International Journal of Mathematical Archive-3(3), 2012, Page: 826-837

 (cs)MMA Available online through www.ijma.info ISSN 2229-5046
SOME FIXED POINT THEOREMS IN TWO METRIC SPACES

T. Veerapandi*
Associate Professor of Mathematics, P.M.T. College Melaneelithanallur-627953, India
E-mail: tveerapandi@ymail.com

T. Thiripura Sundari

Department of Mathematics, Sri K.G.S Arts College Srivaikuntam, India
E-mail: thiripurasundari.1974@gmail.com

J. Paulraj Joseph

Associate Professor of Mathematics, Manonmaniam Sundaranar University, Tirunelveli, India E-mail: jpaulraj_2003@yahoo.co.in
(Received on: 16-02-12; Accepted on: 13-03-12)

Abstract

In this paper we prove some fixed point theorems for generalized contraction mappings in two complete metric spaces. Here we extend some results due to B. Fisher.

Key words and Phrases: fixed point, common fixed point and complete metric space.
AMS Mathematics Subject Classification: 47H10, 54H25.

1. INTRODUCTION.

Some authors proved many kinds of fixed point theorems for contractive type mappings and non-expansive mappings ([1]-[4]). In [5] and [6], B. Fisher proved some theorems in two complete metric spaces as follows:

Theorem 1.1: [5] Let (X, d) and (Y, e) be complete metric spaces. If T is a mapping from X into Y and S is a mapping from Y into X , satisfying the following conditions:

$$
\begin{aligned}
& \mathrm{e}(T x, \text { TSy }) \leq \mathrm{c} \cdot \max \{\mathrm{~d}(\mathrm{x}, \text { Sy), e(y, Tx }), \mathrm{e}(\mathrm{y}, \mathrm{TSy})\} \\
& \mathrm{d}(\text { Sy, STx }) \leq \mathrm{c} \cdot \max \{\mathrm{e}(\mathrm{y}, \text { Tx }), \mathrm{d}(\mathrm{x}, \text { Sy) }, \mathrm{d}(\mathrm{x}, \text { STx })\}
\end{aligned}
$$

for all x in X and y in Y . where $0 \leq \mathrm{c}<1$, then ST have a unique fixed point z in X and TS has a unique fixed point w in Y . Further, $\mathrm{Tz}=\mathrm{w}$ and $\mathrm{Sw}=\mathrm{z}$.

In this paper we prove some fixed point theorems in two complete metric spaces. Our aim is to extend the results of B. Fisher [4] and [5]. The following definitions are necessary for the present study.

Definition1.2: A sequence $\left\{x_{n}\right\}$ in a metric space (X, d) is said to be convergent to a point $x \in X$ if given $\in>0$ there exists a positive integer n_{0} such that $\mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}\right)<\epsilon$ for all $\mathrm{n} \geq \mathrm{n}_{0}$.

Definition1.3: A sequence $\left\{\mathrm{X}_{\mathrm{n}}\right\}$ in a metric space (X, d) is said to be a Cauchy sequence in X if given $\in>0$ there exists a positive integer n_{0} such that $\mathrm{d}\left(\mathrm{x}_{\mathrm{m}}, \mathrm{x}_{\mathrm{n}}\right)<\epsilon$ for all $\mathrm{m}, \mathrm{n} \geq \mathrm{n}_{0}$.

Definition1.4: A metric space (X, d) is said to be complete if every Cauchy sequence in X converges to a point in X .
Definition1.5: Let X be a non-empty set and $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{X}$ be a map. An element X in X is called a fixed point of X $f(x)=x$.

Definition1.6: Let X be a non-empty set and $\mathrm{f}, \mathrm{g}: \mathrm{X} \rightarrow \mathrm{X}$ be two maps. An element x in X is called a common fixed point of f and g if $f(x)=g(x)=x$.

[^0]
T. Veerapandi*, T. Thiripura Sundari and J. Paulraj Joseph/ SOME FIXED POINT THEOREMS IN TWO METRIC SPACES / IJMA- 3(3),

 Mar.-2012, Page: 826-837
2 MAIN RESULTS:

Theorem2.1: Let (X, d) and (Y, e) be complete metric spaces. If T is a mapping from X into Y and S is a mapping from Y into X satisfying the following conditions:

$$
\begin{align*}
& \mathrm{e}(\mathrm{Tx}, \mathrm{TSy}) \leq \mathrm{c}_{1} \cdot \max \{\mathrm{~d}(\mathrm{x}, \text { Sy }), \mathrm{e}(\mathrm{y}, \mathrm{Tx})+\mathrm{e}(\mathrm{y}, \text { TSy })\} \tag{1}\\
& \mathrm{d}(\text { Sy, STx }) \leq \mathrm{c}_{2} \cdot \max \{\mathrm{~d}(\mathrm{x}, \text { Sy })+\mathrm{d}(\mathrm{x}, \text { STx }), \mathrm{e}(\mathrm{y}, \text { Tx })\} \tag{2}
\end{align*}
$$

for all x in X and y in Y where $0 \leq \mathrm{c}_{1}<1$ and $0 \leq \mathrm{c}_{2}<1$, then ST has a unique fixed point z in X and TS has a unique fixed point w in Y. Further $T z=w$ and $S w=z$.

Proof: Let x_{0} be an arbitrary point in X. Define a sequence $\left\{x_{n}\right\}$ in X and a sequence $\left\{y_{n}\right\}$ in Y, as follows:

$$
\mathrm{x}_{\mathrm{n}}=(\mathrm{ST})^{\mathrm{n}} \mathrm{x}_{0}, \mathrm{y}_{\mathrm{n}}=\mathrm{T}\left(\mathrm{x}_{\mathrm{n}-1}\right) \text { for } \mathrm{n}=1,2, \ldots
$$

We have

$$
\begin{aligned}
\mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}\right) & \left.=\mathrm{d}\left((\mathrm{ST})^{\mathrm{n}} \mathrm{x}_{0},(\mathrm{ST})^{\mathrm{n}+1} \mathrm{x}_{0}\right)\right) \\
& =\mathrm{d}\left(\mathrm{~S}\left(\mathrm{~T}(\mathrm{ST})^{\mathrm{n}-1} \mathrm{x}_{0}, \mathrm{ST}(\mathrm{ST})^{\mathrm{n}} \mathrm{x}_{0}\right)\right. \\
& =\mathrm{d}\left(\mathrm{ST}\left(\mathrm{x}_{\mathrm{n}-1}\right), \mathrm{STx} x_{\mathrm{n}}\right) \\
& =\mathrm{d}\left(\mathrm{Sy}_{\mathrm{n}}, \operatorname{STx_{\mathrm {n}}}\right) \\
& \left.\leq \mathrm{c}_{2} \cdot \max \left\{\mathrm{~d}\left(\mathrm{x}_{\mathrm{n}}, \operatorname{Sy} \mathrm{y}_{\mathrm{n}}\right)+\mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \operatorname{STx}_{\mathrm{n}}\right), \mathrm{e}\left(\mathrm{y}_{\mathrm{n}}, \mathrm{Tx}_{\mathrm{n}}\right)\right\} \quad \text { (since by }(2)\right) \\
& =\mathrm{c}_{2} \cdot \max \left\{\mathrm{~d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}}\right)+\mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}\right), \mathrm{e}\left(\mathrm{y}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}+1}\right)\right\} \\
& =\mathrm{c}_{2} \cdot \max \left\{\mathrm{~d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}\right), \mathrm{e}\left(\mathrm{y}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}+1}\right)\right\} \\
& \leq \mathrm{c}_{2} \cdot \mathrm{e}\left(\mathrm{y}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}+1}\right)
\end{aligned}
$$

Now

$$
\begin{aligned}
\mathrm{e}\left(\mathrm{y}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}+1}\right) & =\mathrm{e}\left(\mathrm{Tx}_{\mathrm{n}-1}, \operatorname{Tx}_{\mathrm{n}}\right) \\
& =\mathrm{e}\left(\operatorname{Tx}_{\mathrm{n}-1}, \operatorname{TSy_{\mathrm {n}}}\right) \\
& \left.\leq \mathrm{c}_{1} \cdot \max \left\{\mathrm{~d}\left(\mathrm{x}_{\mathrm{n}-1}, S y_{\mathrm{n}}\right), \mathrm{e}\left(\mathrm{y}_{\mathrm{n}}, \operatorname{Tx}_{\mathrm{n}-1}\right)+\mathrm{e}\left(\mathrm{y}_{\mathrm{n}}, T S y_{\mathrm{n}}\right)\right\} \quad \text { (since by (1) }\right) \\
& =\mathrm{c}_{1} \cdot \max \left\{\mathrm{~d}\left(\mathrm{x}_{\mathrm{n}-1}, \mathrm{x}_{\mathrm{n}}\right), \mathrm{e}\left(\mathrm{y}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}}\right)+\mathrm{e}\left(\mathrm{y}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}+1}\right)\right\} \\
& \leq \mathrm{c}_{1} \cdot \mathrm{~d}\left(\mathrm{x}_{\mathrm{n}-1}, \mathrm{x}_{\mathrm{n}}\right)
\end{aligned}
$$

Hence

$$
\begin{aligned}
d\left(x_{n}, x_{n+1}\right) & \leq c_{1} c_{2} \cdot d\left(x_{n-1}, x_{n}\right) \\
& \vdots \\
& \left.\leq\left(c_{1} c_{2}\right)^{n} d\left(x_{0}, x_{1}\right) \rightarrow 0 \text { as } n \rightarrow \infty \quad \text { (since } 0 \leq c_{1} c_{2}<1\right)
\end{aligned}
$$

Thus $\left\{x_{n}\right\}$ is a Cauchy sequence in (X, d). Since (X, d) is complete, it converges to a point z in X. Similarly, we can prove that the sequence $\left\{y_{n}\right\}$ is also a Cauchy sequence in (Y,e). Since (Y, e) is complete, it converges to a point w in Y.

Now we prove $\mathrm{Tz}=\mathrm{w}$
Suppose Tz $\neq \mathrm{w}$.
We have

$$
\begin{aligned}
\mathrm{e}(\mathrm{Tz}, \mathrm{w}) & =\lim _{n \rightarrow \infty} \mathrm{e}\left(\mathrm{Tz}, \mathrm{y}_{\mathrm{n}+1}\right) \\
& =\lim _{n \rightarrow \infty} \mathrm{e}\left(\mathrm{Tz}, \mathrm{TS} \mathrm{y}_{\mathrm{n}}\right) \\
& \leq \lim _{n \rightarrow \infty} \mathrm{c}_{1} \cdot \max \left\{\mathrm{~d}\left(\mathrm{z}, \operatorname{Sy} y_{\mathrm{n}}\right), \mathrm{e}\left(\mathrm{y}_{\mathrm{n}}, \mathrm{Tz}\right)+\mathrm{e}\left(\mathrm{y}_{\mathrm{n}}, \mathrm{TS} \mathrm{y}_{\mathrm{n}}\right)\right\} \\
& =\lim _{n \rightarrow \infty} \mathrm{c}_{1} \cdot \max \left\{\mathrm{~d}\left(\mathrm{z}, \mathrm{x}_{\mathrm{n}}\right), \mathrm{e}\left(\mathrm{y}_{\mathrm{n}}, \mathrm{Tz}\right)+\mathrm{e}\left(\mathrm{y}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}+1}\right)\right\} \\
& \leq \mathrm{c}_{1} \cdot \mathrm{e}(\mathrm{Tz}, \mathrm{w}) \\
& \left.<\mathrm{e}(\mathrm{Tz}, \mathrm{w}) \text { (since } 0 \leq \mathrm{c}_{1}<1\right), \text { which is a contradiction. }
\end{aligned}
$$

Thus $\mathrm{Tz}=\mathrm{w}$.

T. Veerapandi*, T. Thiripura Sundari and J. Paulraj Joseph/ SOME FIXED POINT THEOREMS IN TWO METRIC SPACES / IJMA- 3(3),

 Mar.-2012, Page: 826-837Now we prove $\mathrm{Sw}=\mathrm{z}$.
Suppose Sw $\neq \mathrm{z}$.
We have

$$
\begin{aligned}
\mathrm{d}(\mathrm{Sw}, \mathrm{z}) & =\lim _{n \rightarrow \infty} \mathrm{~d}\left(\mathrm{Sw}, \mathrm{x}_{\mathrm{n}+1}\right) \\
& =\lim _{n \rightarrow \infty} \mathrm{~d}\left(\mathrm{Sw}, \mathrm{STx}_{\mathrm{n}}\right) \\
& \leq \lim _{n \rightarrow \infty} \mathrm{c}_{2} \cdot \max \left\{\mathrm{~d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{Sw}\right)+\mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{STx}\right.\right. \\
& \left.=, \mathrm{e}\left(\mathrm{w}, \mathrm{Tx}_{\mathrm{n}}\right)\right\} \\
& =\lim _{n \rightarrow \infty} \mathrm{c}_{2} \cdot \max \left\{\mathrm{~d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{Sw}\right)+\mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}\right), \mathrm{e}\left(\mathrm{w}, \mathrm{y}_{\mathrm{n}+1}\right)\right\} \\
& \leq \mathrm{c}_{2} \cdot \mathrm{~d}(\mathrm{Sw}, \mathrm{z}) \\
& \left.<\mathrm{d}(\mathrm{Sw}, \mathrm{z}) \text { (since } 0 \leq \mathrm{c}_{2}<1\right), \text { which is a contradiction. }
\end{aligned}
$$

Thus $\mathrm{Sw}=\mathrm{z}$.
We have $\mathrm{STz}=\mathrm{Sw}=\mathrm{z}$ and $\mathrm{TSW}=\mathrm{Tz}=\mathrm{w}$. Thus the point z is a fixed point of ST in X and the point w is a fixed point of TS in Y.

Uniqueness: Let $\mathrm{z}^{\prime} \neq \mathrm{z}$ be another fixed point of ST in X .
We have

$$
\left.\left.\begin{array}{rl}
\mathrm{d}\left(\mathrm{z}, \mathrm{z}^{\prime}\right) & =\mathrm{d}(\mathrm{STz}, \mathrm{STz} \\
& \leq \mathrm{c}_{2} \cdot \max \left\{\mathrm{~d}\left(\mathrm{z}^{\prime}, \mathrm{STz}\right)+\mathrm{d}\left(\mathrm{z}^{\prime}, \mathrm{STz}\right.\right.
\end{array}\right), \mathrm{e}\left(\mathrm{Tz}, \mathrm{Tz}^{\prime}\right)\right\}
$$

Also we have

$$
\begin{aligned}
\mathrm{e}\left(\mathrm{Tz}, \mathrm{Tz} z^{\prime}\right) & =\mathrm{e}(\mathrm{Tz}, \mathrm{TSTz}) \\
& \leq \mathrm{c}_{1} \cdot \max \left\{\mathrm{~d}\left(\mathrm{z}, \mathrm{STz}^{\prime}\right), \mathrm{e}\left(\mathrm{Tz}^{\prime}, \mathrm{Tz}\right)+\mathrm{e}\left(\mathrm{Tz}^{\prime}, \mathrm{TSTz}^{\prime}\right)\right\} \\
& =\mathrm{c}_{1} \cdot \max \left\{\mathrm{~d}\left(\mathrm{z}, \mathrm{z}^{\prime}\right), \mathrm{e}\left(\mathrm{Tz}^{\prime}, \mathrm{Tz}\right)\right\} \\
& \leq \mathrm{c}_{1} \cdot \mathrm{~d}\left(\mathrm{z}, \mathrm{z}^{\prime}\right)
\end{aligned}
$$

Hence

$$
\left.\mathrm{d}\left(\mathrm{z}, \mathrm{z}^{\prime}\right) \leq \mathrm{c}_{1} \mathrm{c}_{2} \cdot \mathrm{~d}\left(\mathrm{z}, \mathrm{z}^{\prime}\right)<\mathrm{d}\left(\mathrm{z}, \mathrm{z}^{\prime}\right) \text { (since } \mathrm{c}_{1} \mathrm{c}_{2}<1\right) \text {, which is a contradiction. }
$$

Thus $\mathrm{z}=\mathrm{z}^{\prime}$.
So the point z is a unique fixed point of ST. Similarly, we prove the point w is also a unique fixed point of TS. This completes the proof

Remark 2.2: If (X, d) and (Y, e) are the same metric spaces, then by the above theorem 2.1, we get the following theorem, as corollary.

Corollary2.3: Let (X, d) be a complete metric space. If S and T are mappings from X into itself satisfying the following conditions:

$$
\begin{aligned}
& \mathrm{d}(\mathrm{Tx}, \text { TSy }) \leq \mathrm{c}_{1} \cdot \max \{\mathrm{~d}(\mathrm{x}, \text { Sy }), \mathrm{d}(\mathrm{y}, \mathrm{Tx})+\mathrm{d}(\mathrm{y}, \text { TSy })\} \\
& \mathrm{d}(\text { Sy, STx }) \leq \mathrm{c}_{2} \cdot \max \{\mathrm{~d}(\mathrm{x}, \text { Sy })+\mathrm{d}(\mathrm{x}, \text { STx }), \mathrm{d}(\mathrm{y}, \text { Tx })\}
\end{aligned}
$$

for all x, y in X where $0 \leq \mathrm{c}_{1}, \mathrm{c}_{2}<1$, then ST has a unique fixed point z in X and TS has a unique fixed point w in X . Further, $\mathrm{Tz}=\mathrm{w}$ and $\mathrm{Sw}=\mathrm{z}$ and if $\mathrm{z}=\mathrm{w}$, then z is the unique common fixed point of S and T .

Theorem2.4: Let (X, d) and (Y, e) be two complete metric spaces. If T is a mapping from X into Y and S is a mapping from Y into X satisfying the following conditions

$$
\begin{align*}
& \mathrm{e}(\mathrm{Tx}, \mathrm{TSy}) \leq \mathrm{c}_{1} \cdot \max \{\mathrm{~d}(\mathrm{x}, \text { Sy), e(y, Tx) }, \mathrm{e}(\mathrm{y}, \mathrm{Tx})+\mathrm{e}(\mathrm{y}, \mathrm{TSy})\} \tag{1}\\
& \mathrm{d}(\text { Sy, STx }) \leq \mathrm{c}_{2} \cdot \max \{\mathrm{e}(\mathrm{y}, \mathrm{Tx}), \mathrm{d}(\mathrm{x}, \text { Sy), } \mathrm{d}(\mathrm{x}, \text { Sy) }+\mathrm{d}(\mathrm{x}, \text { STx })\} \tag{2}
\end{align*}
$$

for all x in X and y in Y where $0 \leq \mathrm{c}_{1}<1$ and $0 \leq \mathrm{c}_{2}<1$, then ST has a unique fixed point z in X and TS has a unique fixed point w in Y . Further $\mathrm{Tz}=\mathrm{w}$ and $\mathrm{Sw}=\mathrm{z}$.

T. Veerapandi*, T. Thiripura Sundari and J. Paulraj Joseph/ SOME FIXED POINT THEOREMS IN TWO METRIC SPACES / IJMA- 3(3),

 Mar.-2012, Page: 826-837Proof: Let x_{0} be an arbitrary point in X . Define a sequence $\left\{\mathrm{x}_{\mathrm{n}}\right\}$ in X and a sequence $\left\{\mathrm{y}_{\mathrm{n}}\right\}$ in Y , as follows:

$$
\mathrm{x}_{\mathrm{n}}=(\mathrm{ST})^{\mathrm{n}} \mathrm{x}_{0}, \mathrm{y}_{\mathrm{n}}=\mathrm{T}\left(\mathrm{x}_{\mathrm{n}-1}\right) \text { for } \mathrm{n}=1,2, \ldots
$$

Now we have

$$
\begin{aligned}
& \left.\mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}\right)=\mathrm{d}\left((\mathrm{ST})^{\mathrm{n}} \mathrm{x}_{0},(\mathrm{ST})^{\mathrm{n}+1} \mathrm{x}_{0}\right)\right) \\
& =\mathrm{d}\left(\mathrm{~S}\left(\mathrm{~T}(\mathrm{ST})^{\mathrm{n}-1} \mathrm{x}_{0}, \mathrm{ST}(\mathrm{ST})^{\mathrm{n}} \mathrm{x}_{0}\right)\right. \\
& =\mathrm{d}\left(\mathrm{ST}\left(\mathrm{x}_{\mathrm{n}-1}\right), \mathrm{STx}_{\mathrm{n}}\right) \\
& =\mathrm{d}\left(\mathrm{Sy}_{\mathrm{n}}, \mathrm{STx}_{\mathrm{n}}\right) \\
& \leq c_{2} \cdot \max \left\{e\left(y_{n}, T x_{n}\right), d\left(x_{n}, S y_{n}\right), d\left(x_{n}, S y_{n}\right)+d\left(x_{n}, S T x_{n}\right)\right\} \\
& =\mathrm{c}_{2} \cdot \max \left\{\mathrm{e}\left(\mathrm{y}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}+1}\right), \mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}}\right), \mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}}\right)+\mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}\right)\right\} \\
& =c_{2} \cdot \max \left\{e\left(y_{n}, y_{n+1}\right), 0, d\left(x_{n}, x_{n+1}\right)\right\} \\
& \leq \mathrm{c}_{2} . \mathrm{e}\left(\mathrm{y}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}+1}\right)
\end{aligned}
$$

Now

$$
\begin{aligned}
\mathrm{e}\left(\mathrm{y}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}+1}\right) & =\mathrm{e}\left(\mathrm{Tx}_{\mathrm{n}-1}, \mathrm{Tx}_{\mathrm{n}}\right) \\
& =\mathrm{e}\left(\mathrm{Tx}_{\mathrm{n}-1}, \mathrm{TSy}_{\mathrm{n}}\right) \\
& \leq \mathrm{c}_{1} \cdot \max \left\{\mathrm{~d}\left(\mathrm{x}_{\mathrm{n}-1}, S y_{\mathrm{n}}\right), \mathrm{e}\left(\mathrm{y}_{\mathrm{n}}, \mathrm{Tx}_{\mathrm{n}-1}\right), \mathrm{e}\left(\mathrm{y}_{\mathrm{n}}, \mathrm{Tx}_{\mathrm{n}-1}\right)+\mathrm{e}\left(\mathrm{y}_{\mathrm{n}}, S y_{\mathrm{n}}\right)\right\} \\
& =c_{1} \cdot \max \left\{\mathrm{~d}\left(\mathrm{x}_{\mathrm{n}}, 1, x_{\mathrm{n}}\right), \mathrm{e}\left(\mathrm{y}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}}\right), \mathrm{e}\left(\mathrm{y}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}}\right)+\mathrm{e}\left(\mathrm{y}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}+1}\right)\right\} \\
& \leq \mathrm{c}_{2} \cdot \mathrm{~d}\left(\mathrm{x}_{\mathrm{n}-1}, \mathrm{x}_{\mathrm{n}}\right)
\end{aligned}
$$

Hence

$$
\begin{aligned}
\mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}\right) & \leq \mathrm{c}_{1} \mathrm{c}_{2} \cdot \mathrm{~d}\left(\mathrm{x}_{\mathrm{n}-1}, \mathrm{x}_{\mathrm{n}}\right) \\
& \vdots \\
& \leq\left(\mathrm{c}_{1} \mathrm{c}_{2}\right)^{\mathrm{n}} \mathrm{~d}\left(\mathrm{x}_{0}, \mathrm{x}_{1}\right) \rightarrow 0 \text { as } \mathrm{n} \rightarrow \infty \quad\left(\text { since } 0 \leq \mathrm{c}_{1} \mathrm{c}_{2}<1\right)
\end{aligned}
$$

Thus $\left\{X_{n}\right\}$ is a Cauchy sequence in (X, d). Since (X, d) is complete, it converges to a point z in X. Similarly, we can prove that the sequence $\left\{\mathrm{y}_{\mathrm{n}}\right\}$ is also a Cauchy sequence in (Y, e). Since (Y,e) is complete, it converges to a point w in Y.

Now we prove $\mathrm{Tz}=\mathrm{w}$.
Suppose Tz $\neq \mathrm{w}$.
We have

$$
\begin{aligned}
\mathrm{e}(\mathrm{Tz}, \mathrm{w}) & =\lim _{n \rightarrow \infty} \mathrm{e}\left(\mathrm{Tz}, \mathrm{y}_{\mathrm{n}+1}\right) \\
& =\lim _{n \rightarrow \infty} \mathrm{e}\left(\mathrm{Tz}, \mathrm{TS} y_{\mathrm{n}}\right) \\
& \leq \lim _{n \rightarrow \infty} \mathrm{c}_{1} \cdot \max \left\{\mathrm{~d}\left(\mathrm{z}, \operatorname{Sy} y_{\mathrm{n}}\right), \mathrm{e}\left(\mathrm{y}_{\mathrm{n}}, \mathrm{Tz}\right), \mathrm{e}\left(\mathrm{y}_{\mathrm{n}}, \mathrm{Tz}\right)+\mathrm{e}\left(\mathrm{y}_{\mathrm{n}}, \mathrm{TS} \mathrm{y}_{\mathrm{n}}\right)\right\} \\
& =\lim _{n \rightarrow \infty} \mathrm{c}_{1} \cdot \max \left\{\mathrm{~d}\left(\mathrm{z}, \mathrm{x}_{\mathrm{n}}\right), \mathrm{e}\left(\mathrm{y}_{\mathrm{n}}, \mathrm{Tz}\right), \mathrm{e}\left(\mathrm{y}_{\mathrm{n}}, \mathrm{Tz}\right)+\mathrm{e}\left(\mathrm{y}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}+1}\right)\right\} \\
& =\mathrm{c}_{1} \cdot \max \{\mathrm{~d}(\mathrm{z}, \mathrm{z}), \mathrm{e}(\mathrm{w}, \mathrm{Tz}), \mathrm{e}(\mathrm{w}, \mathrm{Tz})+\mathrm{e}(\mathrm{w}, \mathrm{w})\} \\
& =\mathrm{c}_{1} \cdot \max \{0, \mathrm{e}(\mathrm{w}, \mathrm{Tz}), \mathrm{e}(\mathrm{w}, \mathrm{Tz})\} \\
& <\mathrm{e}(\mathrm{w}, \mathrm{Tz})\left(\text { since } 0 \leq \mathrm{c}_{1}<1\right), \text { which is a contradiction. }
\end{aligned}
$$

Thus $\mathrm{Tz}=\mathrm{w}$.
Now we prove $\mathrm{Sw}_{\mathrm{w}}=\mathrm{z}$.
Suppose Sw $\neq \mathrm{z}$.
We have

$$
\begin{aligned}
\mathrm{d}(\mathrm{Sw}, \mathrm{z}) & =\mathrm{d}\left(\mathrm{Sw}, \mathrm{x}_{\mathrm{n}+1}\right) \\
& =\lim _{n \rightarrow \infty} \mathrm{~d}\left(\mathrm{Sw}_{\mathrm{w}}, \mathrm{STx}_{\mathrm{n}}\right) \\
& \leq \lim _{n \rightarrow \infty} \mathrm{c}_{2} \cdot \max \left\{\mathrm{e}\left(\mathrm{w}, \operatorname{Tx}_{\mathrm{n}}\right), \mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{w}\right), \mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{Sw}\right)+\mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{STx} \mathrm{x}_{\mathrm{n}}\right)\right\} \\
& =\lim _{n \rightarrow \infty} \mathrm{c}_{2} \cdot \max \left\{\mathrm{e}\left(\mathrm{w}, \mathrm{y}_{\mathrm{n}+1}\right), \mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{Sw}\right), \mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{Sw}\right)+\mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}\right)\right\} \\
& \left.<\mathrm{d}(\mathrm{Sw}, \mathrm{z}) \text { (since } 0 \leq \mathrm{c}_{2}<1\right), \text { which is a contradiction. }
\end{aligned}
$$

T. Veerapandi ${ }^{*}$, T. Thiripura Sundari and J. Paulraj Joseph/ SOME FIXED POINT THEOREMS IN TWO METRIC SPACES / IJMA- 3(3), Mar.-2012, Page: 826-837

Thus Sw = z.
We have $\mathrm{STz}=\mathrm{Sw}=\mathrm{z}$ and $\mathrm{TSw}=\mathrm{Tz}=\mathrm{w}$. Thus z is a fixed point of ST in X and the point w is a fixed point of TS in Y.

Uniqueness: Let $\mathrm{z}^{\prime} \neq \mathrm{z}$ be another fixed point of ST in X .
We have

$$
\begin{aligned}
\mathrm{d}\left(\mathrm{z}^{\prime}, \mathrm{z}\right) & =\mathrm{d}\left(\mathrm{STz}^{\prime}, \mathrm{STz}\right) \\
& \leq \mathrm{c}_{2} \cdot \max \left\{\mathrm{e}\left(\mathrm{Tz} z^{\prime}, \mathrm{Tz}\right), \mathrm{d}\left(\mathrm{z}, \mathrm{STz}^{\prime}\right), \mathrm{d}(\mathrm{z}, \mathrm{STz})+\mathrm{d}(\mathrm{z} . \mathrm{STz})\right\} \\
& \leq \mathrm{c}_{2} \cdot \max \left\{\mathrm{e}\left(\mathrm{Tz} z^{\prime}, \mathrm{Tz}\right), \mathrm{d}\left(\mathrm{z}, \mathrm{z}^{\prime}\right), \mathrm{d}\left(\mathrm{z}, \mathrm{z}^{\prime}\right)\right\} \\
& \leq \mathrm{c}_{2} \cdot \mathrm{e}\left(\mathrm{Tz} z^{\prime}, \mathrm{Tz}\right)
\end{aligned}
$$

Now

$$
\begin{aligned}
\mathrm{e}\left(\mathrm{Tz}^{\prime}, \mathrm{Tz}\right) & =\mathrm{e}\left(\mathrm{Tz}^{\prime}, \mathrm{TSTz}\right) \\
& \leq \mathrm{c}_{1} \cdot \max \left\{\mathrm{~d}\left(\mathrm{z}^{\prime}, \mathrm{STz}\right), \mathrm{e}\left(\mathrm{Tz}, \mathrm{Tz} z^{\prime}\right), \mathrm{e}\left(\mathrm{Tz}, \mathrm{Tz} z^{\prime}\right)+\mathrm{e}(\mathrm{Tz}, \mathrm{TSTz})\right\} \\
& =\mathrm{c}_{1} \cdot \max \left\{\mathrm{~d}\left(\mathrm{z}^{\prime}, \mathrm{z}\right), \mathrm{e}\left(\mathrm{Tz}, \mathrm{Tz} z^{\prime}\right), \mathrm{e}\left(\mathrm{Tz}, \mathrm{Tz}^{\prime}\right)\right\} \\
& \leq \mathrm{c}_{1} \cdot \mathrm{~d}\left(\mathrm{z}^{\prime}, \mathrm{z}\right)
\end{aligned}
$$

Hence

$$
\left.\mathrm{d}\left(\mathrm{z}^{\prime}, \mathrm{z}\right) \leq \mathrm{c}_{1} \mathrm{c}_{2} \cdot \mathrm{~d}\left(\mathrm{z}^{\prime}, \mathrm{z}\right)<\mathrm{d}\left(\mathrm{z}^{\prime}, \mathrm{z}\right) \text { (since } \mathrm{c}_{1} \mathrm{c}_{2}<1\right) \text {, which is a contradiction. }
$$

Thus $\mathrm{z}=\mathrm{z}^{\prime}$.
So the point z is a unique fixed point of ST. Similarly, we prove the point w is also a unique point of TS. This completes the proof

Remark2.5: If (X, d) and (Y, e) are the same metric spaces, then by the above theorem 2.4, we get the following theorem as corollary.

Corollary2.6: Let (X, d) be a complete metric space. If S and T are mappings from X into itself satisfying the following conditions:

```
d(Tx, TSy) \leq c. . max{d(x, Sy), d(y, Tx) ,d(y, Tx) + d(y, TSy)}
d(Sy,STx) \leq c c2.max {d(y, Tx), d(x, Sy), d(x, Sy) + d(x, STx )}
```

for all x , y in X where $0 \leq \mathrm{c}_{1}, \mathrm{c}_{2}<1$, then ST has a unique fixed point z in X and TS has a unique fixed point w in X . Further, $\mathrm{Tz}=\mathrm{w}$ and $\mathrm{Sw}=\mathrm{z}$ and if $\mathrm{z}=\mathrm{w}$, then z is the unique common fixed point of S and T .

Theorem2.7: Let (X, d) and (Y, e) be complete metric spaces. If T is a mapping from X into Y and S is a mapping from Y into X satisfying the following conditions

$$
\begin{align*}
& \mathrm{e}(T x, \text { TSy }) \leq \mathrm{c}_{1} \cdot \max \{\mathrm{~d}(\mathrm{x}, \text { Sy }), \mathrm{e}(\mathrm{y}, \text { Tx }), \mathrm{e}(\mathrm{y}, \text { TSy }), \mathrm{d}(\mathrm{x}, \text { STx })\} \tag{1}\\
& \mathrm{d}(\text { Sy, STx }) \leq \mathrm{c}_{2} \cdot \max \{\mathrm{e}(\mathrm{y}, \text { Tx }), \mathrm{d}(\mathrm{x}, \text { Sy) } \mathrm{d}(\mathrm{x}, \text { STx }), \mathrm{e}(\mathrm{Tx}, \text { TSy })\} \tag{2}
\end{align*}
$$

for all x in X and y in Y where $0 \leq \mathrm{c}_{1}<1$ and $0 \leq \mathrm{c}_{2}<1$, then ST has a unique fixed point z in X and TS has a unique fixed point w in Y. Further $T z=w$ and $S w=z$.

Proof: Let x_{0} be an arbitrary point in X. Define a sequence $\left\{x_{n}\right\}$ in X and a sequence $\left\{y_{n}\right\}$ in Y, as follows:

$$
\mathrm{x}_{\mathrm{n}}=(\mathrm{ST})^{\mathrm{n}} \mathrm{x}_{0}, \mathrm{y}_{\mathrm{n}}=\mathrm{T}\left(\mathrm{x}_{\mathrm{n}-1}\right) \text { for } \mathrm{n}=1,2, \ldots
$$

We have

$$
\begin{array}{rll}
\mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}\right) & \left.=\mathrm{d}\left((\mathrm{ST})^{\mathrm{n}} \mathrm{x}_{0},(\mathrm{ST})^{\mathrm{n}+1} \mathrm{x}_{0}\right)\right) \\
& =\mathrm{d}\left(\mathrm{~S}\left(\mathrm{~T}(\mathrm{ST})^{\mathrm{n-1}} \mathrm{x}_{0}, \mathrm{ST}(\mathrm{ST})^{\mathrm{n}} \mathrm{x}_{0}\right)\right. & \\
& =\mathrm{d}\left(\mathrm{ST}\left(\mathrm{x}_{\mathrm{n}-1}\right), \operatorname{STx}_{\mathrm{n}}\right) & \\
& =\mathrm{d}\left(\mathrm{Sy}_{\mathrm{n}}, \operatorname{STx_{n}}\right) & \\
& \leq \mathrm{c}_{2} \cdot \max \left\{\mathrm{e}\left(\mathrm{y}_{\mathrm{n}}, \mathrm{Tx}_{\mathrm{n}}\right), \mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{Sy}_{\mathrm{n}}\right), \mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \operatorname{STx}_{\mathrm{n}}\right), \mathrm{e}\left(\mathrm{Tx}_{\mathrm{n}}, \mathrm{TSy}_{\mathrm{n}}\right)\right\} & \\
& =\mathrm{c}_{2} \cdot \max \left\{\mathrm{e}\left(\mathrm{y}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}+1}\right), \mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}}\right), \mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}\right), \mathrm{e}\left(\mathrm{y}_{\mathrm{n}+1}, \mathrm{y}_{\mathrm{n}+1}\right)\right\} & \leq \mathrm{c}_{2} \cdot \mathrm{e}\left(\mathrm{y}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}+1}\right)
\end{array}
$$

T. Veerapandi*, T. Thiripura Sundari and J. Paulraj Joseph/ SOME FIXED POINT THEOREMS IN TWO METRIC SPACES / IJMA- 3(3),

 Mar.-2012, Page: 826-837Now

$$
\begin{aligned}
\mathrm{e}\left(\mathrm{y}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}+1}\right) & =\mathrm{e}\left(\mathrm{Tx}_{\mathrm{n}-1}, \mathrm{Tx}_{\mathrm{n}}\right) \\
& =\mathrm{e}\left(\operatorname{Tx}_{\mathrm{n}-1}, \operatorname{TSy}_{\mathrm{n}}\right) \\
& \leq \mathrm{c}_{1} \cdot \max ^{2}\left\{\mathrm{~d}\left(\mathrm{x}_{\mathrm{n}-1}, \operatorname{Sy}_{\mathrm{n}}\right), \mathrm{e}\left(\mathrm{y}_{\mathrm{n}}, \operatorname{Tx}_{\mathrm{n}-1}\right), \mathrm{e}\left(\mathrm{y}_{\mathrm{n}}, \operatorname{TSy}_{\mathrm{n}}\right), \mathrm{d}\left(\mathrm{x}_{\mathrm{n}-1}, \operatorname{STx}_{\mathrm{n}-1}\right)\right\} \\
& =\mathrm{c}_{1} \cdot \max \left\{\mathrm{~d}\left(\mathrm{x}_{\mathrm{n}-1}, \mathrm{x}_{\mathrm{n}}\right), \mathrm{e}\left(\mathrm{y}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}}\right), \mathrm{e}\left(\mathrm{y}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}+1}\right), \mathrm{d}\left(\mathrm{x}_{\mathrm{n}-1}, \mathrm{x}_{\mathrm{n}}\right)\right\} \\
& \leq \mathrm{c}_{1} \cdot \mathrm{~d}\left(\mathrm{x}_{\mathrm{n}-1}, \mathrm{x}_{\mathrm{n}}\right)
\end{aligned}
$$

Hence

$$
\begin{aligned}
\mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}\right) & \leq \mathrm{c}_{1} \mathrm{c}_{2} \cdot \mathrm{~d}\left(\mathrm{x}_{\mathrm{n}-1}, \mathrm{x}_{\mathrm{n}}\right) \\
& \vdots \\
& \left.\leq\left(\mathrm{c}_{1} \mathrm{c}_{2}\right)^{\mathrm{n}} \mathrm{~d}\left(\mathrm{x}_{0}, \mathrm{x}_{1}\right) \rightarrow 0 \text { as } \mathrm{n} \rightarrow \infty \quad \text { (since } 0 \leq \mathrm{c}_{1} \mathrm{c}_{2}<1\right)
\end{aligned}
$$

Thus $\left\{x_{n}\right\}$ is a Cauchy sequence in (X, d). Since (X, d) is complete, it converges to a point z in X. Similarly, we can prove that the sequence $\left\{y_{n}\right\}$ is also a Cauchy sequence in (Y, e). Since (Y, e) is complete, it converges to a point w in Y.

Now we prove $\mathrm{Tz}=\mathrm{w}$.
Suppose $\mathrm{Tz} \neq \mathrm{w}$.
We have

$$
\begin{aligned}
\mathrm{e}(\mathrm{Tz}, \mathrm{w}) & =\lim _{n \rightarrow \infty} \mathrm{e}\left(\mathrm{Tz}, \mathrm{y}_{\mathrm{n}+1}\right) \\
& =\lim _{n \rightarrow \infty} \mathrm{e}\left(\mathrm{Tz}, \mathrm{TS} \mathrm{y}_{\mathrm{n}}\right) \\
& =\lim _{n \rightarrow \infty} \mathrm{c}_{1} \cdot \max \left\{\mathrm{~d}\left(\mathrm{z}, \mathrm{Sy}_{\mathrm{n}}\right), \mathrm{e}\left(\mathrm{y}_{\mathrm{n}}, \mathrm{Tz}\right), \mathrm{e}\left(\mathrm{y}_{\mathrm{n}}, \mathrm{TS} \mathrm{y}_{\mathrm{n}}\right), \mathrm{d}(\mathrm{z}, \mathrm{STz})\right\} \\
& =\lim _{n \rightarrow \infty} \mathrm{c}_{1} \cdot \max \left\{\mathrm{~d}\left(\mathrm{z}, \mathrm{x}_{\mathrm{n}}\right), \mathrm{e}\left(\mathrm{y}_{\mathrm{n}}, \mathrm{Tz}\right), \mathrm{e}\left(\mathrm{y}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}+1}\right), \mathrm{d}(\mathrm{z}, \mathrm{STz})\right\} \\
& =\mathrm{c}_{1} \cdot \max ^{2}\{\mathrm{~d}(\mathrm{z}, \mathrm{z}), \mathrm{e}(\mathrm{w}, \mathrm{Tz}), \mathrm{e}(\mathrm{w}, \mathrm{w}), \mathrm{d}(\mathrm{z}, \mathrm{STz})\} \\
& \leq \mathrm{c}_{1} \cdot \mathrm{~d}(\mathrm{z}, \mathrm{STz})
\end{aligned}
$$

Now

$$
\begin{aligned}
\mathrm{d}(\mathrm{z}, \mathrm{STz}) & =\lim _{n \rightarrow \infty} \mathrm{~d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{STz}\right) \\
& =\lim _{n \rightarrow \infty} \mathrm{~d}\left(\mathrm{Sy}_{\mathrm{n}}, \mathrm{STz}\right) \\
& \leq \lim _{n \rightarrow \infty} \mathrm{c}_{2} \cdot \max \left\{\mathrm{e}\left(\mathrm{y}_{\mathrm{n}}, \mathrm{Tz}\right), \mathrm{d}\left(\mathrm{z}, \mathrm{Sy} y_{\mathrm{n}}\right), \mathrm{d}(\mathrm{z}, \mathrm{STz}), \mathrm{e}\left(\mathrm{Tz}, \mathrm{TS} \mathrm{y}_{\mathrm{n}}\right)\right\} \\
& =\lim _{n \rightarrow \infty} \mathrm{c}_{2} \cdot \max \left\{\mathrm{e}\left(\mathrm{y}_{\mathrm{n}}, \mathrm{Tz}\right), \mathrm{d}\left(\mathrm{z}, \mathrm{x}_{\mathrm{n}}\right), \mathrm{d}(\mathrm{z}, \mathrm{STz}), \mathrm{e}\left(\mathrm{Tz}, \mathrm{y}_{\mathrm{n}+1}\right)\right\} \\
& =\mathrm{c}_{2} \cdot \max \{\mathrm{e}(\mathrm{w}, \mathrm{Tz}), \mathrm{d}(\mathrm{z}, \mathrm{z}), \mathrm{d}(\mathrm{z}, \mathrm{STz}), \mathrm{e}(\mathrm{Tz}, \mathrm{w})\} \\
& \leq \mathrm{c}_{2} \cdot \mathrm{e}(\mathrm{Tz}, \mathrm{w})
\end{aligned}
$$

Hence
$\mathrm{e}(\mathrm{Tz}, \mathrm{w}) \leq \mathrm{c}_{1} \mathrm{c}_{2} . \mathrm{e}(\mathrm{Tz}, \mathrm{w})<\mathrm{e}(\mathrm{Tz}, \mathrm{w})$ (since $\left.\mathrm{c}_{1} \mathrm{c}_{2}<1\right)$ which is a contradiction.
Thus $\mathrm{Tz}=\mathrm{w}$.
Now we prove $\mathrm{Sw}=\mathrm{z}$.
Suppose Sw $\neq \mathrm{z}$.
Then we have

$$
\begin{aligned}
\mathrm{d}(\mathrm{Sw}, \mathrm{z}) & =\lim _{n \rightarrow \infty} \mathrm{~d}\left(\mathrm{Sw}, \mathrm{x}_{\mathrm{n}+1}\right) \\
& =\lim _{n \rightarrow \infty} \mathrm{~d}\left(\mathrm{Sw}, \operatorname{STx}_{\mathrm{n}}\right) \\
& \leq \lim _{n \rightarrow \infty} \mathrm{c}_{2} \cdot \max \left\{\mathrm{e}\left(\mathrm{w}, \mathrm{Tx}_{\mathrm{n}}\right), \mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, S \mathrm{Sw}\right), \mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, S T x_{n}\right), \mathrm{e}\left(\mathrm{Tx}_{\mathrm{n}}, \mathrm{TSw}\right)\right\} \\
& =\lim _{n \rightarrow \infty} \mathrm{c}_{2} \cdot \max \left\{\mathrm{e}\left(\mathrm{w}, \mathrm{y}_{\mathrm{n}+1}\right), \mathrm{d}\left(\left(\mathrm{x}_{\mathrm{n}}, \operatorname{Sw}\right), \mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}\right), \mathrm{e}\left(\mathrm{y}_{\mathrm{n}+1}, \operatorname{TSw}\right)\right\}\right. \\
& \leq \mathrm{c}_{2} \cdot \mathrm{e}(\mathrm{w}, \mathrm{TSw})
\end{aligned}
$$

T. Veerapandi*, T. Thiripura Sundari and J. Paulraj Joseph/ SOME FIXED POINT THEOREMS IN TWO METRIC SPACES / IJMA- 3(3),

 Mar.-2012, Page: 826-837Now

$$
\begin{aligned}
\mathrm{e}(\mathrm{w}, \mathrm{TSw}) & =\lim _{n \rightarrow \infty} \mathrm{e}\left(\mathrm{y}_{\mathrm{n}+1}, \mathrm{TSw}\right) \\
& =\lim _{n \rightarrow \infty} \mathrm{e}\left(\mathrm{Tx}_{\mathrm{n}}, \mathrm{TSw}\right) \\
& \leq \lim _{n \rightarrow \infty} \mathrm{c}_{1} \cdot \max \left\{\mathrm{~d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{Sw}\right), \mathrm{e}\left(\mathrm{w}, \mathrm{Tx}_{\mathrm{n}}\right), \mathrm{e}(\mathrm{w}, \mathrm{TSw}), \mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{STx}_{\mathrm{n}}\right)\right\} \\
& \leq \mathrm{c}_{1} \cdot \mathrm{~d}(\mathrm{Sw}, \mathrm{z})
\end{aligned}
$$

Hence
$\mathrm{d}(\mathrm{Sw}, \mathrm{z}) \leq \mathrm{c}_{1} \mathrm{C}_{2} . \mathrm{d}(\mathrm{Sw}, \mathrm{z})<\mathrm{d}(\mathrm{Sw}, \mathrm{z})\left(\because \mathrm{c}_{1} \mathrm{C}_{2}<1\right)$, which is a contradiction.
Thus Sw = z.
We have $\mathrm{STz}=\mathrm{Sw}=\mathrm{z}$ and $\mathrm{TS} \mathrm{w}=\mathrm{Tz}=\mathrm{w}$. Thus the point z is a fixed point of ST in X and the point w is a fixed point of TS in Y.

Uniqueness: Let $\mathrm{z}^{\prime} \neq \mathrm{z}$ in X be another fixed point of ST in X .
We have

$$
\begin{aligned}
\mathrm{d}\left(\mathrm{z}, \mathrm{z}^{\prime}\right) & =\mathrm{d}(\mathrm{Sw}, \mathrm{STz}) \\
& \leq \mathrm{c}_{2} \cdot \max \left\{\mathrm{e}\left(\mathrm{w}, \mathrm{Tz} z^{\prime}\right), \mathrm{d}\left(\mathrm{z}^{\prime}, \mathrm{Sw}\right), \mathrm{d}\left(\mathrm{z}^{\prime}, \mathrm{STz} \mathrm{~S}^{\prime}\right), \mathrm{e}\left(\mathrm{Tz}^{\prime}, \mathrm{w}\right)\right\} \\
& \leq \mathrm{c}_{2} \cdot \mathrm{e}\left(\mathrm{Tz}^{\prime}, \mathrm{w}\right)
\end{aligned}
$$

Now

$$
\begin{aligned}
\mathrm{e}\left(\mathrm{Tz}^{\prime}, \mathrm{w}\right) & =\mathrm{e}\left(\mathrm{Tz}^{\prime}, \mathrm{y}_{\mathrm{n}+1}\right) \\
& =\mathrm{e}\left(\mathrm{Tz}^{\prime}, \mathrm{TS} y_{\mathrm{n}}\right) \\
& \leq \mathrm{c}_{1} \cdot \max ^{\prime}\left\{\mathrm{d}\left(\mathrm{z}^{\prime}, S y_{\mathrm{n}}\right), \mathrm{e}\left(\mathrm{y}_{\mathrm{n}}, T z^{\prime}\right), \mathrm{e}\left(\mathrm{y}_{\mathrm{n}}, T S y_{\mathrm{n}}\right), \mathrm{d}\left(\mathrm{z}^{\prime}, S T z^{\prime}\right)\right\} \\
& \leq \mathrm{c}_{1} \cdot \mathrm{~d}\left(\mathrm{z}^{\prime}, \mathrm{z}\right)
\end{aligned}
$$

Hence

$$
\left.\mathrm{d}\left(\mathrm{z}, \mathrm{z}^{\prime}\right) \leq \mathrm{c}_{1} \mathrm{c}_{2} \cdot \mathrm{~d}\left(\mathrm{z}, \mathrm{z}^{\prime}\right)<\mathrm{d}\left(\mathrm{z}, \mathrm{z}^{\prime}\right) \text { (since } \mathrm{c}_{1} \mathrm{c}_{2}<1\right) \text {, which is a contradiction. }
$$

So the point z is a unique fixed point of ST. Similarly, we prove the point w is also a unique point of TS. This completes the proof

Remark 2.8: If (X, d) and (Y, e) are the same metric spaces, then by the above theorem 2.7 , we get the following theorem as corollary.

Corollary2.9: Let (X, d) be a complete metric space. If S and T are mappings from X into itself satisfying the following conditions:

```
d(Tx, TSy) \leqcc.max{d(x, Sy), d(y, Tx), d(y, TSy), d(x, STx)}
d(Sy,STx) \leqccemax{d(y, Tx), d(x, Sy), d(x, STx), d(Tx, TSy)}
```

for all x, y in X where $0 \leq \mathrm{c}_{1}, \mathrm{c}_{2}<1$, then ST has a unique fixed point z in X and TS has a unique fixed point w in X . Further, $\mathrm{Tz}=\mathrm{w}$ and $\mathrm{Sw}=\mathrm{z}$ and if $\mathrm{z}=\mathrm{w}$, then z is the unique common fixed point of S and T .

Theorem 2.10: Let (X, d) and (Y, e) be complete metric spaces. If T is a mapping from X into Y and S is a mapping from Y into X satisfying the following conditions

$$
\begin{align*}
& \mathrm{e}(\mathrm{Tx}, \mathrm{TSy}) \leq \mathrm{c}_{1} \cdot \max \{\mathrm{~d}(\mathrm{x}, \text { Sy) }, \mathrm{e}(\mathrm{y}, \mathrm{Tx}), \mathrm{e}(\mathrm{y}, \mathrm{TSy}), \mathrm{d}(\mathrm{x}, \text { STx }), \mathrm{d}(\text { Sy }, \text { STx })\} \tag{1}\\
& \mathrm{d}(\text { Sy, STx }) \leq \mathrm{c}_{2} \cdot \max \{\mathrm{e}(\mathrm{y}, \mathrm{Tx}), \mathrm{d}(\mathrm{x}, \text { Sy) }), \mathrm{d}(\mathrm{x}, \text { STx }), \mathrm{e}(T x, T S y), \mathrm{e}(\mathrm{y}, \mathrm{TSy})\} \tag{2}
\end{align*}
$$

for all x in X and y in Y where $0 \leq \mathrm{c}_{1}<1$ and $0 \leq \mathrm{c}_{2}<1$, then ST has a unique fixed point z in X and TS has a unique fixed point w in Y. Further $T z=w$ and $S w=z$.

Proof: Let x_{0} be an arbitrary point in X. Define a sequence $\left\{x_{n}\right\}$ in X and a sequence $\left\{y_{n}\right\}$ in Y, as follows:

$$
\mathrm{x}_{\mathrm{n}}=(\mathrm{ST})^{\mathrm{n}} \mathrm{x}_{0}, \mathrm{y}_{\mathrm{n}}=\mathrm{T}\left(\mathrm{x}_{\mathrm{n}-1}\right) \text { for } \mathrm{n}=1,2, \ldots
$$

T. Veerapandi*, T. Thiripura Sundari and J. Paulraj Joseph/ SOME FIXED POINT THEOREMS IN TWO METRIC SPACES / IJMA- 3(3),

 Mar.-2012, Page: 826-837We have

$$
\begin{aligned}
& \left.d\left(x_{n}, x_{n+1}\right)=d\left((S T)^{n} x_{0},(S T)^{n+1} x_{0}\right)\right) \\
& =\mathrm{d}\left(\mathrm{~S}\left(\mathrm{~T}(\mathrm{ST})^{\mathrm{n}-1} \mathrm{x}_{0}, \mathrm{ST}(\mathrm{ST})^{\mathrm{n}} \mathrm{x}_{0}\right)\right. \\
& =\mathrm{d}\left(\mathrm{ST}\left(\mathrm{x}_{\mathrm{n}-1}\right), \mathrm{STx}_{\mathrm{n}}\right) \\
& =\mathrm{d}\left(\mathrm{Sy}_{\mathrm{n}}, \mathrm{STx}_{\mathrm{n}}\right) \\
& \leq \mathrm{c}_{2} \cdot \max \left\{\mathrm{e}\left(\mathrm{y}_{\mathrm{n}}, \mathrm{Tx}_{\mathrm{n}}\right), \mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, S \mathrm{Sy}_{\mathrm{n}}\right), \mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, S \mathrm{Sx}_{\mathrm{n}}\right), \mathrm{e}\left(\mathrm{Tx}_{\mathrm{n}}, \mathrm{TS} y_{\mathrm{n}}\right), \mathrm{e}\left(\mathrm{y}_{\mathrm{n}}, \mathrm{TSy}_{\mathrm{n}}\right)\right\} \\
& =c_{2} \cdot \max \left\{e\left(y_{n}, y_{n+1}\right), d\left(x_{n}, x_{n}\right), d\left(x_{n}, x_{n+1}\right), e\left(y_{n+1}, y_{n+1}\right), e\left(y_{n}, y_{n+1}\right)\right\} \\
& =c_{2} \cdot \max \left\{e\left(y_{n}, y_{n+1}\right), 0, d\left(x_{n}, x_{n+1}\right), 0, e\left(y_{n}, y_{n+1}\right)\right\} \\
& \leq c_{2} . e\left(y_{n}, y_{n+1}\right)
\end{aligned}
$$

Now

$$
\begin{aligned}
\mathrm{e}\left(\mathrm{y}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}+1}\right) & =\mathrm{e}\left(\mathrm{Tx}_{\mathrm{n}-1}, \mathrm{Tx}_{\mathrm{n}}\right) \\
& =\mathrm{e}\left(\mathrm{Tx}_{\mathrm{n}-1}, \operatorname{TSy}_{\mathrm{n}}\right) \\
& \leq \mathrm{c}_{1} \cdot \max \left\{\mathrm{~d}\left(\mathrm{x}_{\mathrm{n}-1}, \operatorname{Sy} y_{\mathrm{n}}\right), \mathrm{e}\left(\mathrm{y}_{\mathrm{n}}, \operatorname{Tx}_{\mathrm{n}-1}\right), \mathrm{e}\left(\mathrm{y}_{\mathrm{n}}, \operatorname{TSy}_{\mathrm{n}}\right), \mathrm{d}\left(\mathrm{x}_{\mathrm{n}-1}, \operatorname{STx}_{\mathrm{n}-1}\right), \mathrm{d}\left(\mathrm{Sy}_{\mathrm{n}}, \operatorname{STx}_{\mathrm{n}-1}\right)\right\} \\
& =\mathrm{c}_{1} \cdot \max \left\{\mathrm{~m}\left(\mathrm{x}_{\mathrm{n}-1}, \mathrm{x}_{\mathrm{n}}\right), \mathrm{e}\left(\mathrm{y}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}}\right), \mathrm{e}\left(\mathrm{y}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}+1}\right), \mathrm{d}\left(\mathrm{x}_{\mathrm{n}-1}, \mathrm{x}_{\mathrm{n}}\right), \mathrm{d}\left(\mathrm{x}_{\mathrm{n}-1}, \mathrm{x}_{\mathrm{n}}\right\}\right\} \\
& \leq \mathrm{c}_{1} \cdot \mathrm{~d}\left(\mathrm{x}_{\mathrm{n}-1}, \mathrm{x}_{\mathrm{n}}\right)
\end{aligned}
$$

Hence

$$
\begin{aligned}
\mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}\right) & \leq \mathrm{c}_{1} \mathrm{c}_{2} \cdot \mathrm{~d}\left(\mathrm{x}_{\mathrm{n}-1}, \mathrm{x}_{\mathrm{n}}\right) \\
& \vdots \\
& \left.\leq\left(\mathrm{c}_{1} \mathrm{c}_{2}\right)^{\mathrm{n}} \mathrm{~d}\left(\mathrm{x}_{0}, \mathrm{x}_{1}\right) \rightarrow 0 \text { as } \mathrm{n} \rightarrow \infty \quad \text { (since } 0 \leq \mathrm{c}_{1} \mathrm{c}_{2}<1\right)
\end{aligned}
$$

Thus $\left\{\mathrm{X}_{\mathrm{n}}\right\}$ is a Cauchy sequence in (X,d). Since (X, d) is complete, it converges to a point z in X . Similarly, we can prove that the sequence $\left\{y_{n}\right\}$ is also a Cauchy sequence in (Y, e). Since (Y,e) is complete, it converges to a point w in Y.

Now we prove $\mathrm{Tz}=\mathrm{w}$.
Suppose $\mathrm{Tz} \neq \mathrm{w}$
We have

$$
\begin{aligned}
\mathrm{e}(\mathrm{Tz}, \mathrm{w}) & =\lim _{n \rightarrow \infty} \mathrm{e}\left(\mathrm{Tz}, \mathrm{y}_{\mathrm{n}+1}\right) \\
& =\lim _{n \rightarrow \infty} \mathrm{e}\left(\mathrm{Tz}, \mathrm{TS} \mathrm{y}_{\mathrm{n}}\right) \\
& \leq \lim _{n \rightarrow \infty} \mathrm{c}_{1} \cdot \max \left\{\mathrm{~d}\left(\mathrm{z}, \mathrm{Sy} \mathrm{y}_{\mathrm{n}}\right), \mathrm{e}\left(\mathrm{y}_{\mathrm{n}}, \mathrm{Tz}\right), \mathrm{e}\left(\mathrm{y}_{\mathrm{n}}, \mathrm{TS} \mathrm{y}_{\mathrm{n}}\right), \mathrm{d}(\mathrm{z}, \mathrm{STz}), \mathrm{d}\left(\mathrm{Sy}_{\mathrm{n}}, \mathrm{STz}\right)\right\} \\
& =\lim _{n \rightarrow \infty} \mathrm{c}_{1} \cdot \max \left\{\mathrm{~d}\left(\mathrm{z}, \mathrm{x}_{\mathrm{n}}\right), \mathrm{e}\left(\mathrm{y}_{\mathrm{n}}, \mathrm{Tz}\right), \mathrm{e}\left(\mathrm{y}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}+1}\right), \mathrm{d}(\mathrm{z}, \mathrm{STz}), \mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{STz}\right)\right\} \\
& \leq \mathrm{c}_{1} \cdot \mathrm{~d}(\mathrm{z}, \mathrm{STz})
\end{aligned}
$$

Now

$$
\begin{aligned}
\mathrm{d}(\mathrm{z}, \mathrm{STz}) & =\lim _{n \rightarrow \infty} \mathrm{~d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{STz}\right) \\
& =\lim _{n \rightarrow \infty} \mathrm{~d}\left(\mathrm{Sy}_{\mathrm{n}}, \mathrm{STz}\right) \\
\leq & \lim _{n \rightarrow \infty} \mathrm{c}_{2} \cdot \max \left\{\mathrm{e}\left(\mathrm{y}_{\mathrm{n}}, \mathrm{Tz}\right), \mathrm{d}\left(\mathrm{z}, \mathrm{Sy}_{\mathrm{n}}\right), \mathrm{d}(\mathrm{z}, \mathrm{STz}), \mathrm{e}\left(\mathrm{Tz}, \mathrm{TS} \mathrm{y}_{\mathrm{n}}\right), \mathrm{e}\left(\mathrm{y}_{\mathrm{n}}, \mathrm{TS} \mathrm{y}_{\mathrm{n}}\right)\right\} \\
& =\lim _{n \rightarrow \infty} \mathrm{c}_{2} \cdot \max \left\{\mathrm{e}\left(\mathrm{y}_{\mathrm{n}}, \mathrm{Tz}\right), \mathrm{d}\left(\mathrm{z}, \mathrm{x}_{\mathrm{n}}\right), \mathrm{d}(\mathrm{z}, \mathrm{STz}), \mathrm{e}\left(\operatorname{Tz}, \mathrm{y}_{\mathrm{n}+1}\right), \mathrm{e}\left(\mathrm{y}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}+1}\right)\right\} \\
\leq & \mathrm{c}_{2} \cdot \mathrm{e}(\mathrm{Tz}, \mathrm{w})
\end{aligned}
$$

Hence
$e(T z, w) \leq c_{1} c_{2} . e(T z, w)<e(T z, w)$ (since $\left.c_{1} c_{2}<1\right)$, which is a contradiction.
Thus $\mathrm{Tz}=\mathrm{w}$.
To prove that $\mathrm{Sw}=\mathrm{z}$.
Suppose that $\mathrm{Sw} \neq \mathrm{z}$.

$$
\mathrm{d}(\mathrm{Sw}, \mathrm{z})=\lim _{n \rightarrow \infty} \mathrm{~d}\left(\mathrm{Sw}, \mathrm{x}_{\mathrm{n}+1}\right)
$$

T. Veerapandi*, T. Thiripura Sundari and J. Paulraj Joseph/ SOME FIXED POINT THEOREMS IN TWO METRIC SPACES / IJMA- 3(3), Mar.-2012, Page: 826-837
$=\lim _{n \rightarrow \infty} \mathrm{~d}\left(\mathrm{Sw}, \mathrm{STx}_{\mathrm{n}}\right)$
$\leq \lim _{n \rightarrow \infty} \mathrm{c}_{2} \cdot \max \left\{\mathrm{e}\left(\mathrm{w}, \mathrm{Tx}_{\mathrm{n}}\right), \mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{Sw}\right), \mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{STx} \mathrm{x}_{\mathrm{n}}\right), \mathrm{e}\left(\mathrm{Tx}_{\mathrm{n}}\right.\right.$, TSw), $\left.\mathrm{e}\left(\mathrm{y}_{\mathrm{n}}, \mathrm{TS}_{\mathrm{n}}\right)\right\}$
$=\lim _{n \rightarrow \infty} c_{2} \cdot \max \left\{e\left(w, y_{n+1}\right), d\left(x_{n}, S w\right), d\left(x_{n}, x_{n+1}\right), e\left(y_{n+1}, T S w\right), e\left(y_{n}, y_{n+1}\right)\right\}$
$\leq \mathrm{c}_{2} \cdot \mathrm{e}(\mathrm{w}, \mathrm{TS} \mathrm{w})$
Now

$$
\begin{aligned}
\mathrm{e}(\mathrm{w}, \mathrm{TSw}) & =\lim _{n \rightarrow \infty} \mathrm{e}\left(\mathrm{y}_{\mathrm{n}+1}, \mathrm{TSw}\right) \\
& =\lim _{n \rightarrow \infty} \mathrm{e}\left(\mathrm{Tx}_{\mathrm{n}}, \mathrm{TSw}\right) \\
& \leq \lim _{n \rightarrow \infty} \mathrm{c}_{1} \cdot \max \left\{\mathrm{~d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{Sw}\right), \mathrm{e}\left(\mathrm{w}, \mathrm{Tx}_{\mathrm{n}}\right), \mathrm{e}(\mathrm{w}, \mathrm{TSw}), \mathrm{e}\left(\mathrm{Tx}_{\mathrm{n}}, \mathrm{TSw}\right), \mathrm{e}\left(\mathrm{y}_{\mathrm{n}}, \mathrm{TS}_{\mathrm{n}}\right)\right\} \\
& =\lim _{n \rightarrow \infty} \mathrm{c}_{1} \cdot \max \left\{\mathrm{~d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{Sw}\right), \mathrm{e}\left(\mathrm{w}, \mathrm{y}_{\mathrm{n}+1}\right), \mathrm{e}(\mathrm{w}, \mathrm{TSw}), \mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}\right), \mathrm{d}\left(\mathrm{SW}_{\mathrm{w}}, \mathrm{x}_{\mathrm{n}+1}\right)\right\} \\
& \leq \mathrm{c}_{1} \cdot \mathrm{~d}(\mathrm{dw}, \mathrm{z})
\end{aligned}
$$

Hence

$$
\left.\mathrm{d}(\mathrm{Sw}, \mathrm{z}) \leq \mathrm{c}_{1} \mathrm{c}_{2} . \mathrm{d}(\mathrm{Sw}, \mathrm{z})<\mathrm{d}(\mathrm{Sw}, \mathrm{z}) \text { (since } \mathrm{c}_{1} \mathrm{c}_{2}<1\right) \text {, which is a contradiction. }
$$

Thus $\mathrm{Sw}=\mathrm{z}$.
We have $S T z=S w=z$ and $T S w=T z=w$. Thus the point z is a fixed point of $S T$ in X and the point w is a fixed point of TS in Y .

Uniqueness: Let $\mathrm{z}^{\prime} \neq \mathrm{z}$ be the another fixed point of ST in X .
We have

$$
\begin{aligned}
\mathrm{d}\left(\mathrm{z}, \mathrm{z}^{\prime}\right) & =\mathrm{d}(\mathrm{Sw}, \mathrm{STz}) \\
& \leq \mathrm{c}_{2} \cdot \max \left\{\mathrm{e}\left(\mathrm{w}, \mathrm{Tz}^{\prime}\right), \mathrm{d}\left(\mathrm{z}^{\prime}, \mathrm{Sw}\right), \mathrm{d}\left(\mathrm{z}^{\prime}, \mathrm{STz}{ }^{\prime}\right), \mathrm{e}\left(\mathrm{Tz}^{\prime}, \mathrm{TSw}\right), \mathrm{e}(\mathrm{w}, \mathrm{TSw})\right\} \\
& =\mathrm{c}_{2} \cdot \max \left\{\mathrm{e}\left(\mathrm{w}, \mathrm{Tz}^{\prime}\right), \mathrm{d}\left(\mathrm{z}^{\prime}, \mathrm{z}\right), \mathrm{d}\left(\mathrm{z}^{\prime}, \mathrm{z}^{\prime}\right), \mathrm{e}\left(\mathrm{Tz}^{\prime}, \mathrm{w}\right), \mathrm{e}(\mathrm{w}, \mathrm{w})\right\} \\
& \leq \mathrm{c}_{2} \cdot \mathrm{e}\left(\mathrm{Tz}^{\prime}, \mathrm{w}\right)
\end{aligned}
$$

Now

$$
\begin{aligned}
\mathrm{e}\left(\mathrm{Tz}^{\prime}, \mathrm{w}\right) & =\mathrm{e}\left(\mathrm{Tz}^{\prime}, \mathrm{TSw}\right) \\
& \leq \mathrm{c}_{1} \cdot \max \left\{\mathrm{~d}\left(\mathrm{z}^{\prime}, \mathrm{Sw}\right), \mathrm{e}\left(\mathrm{w}, \mathrm{Tz}^{\prime}\right), \mathrm{e}\left(\mathrm{z}^{\prime}, \mathrm{TS} z^{\prime}\right), \mathrm{e}\left(\mathrm{Tx}_{\mathrm{n}}, \mathrm{TSw}\right), \mathrm{e}\left(\mathrm{y}_{\mathrm{n}}, \mathrm{TS} \mathrm{x}_{\mathrm{n}}\right)\right\} \\
& =\mathrm{c}_{1} \cdot \max \left\{\mathrm{~d}\left(\mathrm{z}^{\prime}, \mathrm{z}\right), \mathrm{e}\left(\mathrm{w}, \mathrm{Tz}^{\prime}\right), \mathrm{e}\left(\mathrm{z}^{\prime}, \mathrm{TS} z^{\prime}\right), \mathrm{d}\left(\mathrm{z}^{\prime}, \mathrm{z}\right), \mathrm{d}\left(\mathrm{z}, \mathrm{STz}^{\prime}\right)\right. \\
& \leq \mathrm{c}_{1} \cdot \mathrm{~d}\left(\mathrm{z}, \mathrm{z}^{\prime}\right)
\end{aligned}
$$

Hence
$\mathrm{d}\left(\mathrm{z}, \mathrm{z}^{\prime}\right) \leq \mathrm{c}_{1} \mathrm{c}_{2} \cdot \mathrm{~d}\left(\mathrm{z}, \mathrm{z}^{\prime}\right)<\mathrm{d}\left(\mathrm{z}, \mathrm{z}^{\prime}\right)$ (since $\left.\mathrm{c}_{1} \mathrm{c}_{2}<1\right)$, which is a contradiction.
Thus $\mathrm{z}=\mathrm{z}^{\prime}$.
So the point z is a unique fixed point z of ST. Similarly, we prove the point w is also a unique point of TS. This completes the proof.

Remark 2.11: If (X, d) and (Y, e) are the same metric spaces, then by the above theorem 2.10., we get the following theorem as corollary.

Corollary2.12: Let (X, d) be a complete metric space. If S and T are mappings from X into itself satisfying the following conditions:

```
d(Tx, TSy) <c c.max {d(x, Sy), d(y, Tx), d(y, TSy), d(x, STx)}
d(Sy, STx) \leqccmax max (y, Tx), d(x, Sy),d(x, STx), d(Tx, TSy)}
```

for all x , y in X where $0 \leq \mathrm{c}_{1}, \mathrm{c}_{2}<1$, then ST has a unique fixed point z in X and TS has a unique fixed point w in X . Further, $\mathrm{Tz}=\mathrm{w}$ and $\mathrm{Sw}=\mathrm{z}$ and if $\mathrm{z}=\mathrm{w}$, then z is the unique common fixed point of S and T .

Theorem2.13: Let (X, d) and (Y, e) be complete metric spaces. If T is a mapping from X into Y and S is a mapping from Y into X satisfying the following conditions

```
e(Tx, TSy) \leq c. max{d(x, Sy), d(Sy, STx), e(y, Tx) +e(y, TSy), d(x, STx)} (1)
d(Sy, STx) \leqc2.max{d(x, Sy) + d(x, STx), e(y, TSy), e(y, Tx), e(Tx,TSy)} (2)
```


T. Veerapandi ${ }^{*}$, T. Thiripura Sundari and J. Paulraj Joseph/ SOME FIXED POINT THEOREMS IN TWO METRIC SPACES / IJMA- 3(3),

 Mar.-2012, Page: 826-837for all x in X and y in Y where $0 \leq \mathrm{c}_{1}<1$ and $0 \leq \mathrm{c}_{2}<1$, then ST has a unique fixed point z in X and TS has a unique fixed point w in Y. Further $T z=w$ and $S w=z$.

Proof: Let x_{0} be an arbitrary point in X. Define a sequence $\left\{x_{n}\right\}$ in X and a sequence $\left\{y_{n}\right\}$ in Y as follows:

$$
\mathrm{x}_{\mathrm{n}}=(\mathrm{ST})^{\mathrm{n}} \mathrm{x}_{0}, \mathrm{y}_{\mathrm{n}}=\mathrm{T}\left(\mathrm{x}_{\mathrm{n}-1}\right) \text { for } \mathrm{n}=1,2, \ldots
$$

We have

$$
\begin{aligned}
& \left.\mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}\right)=\mathrm{d}\left((\mathrm{ST})^{\mathrm{n}} \mathrm{x}_{0},(\mathrm{ST})^{\mathrm{n}+1} \mathrm{x}_{0}\right)\right) \\
& =\mathrm{d}\left(\mathrm{~S}\left(\mathrm{~T}(\mathrm{ST})^{\mathrm{n}-1} \mathrm{x}_{0}, \mathrm{ST}(\mathrm{ST})^{\mathrm{n}} \mathrm{x}_{0}\right)\right. \\
& =\mathrm{d}\left(\mathrm{ST}\left(\mathrm{x}_{\mathrm{n}-1}\right), \mathrm{STx}_{\mathrm{n}}\right) \\
& =\mathrm{d}\left(\left(\mathrm{Sy}_{\mathrm{n}}, \mathrm{STx}_{\mathrm{n}}\right)\right. \\
& \leq c_{2} \cdot \max \left\{d\left(x_{n}, S y_{n}\right)+d\left(x_{n}, S T x_{n}\right), e\left(y_{n}, T S y_{n}\right), e\left(y_{n}, T x_{n}\right), e\left(T x_{n}, T S y_{n}\right)\right\} \\
& =c_{2} \cdot \max \left\{d\left(x_{n}, x_{n}\right)+d\left(x_{n}, x_{n+1}\right), e\left(y_{n}, y_{n+1}\right), e\left(y_{n}, y_{n+1}\right), e\left(y_{n+1}, y_{n+1}\right)\right\} \\
& \leq \mathrm{c}_{2} . \mathrm{e}\left(\mathrm{y}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}+1}\right)
\end{aligned}
$$

Now

$$
\begin{aligned}
\mathrm{e}\left(\mathrm{y}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}+1}\right) & =\mathrm{e}\left(\operatorname{Tx}_{\mathrm{n}-1}, \operatorname{Tx}_{\mathrm{n}}\right) \\
& =\mathrm{e}\left(\mathrm{Tx}_{\mathrm{n}-1}, \operatorname{TS} y_{\mathrm{n}}\right) \\
& \leq \mathrm{c}_{1} \cdot \max _{\mathrm{n}}\left\{\mathrm{~d}\left(\mathrm{x}_{\mathrm{n}-1}, \operatorname{Sy} \mathrm{~S}_{\mathrm{n}}\right), \mathrm{d}\left(\operatorname{Sy}_{\mathrm{n}}, \operatorname{STx}_{\mathrm{n}-1}\right), \mathrm{e}\left(\mathrm{y}_{\mathrm{n}}, \operatorname{Tx}_{\mathrm{n}-1}\right)+\mathrm{e}\left(\mathrm{y}_{\mathrm{n}}, \operatorname{TSy}_{\mathrm{n}}\right), \mathrm{d}\left(\mathrm{x}_{\mathrm{n}-1}, \operatorname{STx}_{\mathrm{n}-1}\right)\right\} \\
& =\mathrm{c}_{1} \cdot \max \left\{\mathrm{~d}\left(\mathrm{x}_{\mathrm{n}-1}, \mathrm{x}_{\mathrm{n}}\right), \mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}}\right)+\mathrm{e}\left(\mathrm{y}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}}\right), \mathrm{e}\left(\mathrm{y}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}+1}\right), \mathrm{d}\left(\mathrm{x}_{\mathrm{n}-1}, \mathrm{x}_{\mathrm{n}}\right)\right\} \\
& =\mathrm{c}_{1} \cdot \max \left\{\mathrm{~d}\left(\mathrm{x}_{\mathrm{n}}-1, \mathrm{x}_{\mathrm{n}}\right), 0, \mathrm{e}\left(\mathrm{y}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}+1}\right), \mathrm{d}\left(\mathrm{x}_{\mathrm{n}-1}, \mathrm{x}_{\mathrm{n}}\right)\right\} \\
& \leq \mathrm{c}_{1} \cdot \mathrm{~d}\left(\mathrm{x}_{\mathrm{n}-1}, \mathrm{x}_{\mathrm{n}}\right)
\end{aligned}
$$

Hence

$$
\begin{aligned}
\mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}\right) & \leq \mathrm{c}_{1} \mathrm{c}_{2} \cdot \mathrm{~d}\left(\mathrm{x}_{\mathrm{n}-1}, \mathrm{x}_{\mathrm{n}}\right) \\
& \vdots \\
& \left.\leq\left(\mathrm{c}_{1} \mathrm{c}_{2}\right)^{\mathrm{n}} \mathrm{~d}\left(\mathrm{x}_{0}, \mathrm{x}_{1}\right) \rightarrow 0 \text { as } \mathrm{n} \rightarrow \infty \quad \text { (since } 0 \leq \mathrm{c}_{1} \mathrm{c}_{2}<1\right)
\end{aligned}
$$

Thus $\left\{\mathrm{X}_{\mathrm{n}}\right\}$ is a Cauchy sequence in (X,d). Since (X,d) is complete, it converges to a point z in X . Similarly, we can prove that the sequence $\left\{\mathrm{y}_{\mathrm{n}}\right\}$ is also a Cauchy sequence in (Y, e). Since (Y, e) is complete, it converges to a point w in Y.

Now we prove $\mathrm{Tz}=\mathrm{w}$.
Suppose $\mathrm{Tz} \neq \mathrm{w}$.
We have

$$
\begin{aligned}
\mathrm{e}(\mathrm{Tz}, \mathrm{w}) & =\lim _{n \rightarrow \infty} \mathrm{e}\left(\mathrm{Tz}, \mathrm{y}_{\mathrm{n}+1}\right) \\
& =\lim _{n \rightarrow \infty} \mathrm{e}\left(\mathrm{Tz}, \mathrm{TS} \mathrm{y}_{\mathrm{n}}\right) \\
& \leq \lim _{n \rightarrow \infty} \mathrm{c}_{1} \cdot \max \left\{\mathrm{~d}\left(\mathrm{z}, \mathrm{Sy}_{\mathrm{n}}\right), \mathrm{d}\left(\mathrm{Sy}_{\mathrm{n}}, \mathrm{STz}\right), \mathrm{e}\left(\mathrm{y}_{\mathrm{n}}, \mathrm{Tz}\right), \mathrm{e}\left(\mathrm{y}_{\mathrm{n}}, T S y_{\mathrm{n}}\right), \mathrm{d}(\mathrm{z}, \mathrm{STz})\right\} \\
& =\lim _{n \rightarrow \infty} \mathrm{c}_{1} \cdot \max \left\{\mathrm{~d}\left(\mathrm{z}, \mathrm{x}_{\mathrm{n}}\right), \mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \operatorname{STz}\right), \mathrm{e}\left(\mathrm{y}_{\mathrm{n}}, \mathrm{Tz}\right)+\mathrm{e}\left(\mathrm{y}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}+1}\right), \mathrm{d}(\mathrm{z}, \mathrm{STz})\right\} \\
& \leq \mathrm{c}_{1} \cdot \mathrm{~d}(\mathrm{z}, \mathrm{STz})
\end{aligned}
$$

Now

$$
\begin{aligned}
\mathrm{d}(\mathrm{z}, \mathrm{STz}) & =\lim _{n \rightarrow \infty} \mathrm{~d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{STz}\right) \\
& =\lim _{n \rightarrow \infty} \mathrm{~d}\left(\mathrm{Sy}_{\mathrm{n}}, \mathrm{STz}\right) \\
& \leq \lim _{n \rightarrow \infty} \mathrm{c}_{2} \cdot \max \left\{\mathrm{~d}\left(\mathrm{z}, \operatorname{Sy} \mathrm{y}_{\mathrm{n}}\right)+\mathrm{d}(\mathrm{z}, \mathrm{STz}), \mathrm{e}\left(\mathrm{y}_{\mathrm{n} .,}, \mathrm{TS} \mathrm{y}_{\mathrm{n}}\right), \mathrm{e}\left(\mathrm{y}_{\mathrm{n}}, \mathrm{Tz}\right), \mathrm{e}\left(\mathrm{Tz}, \mathrm{TS} \mathrm{y}_{\mathrm{n}}\right)\right\} \\
& =\lim _{n \rightarrow \infty} \mathrm{c}_{2} \cdot \max \left\{\mathrm{~d}\left(\mathrm{z}, \mathrm{x}_{\mathrm{n}}\right)+\mathrm{d}(\mathrm{z}, \mathrm{STz}), \mathrm{e}\left(\mathrm{y}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}+1}\right), \mathrm{e}\left(\mathrm{y}_{\mathrm{n}}, \operatorname{Tz}\right), \mathrm{e}\left(\mathrm{Tz}, \mathrm{y}_{\mathrm{n}+1}\right)\right\} \\
& \leq \mathrm{c}_{2} \cdot \mathrm{e}(\mathrm{Tz}, \mathrm{w})
\end{aligned}
$$

Hence $\mathrm{e}(\mathrm{Tz}, \mathrm{w}) \leq \mathrm{c}_{1} \mathrm{c}_{2} . \mathrm{e}(\mathrm{Tz}, \mathrm{w})<\mathrm{e}(\mathrm{Tz}, \mathrm{w})$ (since $\left.\mathrm{c}_{1} \mathrm{c}_{2}<1\right)$ which is a contradiction.

Thus $\mathrm{Tz}=\mathrm{w}$.

T. Veerapandi*, T. Thiripura Sundari and J. Paulraj Joseph/ SOME FIXED POINT THEOREMS IN TWO METRIC SPACES / IJMA- 3(3), Mar.-2012, Page: 826-837

Now we prove $\mathrm{Sw}=\mathrm{z}$.
Suppose Sw \neq z.
We have

$$
\begin{aligned}
\mathrm{d}(\mathrm{Sw}, \mathrm{z}) & =\lim _{n \rightarrow \infty} \mathrm{~d}\left(\operatorname{Sw}, \mathrm{x}_{\mathrm{n}+1}\right) \\
& =\lim _{n \rightarrow \infty} \mathrm{~d}\left(\mathrm{Sw}, \operatorname{STx}_{\mathrm{n}}\right) \\
& \leq \lim _{n \rightarrow \infty} \mathrm{c}_{2} \cdot \max \left\{\mathrm{~d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{Sw}\right)+\mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, S T x_{\mathrm{n}}\right), \mathrm{e}(\mathrm{w}, \mathrm{TSw}), \mathrm{e}\left(\mathrm{w}, \operatorname{Tx}_{\mathrm{n}}\right), \mathrm{e}\left(\mathrm{Tx}_{\mathrm{n}}, \mathrm{TSw}\right)\right\} \\
& =\lim _{n \rightarrow \infty} \mathrm{c}_{2} \cdot \max \left\{\mathrm{~d}\left(\mathrm{x}_{\mathrm{n}}, \operatorname{Sw}\right)+\mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}\right), \mathrm{e}(\mathrm{w}, \mathrm{w}), \mathrm{e}\left(\mathrm{w}, \mathrm{y}_{\mathrm{n}+1}\right), \mathrm{e}\left(\mathrm{y}_{\mathrm{n}+1}, \mathrm{w}\right)\right\} \\
& \leq \mathrm{c}_{2} \cdot \mathrm{e}(\mathrm{w}, \operatorname{TSw})
\end{aligned}
$$

Now

$$
\begin{aligned}
\mathrm{e}(\mathrm{w}, \mathrm{TSw}) & =\lim _{n \rightarrow \infty} \mathrm{e}\left(\mathrm{y}_{\mathrm{n}+1}, \mathrm{TSw}\right) \\
& =\lim _{n \rightarrow \infty} \mathrm{e}\left(\mathrm{Tx}_{\mathrm{n}}, \mathrm{TSw}\right) \\
& \leq \lim _{n \rightarrow \infty} \mathrm{c}_{1} \cdot \max \left\{\mathrm{~d}\left(\mathrm{x}_{\mathrm{n}}, S \mathrm{Sw}\right), \mathrm{d}\left(\mathrm{Sw}, \operatorname{STx}_{\mathrm{n}}\right), \mathrm{e}\left(\mathrm{w}, \mathrm{Tx}_{\mathrm{n}}\right)+\mathrm{e}(\mathrm{w}, \mathrm{TSw}), \mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{Tx}_{\mathrm{n}}\right)\right\} \\
& =\lim _{n \rightarrow \infty} \mathrm{c}_{1} \cdot \max \left\{\mathrm{~d}\left(\mathrm{x}_{\mathrm{n}}, S \mathrm{Sw}\right), \mathrm{d}\left(\mathrm{Sw}, \mathrm{x}_{\mathrm{n}+1}\right), \mathrm{e}\left(\mathrm{w}, \mathrm{y}_{\mathrm{n}+1}\right)+\mathrm{e}(\mathrm{w}, \mathrm{TSw}), \mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}+1}\right)\right\} \\
& \leq \mathrm{c}_{1} \cdot \mathrm{~d}(\mathrm{z}, \mathrm{Sw})
\end{aligned}
$$

Hence
$\mathrm{d}(\mathrm{Sw}, \mathrm{z}) \leq \mathrm{c}_{1} \mathrm{c}_{2} . \mathrm{d}(\mathrm{z}, \mathrm{Sw})<\mathrm{d}(\mathrm{Sw}, \mathrm{z})$ (since $\left.\mathrm{c}_{1} \mathrm{c}_{2}<1\right)$ which is a contradiction.
Thus Sw = z.
We have $\mathrm{STz}=\mathrm{Sw}=\mathrm{z}$ and $\mathrm{TS} \mathrm{w}=\mathrm{Tz}=\mathrm{w}$. Thus the point z is a fixed point of ST in X and the point w is a fixed point of TS in Y.

Uniqueness: Let $\mathrm{z}^{\prime} \neq \mathrm{z}$ be the another fixed point of ST in X .
We have

$$
\begin{aligned}
\mathrm{d}\left(\mathrm{z}, \mathrm{z}^{\prime}\right) & =\mathrm{d}\left(\mathrm{Sw}, \mathrm{STz}^{\prime}\right) \\
& \leq \mathrm{c}_{2} \cdot \max \left\{\mathrm{~d}\left(\mathrm{z}^{\prime}, \mathrm{Sw}\right)+\mathrm{d}\left(\mathrm{z}^{\prime}, \mathrm{STz}\right), \mathrm{e}(\mathrm{w}, \mathrm{TSw}), \mathrm{e}\left(\mathrm{w}, \mathrm{Tz}^{\prime}\right), \mathrm{e}\left(\mathrm{Tz} z^{\prime}, \mathrm{TSw}\right)\right\} \\
& =\mathrm{c}_{2} \cdot \max \left\{\mathrm{~d}\left(\mathrm{z}^{\prime}, \mathrm{z}\right)+\mathrm{d}\left(\mathrm{z}^{\prime}, \mathrm{z}^{\prime}\right), \mathrm{e}(\mathrm{w}, \mathrm{w}), \mathrm{e}(\mathrm{w}, \mathrm{Tz}), \mathrm{e}(\mathrm{Tz}\right. \\
& \leq \mathrm{w})\} \\
& \leq \mathrm{c}_{2} \cdot \mathrm{e}\left(\mathrm{w}, \mathrm{Tz}^{\prime}\right)
\end{aligned}
$$

Now

$$
\begin{aligned}
\mathrm{e}\left(\mathrm{Tz}^{\prime}, \mathrm{w}\right) & =\mathrm{e}\left(\mathrm{Tz} z^{\prime}, \mathrm{TSw}\right) \\
& \leq \mathrm{c}_{1} \cdot \max \left\{\mathrm{~d}\left(\mathrm{z}^{\prime}, \mathrm{Sw}\right), \mathrm{d}(\mathrm{Sw}, \mathrm{STz}), \mathrm{e}\left(\mathrm{w}, \mathrm{Tz} z^{\prime}\right)+\mathrm{e}(\mathrm{w}, \mathrm{TSw}) \mathrm{d}\left(\mathrm{z}^{\prime}, \mathrm{STz}^{\prime}\right)\right\} \\
& =\mathrm{c}_{1} \cdot \max \left\{\mathrm{~d}\left(\mathrm{z}^{\prime}, \mathrm{z}\right), \mathrm{d}\left(\mathrm{z}, \mathrm{z}^{\prime}\right), \mathrm{e}\left(\mathrm{w}, T z^{\prime}\right)+\mathrm{e}(\mathrm{w}, \mathrm{w}), \mathrm{d}\left(\mathrm{z}^{\prime}, \mathrm{z}^{\prime}\right)\right\} \\
& \leq \mathrm{c}_{1} \cdot \mathrm{~d}\left(\mathrm{z}, \mathrm{z}^{\prime}\right)
\end{aligned}
$$

Hence
$\mathrm{d}\left(\mathrm{z}, \mathrm{z}^{\prime}\right) \leq \mathrm{c}_{1} \mathrm{c}_{2} . \mathrm{d}\left(\mathrm{z}, \mathrm{z}^{\prime}\right)<\mathrm{d}\left(\mathrm{z}, \mathrm{z}^{\prime}\right)$ which is a contradiction.

Thus $\mathrm{z}=\mathrm{z}^{\prime}$.
So the point z is a unique fixed point of ST. Similarly, we prove the point w is also a unique point of TS. This completes the proof.

Remark 2.14: If (X, d) and (Y, e) are the same metric spaces, then by the above theorem 2.13, we get the following theorem, as corollary.

T. Veerapandi*, T. Thiripura Sundari and J. Paulraj Joseph/ SOME FIXED POINT THEOREMS IN TWO METRIC SPACES / IJMA- 3(3), Mar.-2012, Page: 826-837

Corollary2.15: Let (X, d) be a complete metric space. If S and T are mappings from X into itself satisfying the following conditions:

$$
\mathrm{d}(\text { Tx, TSy }) \leq \mathrm{c}_{1} \cdot \max \{\mathrm{~d}(\mathrm{x}, \text { Sy) }, \mathrm{d}(\text { Sy, STx }), \mathrm{d}(\mathrm{y}, \text { Tx })+\mathrm{d}(\mathrm{y}, \text { TSy }), \mathrm{d}(\mathrm{x}, \text { STx })\}
$$

$d(S y, S T x) \leq c_{2} \cdot \max \{d(x, S y)+d(x, S T x), d(y, T S y), d(y, T x), d(T x, T S y)\}$
for all x , y in X where $0 \leq \mathrm{c}_{1}, \mathrm{c}_{2}<1$, then ST has a unique fixed point z in X and TS has a unique fixed point w in X . Further, $\mathrm{Tz}=\mathrm{w}$ and $\mathrm{Sw}=\mathrm{z}$ and if $\mathrm{z}=\mathrm{w}$, then z is the unique common fixed point of S and T .

REFERENCES:

[1] .Cho Y.J. Kang S.M,. Kim S.S, Fixed points in two metric spaces, NoviSad J. Math., 29(1), (1999), 47-53.
[2] Cho Y.J, Fixed points for compatible mappings of type Japonica, 38(3), (1993), 497-508.
[3] Constantin A., Common fixed points of weakly commuting Mappings in 2- metric spaces, Math. Japonica, 36(3), (1991), 507-514
[4] Constantin A., On fixed points in noncomposite metric spaces, Publ. Math. Debrecen, 40(3-4), (1992), 297-302.
[5] Fisher B., Fixed point on two metric spaces, Glasnik Mate., 16(36), (1981), 333-337.
[6] Fisher B., Related fixed point on two metric spaces, Math. Seminor Notes, Kobe Univ., 10 (1982), 17-26.

[^0]: *Corresponding author: T. Veerapandi*,*E-mail: tveerapandi@ymail.com

