d(z, xn), e(yn, Tz), e(yn, yn+1), d(z, STz), d(xn, STz)} 

                                ≤  c1.d(z, STz)  
 
Now  
                 d(z, STz)  =  

∞→n
lim d(xn, STz)          

                                =  
∞→n

lim d(Syn, STz)  

                                ≤  
∞→n

lim c2.max{e(yn,Tz), d(z, Syn), d(z, STz), e(Tz, TSyn), e(yn, TSyn)} 

                                 = 
∞→n

lim c2.max{e(yn,Tz), d(z, xn), d(z, STz), e(Tz, yn+1), e(yn, yn+1)} 

                                ≤  c2.e(Tz, w)   
               

Hence 
 
        e(Tz, w) ≤ c1c2.e(Tz, w) < e(Tz, w)  (since c1c2 < 1), which is a contradiction. 
 
Thus Tz = w. 
 
To prove that Sw = z. 
 
Suppose that Sw ≠  z. 
               d(Sw, z)  = 

∞→n
lim d(Sw, xn+1) 
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                               = 
∞→n

lim d(Sw, STxn) 

                               ≤ 
∞→n

lim  c2.max{e(w, Txn), d(xn, Sw), d(xn, STxn), e(Txn, TSw), e(yn, TSxn)} 

                               = 
∞→n

lim c2.max{e(w, yn+1), d(xn, Sw), d(xn, xn+1), e(yn+1, TSw), e(yn, yn+1)} 

                               ≤  c2.e(w, TSw) 
 
Now 
          e(w, TSw)    = 

∞→n
lim e(yn+1, TSw) 

                               = 
∞→n

lim e(Txn, TSw) 

                               ≤ 
∞→n

lim c1.max{d(xn, Sw),e(w, Txn),e(w, TSw),e(Txn, TSw),e(yn, TSxn)}                                                                                        

                               = 
∞→n

lim c1.max{d(xn, Sw),e(w, yn+1),e(w, TSw),d(xn, xn+1), d(Sw, xn+1)}  

                               ≤  c1.d(Sw, z) 
Hence 
            d(Sw, z)  ≤  c1c2.d(Sw, z)  <  d(Sw, z)  (since c1c2< 1), which is a contradiction. 
 
Thus Sw = z. 
 
We have STz = Sw = z and TSw = Tz =  w. Thus the point z is a fixed point of ST in X and the point w is a fixed point 
of TS in Y. 
 
Uniqueness: Let z΄≠ z be the another fixed point  of ST in X.  
                      
We have 
               d(z, z΄) = d(Sw, STz΄) 
                            ≤ c2.max{e(w,Tz΄), d(z΄,Sw), d(z΄,STz΄), e(Tz΄,TSw), e(w, TSw)} 
                            = c2.max{e(w,Tz΄), d(z΄,z), d(z΄,z΄), e(Tz΄, w), e(w, w)} 
                            ≤ c2.e(Tz΄,w) 
Now 
           e(Tz΄, w)  = e(Tz΄, TSw) 
                            ≤ c1.max{d(z΄, Sw), e(w, Tz΄), e(z΄, TSz΄), e(Txn, TSw), e(yn, TSxn)} 
                            = c1.max{d(z΄, z), e(w, Tz΄), e(z΄, TSz΄), d(z΄, z), d(z, STz΄) 
                            ≤ c1.d(z, z΄) 
 
Hence  
     d(z, z΄) ≤ c1c2.d(z, z΄) < d(z, z΄) (since c1c2 < 1), which is a contradiction. 
 
Thus z = z΄. 
 
So the point z is a unique fixed point z of ST. Similarly, we prove the point w is also a unique point of TS. This 
completes the proof.   
                                                                                                                                                                                                                                                                                            
Remark 2.11: If (X, d) and (Y, e) are the same metric spaces, then by the above theorem 2.10., we get the following 
theorem as corollary.  
 
Corollary2.12: Let (X, d) be a complete metric space. If S and T are mappings from X into itself satisfying the 
following conditions: 
 
      d(Tx, TSy) ≤ c1.max{d(x, Sy), d(y, Tx), d(y, TSy), d(x, STx)}        
      d(Sy, STx) ≤ c2.max{d(y, Tx), d(x, Sy), d(x, STx), d(Tx, TSy)} 
      
for all x, y in X where 0 ≤ c 1, c2 < 1, then ST has a unique fixed point z in X and TS has a unique  fixed point w in X. 
Further, Tz = w and Sw = z and if z = w, then z is the unique common fixed point of S and T. 
 
Theorem2.13: Let (X, d) and (Y, e) be complete metric spaces. If T is a mapping from X into Y and S is a mapping 
from Y into X satisfying the following conditions 
 
    e(Tx, TSy) ≤ c1.max{d(x, Sy), d(Sy, STx), e(y, Tx) + e(y, TSy), d(x, STx)}   (1) 
    d(Sy, STx) ≤ c2.max{d(x, Sy) + d(x, STx), e(y, TSy), e(y, Tx),  e(Tx,TSy)}   (2)  
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for all  x in X and y in Y where  0≤ c1 < 1 and 0 ≤ c2 < 1, then ST has a unique fixed point z in X and TS has a unique 
fixed point w  in Y. Further Tz =w and Sw  = z. 
 
Proof: Let x0 

 be an arbitrary point in X. Define a sequence {xn} in X and a sequence {yn} in Y as follows: 
 
                          xn = (ST)n x0 ,  yn = T(xn-1) for n = 1,2,… . 
 
We have  
             d(xn, xn+1) =  d((ST)n x0 , (ST)n+1 x0)) 
                  =  d(S(T(ST)n-1 x0 , ST(ST)n x0 ) 

  =  d(ST(xn-1) , STxn) 
                               =  d((Syn , STxn ) 
                               ≤  c2.max{d(xn, Syn) + d(xn, STxn), e(yn, TSyn), e(yn, Txn), e(Txn, TSyn)} 
                               =  c2.max{d(xn, xn) + d(xn, xn+1), e(yn, yn+1), e(yn, yn+1), e(yn+1, yn+1)} 
                               ≤  c2.e(yn , yn+1)    
                   
Now 
           e(yn, yn+1)  =  e(Txn-1, Txn) 
                             =  e(Txn-1, TSyn) 
                             ≤  c1.max{d(xn-1, Syn), d(Syn, STxn-1), e(yn, Txn-1) + e(yn, TSyn), d(xn-1 ,STxn-1)} 

         =  c1.max{d(xn-1, xn), d(xn, xn) + e(yn, yn), e(yn, yn+1), d(xn-1, xn)} 
         =  c1.max {d(xn-1, xn), 0, e(yn, yn+1), d(xn-1, xn)} 

                             ≤  c1. d(xn-1, xn)   
                        
Hence 
           d(xn, xn+1) ≤ c1c2.d(xn-1, xn) 
                               
                             ≤ (c1c2)n d(x0,x1)  → 0 as n→∞    (since  0 ≤ c1c2 <1) 
 
Thus {xn} is a Cauchy sequence in (X,d). Since (X,d) is complete, it converges to a point z in X. Similarly, we can 
prove that the sequence {yn} is also a Cauchy sequence in (Y,e). Since (Y, e) is complete, it converges to a point w in 
Y.  
 
Now we prove Tz = w. 
 
Suppose Tz≠ w. 
 
We have 
                e(Tz, w)  =  

∞→n
lim e (Tz, yn+1)              

                              =  
∞→n

lim  e (Tz, TSyn) 

                ≤  
∞→n

lim c1.max{d(z, Syn), d(Syn, STz), e(yn, Tz), e(yn, TSyn), d(z, STz)} 

                               = 
∞→n

lim c1.max{d(z, xn), d(xn, STz), e(yn, Tz) + e(yn, yn+1), d(z, STz)} 

                               ≤  c1.d(z, STz)    
 
Now 
             d(z, STz)  = 

∞→n
lim  d(xn, STz) 

                              = 
∞→n

lim d(Syn, STz) 

                              ≤ 
∞→n

lim c2.max{d(z, Syn) + d(z, STz), e(yn.,TSyn), e(yn, Tz), e(Tz, TSyn)} 

                = 
∞→n

lim c2.max{d(z, xn) + d(z, STz), e(yn, yn+1), e(yn, Tz), e(Tz, yn+1)} 

                               ≤  c2.e(Tz, w) 
 
Hence 
           e(Tz, w) ≤ c1c2.e(Tz, w) < e(Tz, w) (since c1c2<1) which is a contradiction. 
 
Thus Tz = w. 
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Now we prove Sw = z. 
 
Suppose Sw ≠  z. 
 
We have 
             d(Sw ,z) = 

∞→n
lim d(Sw, xn+1) 

                            = 
∞→n

lim d(Sw, STxn) 

                            ≤ 
∞→n

lim c2.max{d(xn, Sw) + d(xn,STxn), e(w, TSw), e(w, Txn), e(Txn,, TSw)} 

                            = 
∞→n

lim c2.max{d(xn, Sw) + d(xn, xn+1), e(w, w), e(w, yn+1), e(yn+1, w)} 

                           ≤  c2.e(w, TSw) 
 
Now 
     e(w, TSw)     = 

∞→n
lim e(yn+1, TSw) 

                           = 
∞→n

lim e(Txn, TSw) 

                           ≤ 
∞→n

lim c1.max{d(xn, Sw), d(Sw, STxn), e(w, Txn) + e(w, TSw), d(xn, Txn)} 

                           = 
∞→n

lim c1.max{d(xn, Sw), d(Sw, xn+1), e(w, yn+1) + e(w,TSw), d(xn, yn+1)} 

                           ≤  c1.d(z, Sw) 
 
Hence 
 
     d(Sw, z) ≤  c1c2.d(z, Sw) < d(Sw, z)  (since c1c2 < 1) which is a contradiction. 
 
Thus Sw = z. 
 
We have STz = Sw = z and TSw = Tz =  w. Thus the point z is a fixed point of ST in X and the point w is a fixed point 
of TS in Y. 
 
Uniqueness: Let z΄≠ z be the another fixed point of ST in X.   
                     
We have 
 
           d(z, z΄)  =  d(Sw, STz΄) 
                         ≤  c2.max{d(z΄, Sw) + d(z΄, STz΄), e(w, TSw), e(w, Tz΄), e(Tz΄,TSw)} 
                         =  c2.max{d(z΄,z) + d(z΄, z΄), e(w, w), e(w, Tz΄), e(Tz΄, w)} 
                         ≤  c2.e(w, Tz΄) 
Now 
        e(Tz΄,w) =  e(Tz΄,TSw) 
                      ≤  c1.max{d(z΄, Sw), d(Sw, STz΄), e(w, Tz΄) + e(w, TSw) d(z΄, STz΄)} 
                      =  c1.max{d(z΄, z), d(z, z΄), e(w, Tz΄) + e(w, w), d(z΄, z΄)}                                                      
                      ≤  c1. d(z, z΄) 
 

Hence  
 
      d(z, z΄) ≤  c1c2.d(z, z΄) < d(z, z΄) which is a contradiction. 

 
 
Thus z = z΄.   
 

So the point z is a unique fixed point of ST. Similarly, we prove the point w is also a unique point of TS. This 
completes the proof. 
                                                                                                                                                                                                          
Remark 2.14: If (X, d) and (Y, e) are the same metric spaces, then by the above theorem 2.13, we get the following 
theorem, as corollary. 
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Corollary2.15: Let (X, d) be a complete metric space. If S and T are mappings from X into itself satisfying the 
following conditions: 
 
    d(Tx, TSy) ≤ c1.max{d(x, Sy), d(Sy, STx), d(y, Tx) + d(y, TSy), d(x, STx)}    
    d(Sy, STx) ≤ c2.max{d(x, Sy) + d(x, STx), d(y, TSy), d(y, Tx), d(Tx,TSy)}    
 
for all x, y in X where 0 ≤ c 1, c2 < 1, then ST has a unique fixed point z in X and TS has a unique  fixed point w in X. 
Further, Tz = w and Sw = z and if z = w, then z is the unique common fixed point of S and T. 
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