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ABSTRACT

In this paper we prove some fixed point theorems for generalized contraction mappings in two complete metric spaces.
Here we extend some results due to B. Fisher.
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1. INTRODUCTION.

Some authors proved many kinds of fixed point theorems for contractive type mappings and non-expansive mappings
([1]-[4D)- In [5] and [6], B. Fisher proved some theorems in two complete metric spaces as follows:

Theorem 1.1: [5] Let (X, d) and (Y, e) be complete metric spaces. If T is a mapping from X into Y and S is a mapping
from Y into X, satisfying the following conditions:

e(Tx, TSy) <c . max{d(x, Sy), e(y, TX), e(y,TSy)}
d(Sy, STx) <c. max{e(y, Tx), d(x, Sy), d(x, STX)}

forall x in X and y in Y. where 0 < ¢ < 1, then ST have a unique fixed point z in X and TS has a unique fixed point w
in Y. Further, Tz=w and Sw = z.

In this paper we prove some fixed point theorems in two complete metric spaces. Our aim is to extend the results of B.
Fisher [4] and [5]. The following definitions are necessary for the present study.

Definition1.2: A sequence {x,} in a metric space (X, d) is said to be convergent to a point x € X if given €> 0 there
exists a positive integer ngsuch that d(x,,x) < € for all n > ng.

Definition1.3: A sequence {x,} in a metric space (X, d) is said to be a Cauchy sequence in X if given €>0 there exists
a positive integer ngsuch that d(xy, x,) < € forallm, n>ng.

Definition1.4: A metric space (X, d) is said to be complete if every Cauchy sequence in X converges to a point in X.

Definition1.5: Let X be a non-empty set and f: X — X be a map. An element x in X is called a fixed point of X
fxX)=x.

Definition1.6: Let X be a non-empty set and f, g: X — X be two maps. An element x in X is called a common fixed
point of f and g if f(X) = g(x) = x.
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2 MAIN RESULTS:

Theorem?2.1: Let (X, d) and (Y, €) be complete metric spaces. If T is a mapping from X into Y and S is a mapping
from Y into X satisfying the following conditions:

e(Tx, TSy) <c¢;. max{d(x, Sy), e(y, Tx) + e(y, TSy)} Q)
d (Sy, STX) < c,. max {d(x, Sy) + d(x, STx), e(y, Tx)} 2

forall xin X andy inY where 0<c; <1andO0<c,<1,then ST has a unique fixed point z in X and TS has a unique
fixed point win Y. Further Tz =w and Sw = z.

Proof: Let xqbe an arbitrary point in X. Define a sequence {x,} in X and a sequence {y,} in Y, as follows:

Xn = (ST)" X0, VYn=T(Xn1) forn=1.2,....
We have

d(Xn Xns1) = d((ST)" X0, (ST)"™" Xo))
= d(S(T(ST)"* o, ST(ST)" Xo)
= d(ST(Xn-1), STXy)
= d(Syp, STx,)
< ¢ max{d(xn, Syn) + d(Xa, STX,), e(Yn, TX)} (since by (2))
= Cp. max{d(Xn, Xn) + d(Xn, Xn+1), €(Yn, Yne1)}
= Co. max{d(Xn, Xn+1), €(Yn, Yn+1)}
< Cz. €(Yn, Yn+1)

Now

e(yl’h Yn+1) = e(TXWll TXH)
=e(TXn.1, TSYn)
< ¢ max{d(Xn-1, SYn), €(Yn, TXn1) + €(Yn, TSYn)} (since by (1))
= 1. max{d(Xn-1, Xn), €(Yn, Yn) + €(Yn, Y1)}
< g d(Xn-1, Xn)
Hence

d(Xn, Xn+1) = C1Ca. d(Xn—lx Xn)

< (c162)" d(Xo, X1) — 0 as n—oo0 (since 0 <c¢yc,< 1)

Thus {x,} is a Cauchy sequence in (X, d). Since (X, d) is complete, it converges to a point z in X. Similarly, we can
prove that the sequence {y,} is also a Cauchy sequence in (Y, e). Since (Y, e) is complete, it converges to a point w in
Y.

Now we prove Tz =w
Suppose Tz #w.
We have
e(Tz,w) = lim e(Tz, yn:1)
n—ow
= lim e(Tz TSy,)
N—o0
< lim co.max{d(z, Sy.), e(ynTZ) + e(Yn, TSYn)}

n—o

= !ﬂ;n cr.max {d(z, Xn) , € (Yn, TZ) + e(Yn, Yn+1)}

c1.e(Tz,w)
e(Tz, w) (since 0 <c; < 1), which is a contradiction.

Thus Tz = w.
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Now we prove Sw = z.
Suppose Sw # z.

We have
d(Sw,z) = lim d(Sw, X,.1)
n—oo
= lim d(Sw, STx,)

nN—oo

< lim c,.max{d(X,, SW) + d(X,, STXy), e(W, Tx,)}
nN—o0

= lim c;.max{d(x,, SW) + d(Xq, Xn+1), €(W, Yne1)}
n—ow

< C. d(Sw, 2)
< d(Sw, z) (since 0 < ¢, <1), which is a contradiction.

Thus Sw = z.

We have STz = Sw =z and TSw = Tz = w. Thus the point z is a fixed point of ST in X and the point w is a fixed point
of TSin'.

Uniqueness: Letz" # z be another fixed point of ST in X.

We have
d(z,z") =d(STz STz")
<. max{d(z’, STz) + d(z’, STz"), e(Tz, Tz")}
= cpmax{d(z’, 2), e(Tz,Tz")}
<c,.e(Tz, Tz")

Also we have
e(Tz, Tz") = e(Tz, TSTz")
< ci.max{d(z, STz"), e(Tz',Tz) + ¢(Tz’, TSTz")}
=c.max {d(z, z"), e(Tz’, T2)}
< Cl.d (Z, Z')
Hence

d(z, z") < c1Cp.d(z,2") < d( z, z") (since c,C, < 1), which is a contradiction.
Thus z=z".

So the point z is a unique fixed point of ST. Similarly, we prove the point w is also a unique fixed point of TS. This
completes the proof

Remark 2.2: If (X, d) and (Y, €) are the same metric spaces, then by the above theorem 2.1, we get the following
theorem, as corollary.

Corollary2.3: Let (X, d) be a complete metric space. If S and T are mappings from X into itself
satisfying the following conditions:

d(Tx, TSy) < ci. max{d(x, Sy), d(y, Tx) + d(y, TSy)}
d(Sy, STX) < cp. max{d(x, Sy) + d(x, STx), d(y, TX)}

for all x, y in X where 0< ¢ 4, ¢, < 1, then ST has a unique fixed point z in X and TS has a unique fixed point w in X.
Further, Tz =w and Sw =z and if z = w, then z is the unique common fixed point of Sand T.

Theorem2.4: Let (X, d) and (Y, e) be two complete metric spaces. If T is a mapping from X into Y and S is a mapping
from Y into X satisfying the following conditions

e(Tx, TSy) < cr. max{d(x, Sy), e(y, TX) ,e(y, Tx) + e(y, TSy)} 1)
d(Sy, STx) < co.max {e(y, Tx), d(x, Sy), d(x, Sy) + d(x, STx)} 2

forall xin X andy inY where 0<c;<1and0<c;,<1,then ST has a unique fixed point z in X and TS has a unique
fixed point win Y. Further Tz =w and Sw = z.
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Proof: Let xq be an arbitrary point in X. Define a sequence {x,} in X and a sequence {y,} in Y, as follows:
Xh = (ST)" X0, VYn=T(Xn1) forn=12,....

Now we have
d(Xn, Xnea) = d((ST)" %o, (ST)" x0))
d(S(T(ST)™* Xo, ST(ST)" Xo)
d(ST(Xn—l)’ STXn)
=d(Syn, STX,)
< cz.max{e(yn, TXn) , d(Xn, Syn), d(Xn, Syn) + d(Xn, STXn)}
= Cc.max{e(Yn, Yn+1), d(Xn, Xn) , d(Xn, Xn) + d(Xn, Xns1)}
= Cc.max{e(Yn, Yn+1) » 0, d(Xn, Xn+1)}
< 2. &(Yn, Yns1)

Now
e(Yn Yne1) = €(TXn1, TXn)
=e(TXn1, TSYn)
< cr.max{d(X-1,SYn), €(Yn: TXn-1), €(Yn, TXn1) + €(Yn, Syn)}
= Cl-max{d(xn-lv Xn)a e(ynr Yn)a e(ynr Yn) + e(Yn: yn+1)}
< cp. d(Xn1, Xn)
Hence

d(Xn, Xn+1) < c1Co d(Xn1, Xn)

<(c1€)" d(Xo, X1) — 0 asn—oo  (since 0< ¢3¢, <1)
Thus {x,} is a Cauchy sequence in (X, d). Since (X, d) is complete, it converges to a point z in X. Similarly, we can
prove that the sequence {y,} is also a Cauchy sequence in (Y, e). Since (Y, €) is complete, it converges to a point w in
Y.
Now we prove Tz =w .

Suppose Tz #w.

We have
e(Tz,w) = lim e(Tz, yns1)
n—ow

= lim e(Tz, TSy,)
n—oo

S Iim Clmax{d(z1 Syl"l)ae(yl"la TZ)1 e(ym TZ) + e(yl’h TSYn)}
N—o0

lim  co.max{d(z, x), e(Yn T2), e(Yn, TZ) + e(Yn, Yns1)}

n—oo

¢1. max{d(z, z), e(w, Tz), e(w, Tz) + e(w,w)}

c1. max{0, e(w, Tz), e(w, T2)}

e(w, Tz) (since 0 <c¢; <1),which is a contradiction.

AN T

Thus Tz = w.
Now we prove Sw = z.
Suppose Sw # z.

We have

d(Sw, z) d(SW, Xn+1)

= lim d(Sw, STx,)

n—oo

< lim c,.max{e(w,Tx,), d(XnW), d(X,, SW) + d(Xn, STX)}
N—o0

= lim c,. max{e(Ww, Yn1), d(Xn, SW), d(Xn, SW) + d(Xn, Xn+1)}

n—oo

< d(Sw, z) (since 0 <c, < 1) ,which is a contradiction.
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Thus Sw = z.

We have STz = Sw =2z and TSw = Tz = w. Thus z is a fixed point of ST in X and the point w is a fixed point of TS in
Y.

Uniqueness: Let z" # z be another fixed point of ST in X.

We have
d(z’,z) = d(STz’,STz)
< Cp. max{e(Tz',Tz), d(z, STz"), d(z, STz") + d(z. STz)}
< ¢, max{e(Tz',Tz), d(z, z"), d(z, z")}
< ¢y (T2, T2)
Now
e(Tz’,Tz) = e(Tz’, TST2)
< ¢y max{d(z’, STz), e(Tz, Tz"), &(Tz, Tz") + &(Tz, TSTz)}
= cp.max{d(z’, 2), e(Tz, Tz"), e(Tz, Tz")}
< ¢.d(z",2)
Hence

d(z",z) < c1Cp.d(z",2) < d(z’,2) (since ciC, <1),which is a contradiction.
Thusz=z".

So the point z is a unique fixed point of ST. Similarly, we prove the point w is also a unique point of TS. This
completes the proof

Remark2.5: If (X, d) and (Y, e) are the same metric spaces, then by the above theorem 2.4, we get the following
theorem as corollary.

Corollary2.6: Let (X, d) be a complete metric space. If S and T are mappings from X into itself satisfying the
following conditions:

d(Tx, TSy) < c¢;. max{d(x, Sy), d(y, Tx) ,d(y, Tx) + d(y, TSy)}
d(Sy, STX) < co.max {d(y, Tx), d(x, Sy), d(x, Sy) + d(x, STx)}

for all x, y in X where 0< ¢ 4, ¢, < 1, then ST has a unique fixed point z in X and TS has a unique fixed point w in X.
Further, Tz =w and Sw =z and if z = w, then z is the unique common fixed point of Sand T.

Theorem2.7: Let (X, d) and (Y, e) be complete metric spaces. If T is a mapping from X into Y and S is a mapping
from Y into X satisfying the following conditions

e(Tx, TSy) < ci.max{d(x, Sy), e(y, Tx), e(y, TSy), d(x, STx)} Q)
d(Sy, STx) < c,.max{e(y, Tx), d(x, Sy), d(x, STx), e(Tx, TSy)} 2
forall xin Xandy inY where 0<c ; < land 0 <c, < 1, then ST has a unique fixed point z in X and TS has a unique
fixed point win Y. Further Tz = w and Sw =z.
Proof: Let X, be an arbitrary point in X. Define a sequence {x,} in X and a sequence {y,} in Y, as follows:
Xn=(ST)" Xg, ¥n=T(Xn1) forn=12,....

We have

d((ST)" X, (ST)"™" Xo))
d(S(T(ST)"™ X0, ST(ST)" Xo)
d(ST(Xn-1), STXy)
d(Syn, STx,)
Cz-max{e(yn’ TXn)1 d(Xnn Syn)1 d(Xm STXn)- E(TXn, TSyn)}
Co.max{e(Yn, Yn+1), d(Xn, Xn), d(Xn, Xn+1), €(Yne1, Yne2)} < c2.8(Yni Yn+1)

d(Xm >(n+1)

niIA o
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Now
e(Yn Yn+1) = €(TXp1, TXp)
= e(TXp1, TSYn)
< cp.max{d(Xn-1, SYn), €(Yn, TXn-1), €(Yn, TSYn), d(Xn1, STXn1)}
= cp.max{d(Xn-1, Xn), €(Yn, Yn), €(Yn, Yn+1), d(Xn1, Xn)}
< C1. d(Xn1, Xn)
Hence

d(Xn, Xpe1) < C1C2- A(Xn1, Xn)

<(c1C)" d(Xo, X1) — 0 asn—oo  (since 0 < ¢y, <1)
Thus {x,} is a Cauchy sequence in (X, d). Since (X, d) is complete, it converges to a point z in X. Similarly, we can
prove that the sequence {y,} is also a Cauchy sequence in (Y, €). Since (Y, €) is complete, it converges to a point w in
Y.
Now we prove Tz = w.

Suppose Tz# w.

We have
e(Tz,w) = lim e(Tz, yn1)
nN—o0

= lim e(Tz, TSy,)
n—o0

= lim c,.max{d(z, Syn), e(yn, T2).e(yn TSYn), d(z, ST2)}
n—o0

lim c..max{d(z, x,), &(y, T2), e(yn, Y1), d(z, ST2)}

ci.max{d(z, z), e(w, Tz), e(w, w), d(z, STz)}
¢1.d(z, ST2)

IA 1

Now
d(z, STz)

limd(x,, STz)
n—oo

lim d(Sy,, STz)
nN—o0

< lim co.max{e(y, Tz), d(z, Sy,), d(z, STz), e(Tz, TSy.)}
n—oo

lim c,.max{e(yn, T2), d(z, X,), d(z, STZ), &(Tz, yn:1)}
n—oo

c..max{e(w, Tz),d(z, z),d(z, STz),e(Tz, w)}
c,.6(Tz, w)

IN

Hence
e(Tz, w) < ¢1C,.6(Tz, w) < ¢e(Tz, w) (since c;c,< 1) which is a contradiction.

Thus Tz = w.
Now we prove Sw = z.
Suppose Sw # z.
Then we have
d(Sw, z) = lim d(Sw, Xn:1)
n—oo
= lim d(Sw, STx,)
n—oo
< lim c,.max{e(w, Tx,), d(Xn, SW), d(X,, STXy), e(TXn, TSW)}
N—o0

= lim co.max{e(w, Yn:1), d((Xn, SW), d(Xn, Xn+1), €(Yns1, TSW)}
n—oo
< c.e(w, TSw)
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Now
e(w, TSW) = lim e(yys1, TSW)
n—oo
= lime(Tx,, TSw)
n—oo
< lim cp.max{d(x,, Sw), e(w, Tx,), e(w, TSw), d(X,,STx,)}
n—oo
< ¢1.d(Sw,2)
Hence

d(Sw, z) <c;1C,.d(Sw, 2) <d(Sw, z) ( °.* ¢iC;< 1), which is a contradiction.
Thus Sw =z.

We have STz = Sw =z and TSw = Tz = w. Thus the point z is a fixed point of ST in X and the point w is a fixed point
of TSinY.

Uniqueness: Let z" £ z in X be another fixed point of ST in X.
We have

d(z,z") =d(Sw, STz")
< cp.max{e(w, Tz"), d(z’, Sw), d(z’, STz), e(Tz",w)}
< Cz.e(TZ’,W)
Now

e(Tz',w) = e(Tz’, Yn+1)

=¢e(Tz’, TSy,)
ci.max{d(z’, Sy,), e(Yn, TZ"), €(Yn, TSYy), d(z’, STz")}
c.d(z’, 2)

INIA

Hence
d(z, z") < c1C,.d(z, 2") < d(z,z") (since c;c,< 1), which is a contradiction.

So the point z is a unique fixed point of ST. Similarly, we prove the point w is also a unique point of TS. This
completes the proof

Remark 2.8: If (X, d) and (Y, e) are the same metric spaces, then by the above theorem 2.7,we get the following
theorem as corollary.

Corollary2.9: Let (X, d) be a complete metric space. If S and T are mappings from X into itself satisfying the
following conditions:

d(Tx, TSy) < ci.max{d(x, Sy), d(y, Tx), d(y, TSy), d(x, STx)}
d(Sy, STX) < co.max{d(y, Tx), d(x, Sy), d(x, STx), d(Tx, TSy)}

for all X, y in X where 0< ¢ 1, ¢, < 1, then ST has a unique fixed point z in X and TS has a unique fixed point w in X.
Further, Tz =w and Sw =z and if z = w, then z is the unique common fixed point of S and T.

Theorem 2.10: Let (X, d) and (Y, €) be complete metric spaces. If T is a mapping from X into Y and S is a mapping
from Y into X satisfying the following conditions

e(Tx, TSy) < ci.max{d(x, Sy), e(y, Tx), e(y, TSy), d(x, STx), d(Sy,STx)} 1)
d(Sy, STX) < co.max{e(y, Tx), d(x, Sy), d(x, STx), e(Tx,TSy), e(y,TSy)} 2

forall xin XandyinY where 0<c¢ ;<1and 0<c,< 1, then ST has a unique fixed point z in X and TS has a unique
fixed point win Y. Further Tz =w and Sw =z.

Proof: Let xgbe an arbitrary point in X. Define a sequence {x,} in X and a sequence {y,} in Y, as follows:

X0 = (ST)" Xg, Yn=T(Xn1) forn=1.2,....
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We have
d(%n Xne1) = d((ST)" X0, (ST)™ X0))
= d(S(T(ST)™ X, ST(ST)" Xo)
= d(ST(Xn.1), STXy)
= d(Syn, STX,)
S Cz-maX{e(anTXn)a d(XnvSyn)v d(XmSTXH)7 e(TXanSYn)a e(ynv Tsyn)}
= Ca.max{e(Yn, Yn+1), d(Xn, Xn), d(Xn, Xn+1), €(Yn+1, Yn+1), €(Yn, Yne1)}
= Co. max{ e(Yn, Yn+1), 0, d(Xn, Xn+1), 0, €(Yn, Ynsa)}
< c2. e(Yn, Yn+1)
Now
e(Yn, Yne) = €(TXn.1, TXn)
= e(TXq1, TSYn)
< ¢1. max{d(Xn-1, SYn), €(Yn: TXn-1) , €(Yn, TSYn), d(Xn-1, STXn1), d(SYn, STXn-1)}
= 1. Max{d(Xn-1, Xn), €(Yn, Yn), €(Yn, Yn+1), d(Xn-1, Xn), d(Xn-1, Xn}}
<c1. d(Xp1, Xn)
Hence

d(Xn Xn+1) < €1C2.0(Xn-1, Xn)

< (Cl(:z)n d(Xo,Xl) — (0 as n—oo (Since 0<ciC <1)

Thus {x,} is a Cauchy sequence in (X, d). Since (X, d) is complete, it converges to a point z in X. Similarly, we can

prove that the sequence {y,} is also a Cauchy sequence in (Y, €). Since (Y,e) is complete, it converges to a point w in
Y.

Now we prove Tz = w.
Suppose Tz# w

We have

e(Tz,w) = lime(Tz, yn)
n—oo

lime(Tz, TSy,)
n—oo

IA

lim c,.max{d(z, Syx), (Yn T2),e(Yn, TSYs), d(z, STz), d(Sy, ST2z)}
n—oo

= lim cp.max {d(z, X.), e(Yn T2), (Y, Yns1), d(z, STZ), d(X,, ST2)}
N—o0
< ¢1.d(z, ST2)

Now
d(z, STz) = limd(x,, STz)
n—oo

lim d(Syn, STz2)
n—o

IN

lim c,. max{e(yn,Tz), d(z, Syn), d(z, STz), e(Tz, TSyx), e(yn, TSyn)}
n—oo

rI]I_r)n co.max{e(ynT2), d(z, X,), d(z, ST2), (TZ, Yn+1), €(Yn, Vns1)}
Co.e(Tz, w)

IN

Hence

e(Tz, w) <c1Co.e(Tz, w) < e(Tz, w) (since ci¢, < 1), which is a contradiction.
Thus Tz = w.
To prove that Sw = z.

Suppose that Sw # z.
d(Sw, ) = lim d(Sw, Xy.1)
n—o0
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= limd(Sw, STx,)

n—oo

< lim c,.max{e(w, Tx,), d(Xn, SW), d(Xn, STXy), e(TXn, TSW), e(Yn, TSX)}
N—o0

= rlml_(n Co.max{e(Ww, Yn1), d(Xn, SW), d(Xn, Xn+1), €(Yns1, TSW), €(Yn, Yne1)}

< co.e(w, TSw)

Now
e(w, TSw) = lime(yn1, TSW)
nN—o0

= lim e(Tx,, TSw)

n—w

< lim cp.max{d(x,, Sw),e(w, Tx,),e(w, TSW),e(TXn, TSW),e(Yn, TSX.)}
n—o0

= lim c.max{d(x,, SW),e(W, Yns1),e(W, TSW),d(Xn, Xn+1), d(SW, Xns1)}
nN—o0
c1.d(Sw, 2)

INA

Hence
d(Sw, z) < c¢1C,.d(Sw, z) < d(Sw, z) (since c,c,< 1), which is a contradiction.

Thus Sw = z.

We have STz = Sw =z and TSw = Tz = w. Thus the point z is a fixed point of ST in X and the point w is a fixed point
of TSinY.

Uniqueness: Let z” # z be the another fixed point of ST in X.

We have
d(z, z') = d(Sw, STz")
< c.max{e(w,Tz"), d(z",Sw), d(z',STz’"), e(Tz’,TSw), e(w, TSw)}
= cpmax{e(w,Tz"), d(z",2), d(z',z"), e(Tz’, w), e(w, w)}
< cp.e(Tz',w)
Now
e(Tz', w) =e(Tz’, TSw)
<cpmax{d(z’, Sw), e(w, Tz"), e(z’, TSz"), e(Txn, TSW), &(Yn, TSXn)}
= cp.max{d(z’, 2), e(w, Tz"), e(z’, TSz"), d(z’, z), d(z, STz")
< Cl.d(z, Z’)

Hence
d(z, z") < ¢1€,.d(z, ") < d(z, z") (since c¢;C, < 1), which is a contradiction.

Thusz=7z".

So the point z is a unique fixed point z of ST. Similarly, we prove the point w is also a unique point of TS. This
completes the proof.

Remark 2.11: If (X, d) and (Y, €) are the same metric spaces, then by the above theorem 2.10., we get the following
theorem as corollary.

Corollary2.12: Let (X, d) be a complete metric space. If S and T are mappings from X into itself satisfying the
following conditions:

d(Tx, TSy) < ci.max{d(x, Sy), d(y, Tx), d(y, TSy), d(x, STx)}
d(Sy, STXx) < co.max{d(y, Tx), d(x, Sy), d(x, STx), d(Tx, TSy)}

for all x, y in X where 0< ¢ 4, ¢, < 1, then ST has a unique fixed point z in X and TS has a unique fixed point w in X.
Further, Tz =w and Sw = z and if z = w, then z is the unique common fixed point of Sand T.

Theorem?2.13: Let (X, d) and (Y, €) be complete metric spaces. If T is a mapping from X into Y and S is a mapping
from Y into X satisfying the following conditions

e(Tx, TSy) <ci.max{d(x, Sy), d(Sy, STX), e(y, Tx) + e(y, TSy), d(x, STX)} (1)
d(Sy, STx) < c,.max{d(x, Sy) + d(x, STx), e(y, TSy), e(y, Tx), e(Tx,TSy)} (2)
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forall xin X andy inY where 0<c; <1andO0<c;,<1,then ST has a unique fixed point z in X and TS has a unique
fixed point w in'Y. Further Tz =w and Sw =z.

Proof: Let X, be an arbitrary point in X. Define a sequence {x,} in X and a sequence {y,} in Y as follows:
Xn = (ST)" X0, VYn=T(Xn1) forn=1.2,....

We have
d(Xn, Xns1) = d((ST)" X0, (ST)™* X))
d(S(T(ST)™ X0, ST(ST)" Xo)
d(ST(Xn.1) , STXy)
d((Syn, STxs)
Co.max{d(Xn, Syn) + d(Xn, STXn), €(Yn, TSYn), €(Yn, TXn), €(TXn, TSYn)}
Ca.max{d(Xy, Xn) + d(Xn, Xn+1), €(Yns Yre1)s €(Yny Ynsa)s €(Ynsts Yie1)}
C2.6(Yn, Yn+1)

niA

IN

Now
e(ynr Yn+1) e(TXn»ln TXn)
&(TXn1, TSYn)
c1-max{d(Xn-1, SYn), d(SYn, STXn-1), €(Yn, TXn-1) + €(Yn, TSYn), d(Xn-1,STXn1)}
C1.max{d(Xn.1, Xn), d(Xn, Xn) + €(Yn, Yn), €(Yn, Yn+1), d(Xn-1, Xn)}
ci.max {d(Xn.1, Xn), 0, €(Yn, Yn+1), d(Xn-1, Xn) }
C1. d(Xq-1, Xn)

IA LA

Hence
d(Xn, Xn+1) < €1C2.A(Xn-1, Xn)

<(c162)" d(Xo,X1) — 0 asn—oo  (since 0 <c;C,<1)

Thus {x,} is a Cauchy sequence in (X,d). Since (X,d) is complete, it converges to a point z in X. Similarly, we can

prove that the sequence {y,} is also a Cauchy sequence in (Y,e). Since (Y, e) is complete, it converges to a point w in
Y.

Now we prove Tz = w.

Suppose Tz # w.

We have
e(Tz,w) = lime (Tz, yna)
n—oo
= lim e (Tz, TSy,)
nN—o0
< limc,.max{d(z, Sy.), d(SYn, ST2), (Yn, T2), e(yn, TSYy), d(z, ST2)}
n—oo
= lim c.max{d(z, X.), d(Xn, STZ), e(yn, T2) + €(Yn, Yns1), d(z, ST2)}
n—oo
< ¢1.d(z, ST2)
Now

d(z, STz) = lim d(x,, STz)
n—oo
= lim d(Sy,, STz)
n—oo
< lim c,.max{d(z, Sy,) + d(z, STz), e(yn.TSYn), €(yn, T2), &(Tz, TSy.)}
n—oo

= lim co.max{d(z, x,) + d(z, STz), (Y, Yns1), €(Yn, T2), &(TZ, Yns1)}
< nC_z).EZ(Tz, w)
Hence
e(Tz, w) < c1C,.6(Tz, w) < e(Tz, w) (since c,c,<1) which is a contradiction.
Thus Tz = w.
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Now we prove Sw = z.
Suppose Sw # z.

We have
d(Sw ,z) = lim d(Sw, Xn+1)

n—oo

= lim d(Sw, STx,)
n—oo

< lim c.max{d(x,, SW) + d(X,,STXy), e(w, TSw), e(w, TX), e(TX,, TSw)}
nN—o0

= lim c,.max{d(x, Sw) + d(Xn, Xn+1), €(W, W), €(W, Yns1), €(Yns1, W)}
n—o0

< c.e(w, TSw)

Now
e(w, TSw) = lime(yn.1, TSw)
n—oo

= lim e(Tx, TSw)
n—oo

< lim co.max{d(x,, Sw), d(Sw, STX,), e(w, Tx,) + e(w, TSw), d(X,, TX,)}
n—ow

= lim co.max{d(x,, SW), d(SW, Xn+1), €(W, Yns1) + €(W, TSW), d(Xn, Yns1)}
n—oo

< ¢1.d(z, Sw)

Hence
d(Sw, z) < ¢4C,.d(z, Sw) < d(Sw, z) (since c;C; < 1) which is a contradiction.

Thus Sw = z.

We have STz = Sw =z and TSw = Tz = w. Thus the point z is a fixed point of ST in X and the point w is a fixed point
of TSinY.

Uniqueness: Let z" # z be the another fixed point of ST in X.
We have

d(z,z") = d(Sw, STz")
< cemax{d(z’, Sw) + d(z’, STz"), e(w, TSw), e(w, Tz"), e(Tz",TSw)}
= Cpmax{d(z’,z) + d(z’, '), e(w, w), e(w, Tz"), e(Tz", w)}
< cre(w, TZ)

Now

e(Tz',w) = e(Tz',TSw)
< cp.max{d(z’, Sw), d(Sw, STz"), e(w, Tz") + e(w, TSw) d(z’, STz")}
= ci.max{d(z’, 2), d(z, 2), e(w, Tz") + e(w, w), d(z’, z")}
< Ci. d(Z, z")

Hence

d(z, z") £ ci€,.d(z, z") < d(z, z") which is a contradiction.

Thusz==z".

So the point z is a unique fixed point of ST. Similarly, we prove the point w is also a unique point of TS. This
completes the proof.

Remark 2.14: If (X, d) and (Y, €) are the same metric spaces, then by the above theorem 2.13, we get the following
theorem, as corollary.
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Corollary2.15: Let (X, d) be a complete metric space. If S and T are mappings from X into itself satisfying the
following conditions:

d(Tx, TSy) < ci.max{d(X, Sy), d(Sy, STx), d(y, Tx) + d(y, TSy), d(x, STX)}
d(Sy, STX) < c,.max{d(x, Sy) + d(x, STX), d(y, TSy), d(y, Tx), d(Tx,TSy)}

for all X, y in X where 0< ¢ 1, ¢, < 1, then ST has a unique fixed point z in X and TS has a unique fixed point w in X.
Further, Tz =w and Sw =z and if z = w, then z is the unique common fixed point of S and T.
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