INTERNATIONAL JOURNAL OF MATHEMATICAL ARCHIVE-3(3), 2012, PAGE: 877-888 MAAvailable online through <u>www.ijma.info</u> ISSN 2229 - 5046

On αg-Separation Axioms

S. Balasubramanian^{1*} & Ch. Chaitanya²

¹Department of Mathematics, Government Arts College (A), Karur – 639 005, Tamilnadu, India

²Sri Mittapalli college of Engineering, Tummalapalem, Guntur, Andhrapradesh, India

*E-mail: mani55682@rediffmail.com*¹ & chspurthi@yahoo.com²

(Received on: 13-02-12; Accepted on: 06-03-12)

Abstract

In this paper by using αg -open sets we define almost αg -normality and mild αg -normality also we continue the study of further properties of αg -normality. We show that these three axioms are regular open hereditary. We also define the class of almost αg -irresolute mappings and show that αg -normality is invariant under almost αg -irresolute M- αg -open continuous surjection.

AMS Subject Classification: 54D15, 54D10.

Key words and Phrases: αg -open, semiopen, semipreopen, almost normal, midly normal, M- αg -closed, M- αg -open, rc-continuous.

1. Introduction

In 1967, A. Wilansky has introduced the concept of US spaces. In 1968, C.E. Aull studied some separation axioms between the T_1 and T_2 spaces, namely, S_1 and S_2 . Next, in 1982, S.P. Arya et al have introduced and studied the concept of semi-US spaces and also they made study of s-convergence, sequentially semi-closed sets, sequentially s-compact notions. G.B. Navlagi studied P-Normal Almost-P-Normal, Mildly-P-Normal and Pre-US spaces. Recently S. Balasubramanian and P. Aruna Swathi Vyjayanthi studied *v*-Normal Almost- *v*-Normal, Mildly-*v*-Normal and *v*-US spaces. Inspired with these we introduce α g-Normal Almost- α g-Normal, Mildly- α g-Normal, α g-US, α g- S_1 and α g- S_2 . Also we examine α g-convergence, sequentially α g-compact, sequentially α g-continuous maps, and sequentially sub α g-continuous maps in the context of these new concepts. All notions and symbols which are not defined in this paper may be found in the appropriate references. Throughout the paper X and Y denote Topological spaces on which no separation axioms are assumed explicitly stated.

2. Preliminaries

Definition 2.1: A⊂ X is called

(i) g-closed if cl A⊆ U whenever A⊆ U and U is open in X.
(ii) αg-closed if αcl(A) ⊆ U whenever A⊆ U and U is α-open in X.

Definition 2.2: A function *f* is said to be almost–pre-irresolute if for each x in X and each pre-neighborhood V of f(x), $pcl(f^{-1}(V))$ is a pre-neighborhood of x.

Definition 2.3: A space X is said to be

(i) $T_1(T_2)$ if for any $x \neq y$ in X, there exist (disjoint) open sets U; V in X such that $x \in U$ and $y \in V$.

(ii) weakly Hausdorff if each point of X is the intersection of regular closed sets of X.

(iii) normal[resp: mildly normal] if for any pair of disjoint [resp: regular-closed]closed sets F_1 and F_2 , there exist disjoint open sets U and V such that $F_1 \subset U$ and $F_2 \subset V$.

(iv) almost normal if for each closed set A and each regular closed set B such that $A \cap B = \phi$, there exist disjoint open sets U and V such that $A \subset U$ and $B \subset V$.

(v) weakly regular if for each pair consisting of a regular closed set A and a point x such that $A \cap \{x\} = \phi$, there exist disjoint open sets U and V such that $x \in U$ and $A \subset V$.

(vi) A subset A of a space X is S-closed relative to X if every cover of A by semiopen sets of X has a finite subfamily whose closures cover A.

(vii) R_0 if for any point x and a closed set F with $x \notin F$ in X, there exists a open set G containing F but not x.

(viii) R_1 iff for x, $y \in X$ with $cl\{x\} \neq cl\{y\}$, there exist disjoint open sets U and V such that $cl\{x\} \subset U$, $cl\{y\} \subset V$.

(ix) US-space if every convergent sequence has exactly one limit point to which it converges.

(x) pre-US space if every pre-convergent sequence has exactly one limit point to which it converges.

(xi) pre-S₁ if it is pre-US and every sequence $\langle x_n \rangle$ pre-converges with subsequence of $\langle x_n \rangle$ pre-side points.

(xii) pre-S₂ if it is pre-US and every sequence $\langle x_n \rangle$ in X pre-converges which has no pre-side point.

(xiii) is weakly countable compact if every infinite subset of X has a limit point in X.

(xiv) Baire space if for any countable collection of closed sets with empty interior in X, their union also has empty interior in X.

Definition 2.4: Let $A \subset X$. Then a point x is said to be a

- (i) limit point of A if each open set containing x contains some point y of A such that $x \neq y$.
- (ii) T₀-limit point of *A* if each open set containing x contains some point y of *A* such that $cl{x} \neq cl{y}$, or equivalently, such that they are topologically distinct.
- (iii) *pre*-T₀-limit point of A if each open set containing x contains some point y of A such that $pcl\{x\} \neq pcl\{y\}$, or equivalently, such that they are topologically distinct.

Note 1: Recall that two points are topologically distinguishable or distinct if there exists an open set containing one of the points but not the other; equivalently if they have disjoint closures. In fact, the T_0 -axiom is precisely to ensure that any two distinct points are topologically distinct.

Example 1: Let $X = \{a, b, c, d\}$ and $\tau = \{\{a\}, \{b, c\}, \{a, b, c\}, X, \phi\}$. Then b and c are the limit points but not the T_{0-} limit points of the set $\{b, c\}$. Further d is a T_{0-} limit point of $\{b, c\}$.

Example 2: Let X = (0, 1) and $\tau = \{\phi, X, \text{ and } U_n = (0, 1-1/n), n = 2, 3, 4, ... \}$. Then every point of X is a limit point of X. Every point of X~U₂ is a T₀-limit point of X, but no point of U₂ is a T₀-limit point of X.

Definition 2.5: A set *A* together with all its T_0 -limit points will be denoted by T_0 -cl*A*.

Note 2: i. Every T₀-limit point of a set *A* is a limit point of the set but the converse is not true in general. ii. In T₀-space both are same.

Note 3: R_0 -axiom is weaker than T_1 -axiom. It is independent of the T_0 -axiom. However $T_1 = R_0 + T_0$

Note 4: Every countable compact space is weakly countable compact but converse is not true in general. However, a T_1 -space is weakly countable compact iff it is countable compact.

3. ag-T₀ LIMIT POINT:

Definition 3.01: In X, a point x is said to be a αg -T₀-limit point of A if each αg -open set containing x contains some point y of A such that $\alpha gcl{x} \neq \alpha gcl{y}$, or equivalently; such that they are topologically distinct with respect to αg -open sets.

Example 3: regular open set \Rightarrow open set $\Rightarrow \alpha$ -open set $\Rightarrow \alpha g$ -open set we have r- T_0 -limit point $\Rightarrow T_0$ -limit point $\Rightarrow \alpha g$ - T_0 -limit point ϕg - T_0 -

Definition 3.02: A set A together with all its αg -T₀-limit points is denoted by T₀- αg cl(A)

Lemma 3.01: If x is a αg - T_0 -limit point of a set A then x is αg -limit point of A.

Lemma 3.02: If X is αg - T_0 -space then every αg - T_0 -limit point and every αg -limit point are equivalent.

Corollary 3.03: If X is $r-T_0$ -space then every $\alpha g-T_0$ -limit point and every αg -limit point are equivalent.

Theorem 3.04: For $x \neq y \in X$,

- (i) x is a αg -T₀-limit point of {y} iff $x \notin \alpha gcl\{y\}$ and $y \in \alpha gcl\{x\}$.
- (ii) x is not a αg - T_0 -limit point of {y} iff either $x \in \alpha gcl\{y\}$ or $\alpha gcl\{x\} = \alpha gcl\{y\}$.
- (iii) x is not a αg - T_0 -limit point of {y} iff either $x \in \alpha gcl{y}$ or $y \in \alpha gcl{x}$.

- (i) If x is a αg -T₀-limit point of {y}, then y cannot be a αg -limit point of {x}.
- (ii) If $\alpha gcl\{x\} = \alpha gcl\{y\}$, then neither x is a $\alpha g \cdot T_0$ -limit point of $\{y\}$ nor y is a $\alpha g \cdot T_0$ -limit point of $\{x\}$.
- (iii) If a singleton set A has no αg - T_0 -limit point in X, then $\alpha gclA = \alpha gcl\{x\}$ for all $x \in \alpha gcl\{A\}$.

Lemma 3.06: In X, if x is a α g-limit point of a set A, then in each of the following cases x becomes α g- T_0 -limit point of A ($\{x\} \neq A$).

(i) $\alpha gcl\{x\} \neq \alpha gcl\{y\}$ for $y \in A, x \neq y$.

(ii) $\alpha gcl\{x\} = \{x\}$

(iii) X is a αg -T₀-space.

(iv) $A \sim \{x\}$ is a g-open

Corollary 3.07: In X, if x is a limit point of a set A, then in each of the following cases x becomes αg - T_0 -limit point of A ({x} $\neq A$).

- (i) $\alpha gcl\{x\} \neq \alpha gcl\{y\}$ for $y \in A, x \neq y$.
- (ii) $\alpha gcl\{x\} = \{x\}$
- (iii) X is a αg -T₀-space.
- (iv) $A \sim \{x\}$ is a g-open

4. αg -T₀ AND αg -R_i AXIOMS, i = 0, 1:

In view of Lemma 3.6(iii), $\alpha g - T_0$ -axiom implies the equivalence of the concept of limit point of a set with that of $\alpha g - T_0$ -limit point of the set. But for the converse, if $x \in \alpha gcl\{y\}$ then $\alpha gcl\{x\} \neq \alpha gcl\{y\}$ in general, but if x is a $\alpha g - T_0$ -limit point of $\{y\}$, then $\alpha gcl\{x\} = \alpha gcl\{y\}$

Lemma 4.01: In a space X, a limit point x of $\{y\}$ is a αg - T_0 -limit point of $\{y\}$ iff $\alpha gcl\{x\} \neq \alpha gcl\{y\}$.

This lemma leads to characterize the equivalence of αg -T₀-limit point and αg -limit point of a set as the αg -T₀-axiom.

Theorem 4.02: The following conditions are equivalent:

- (i) X is a αg -T₀ space
- (ii) Every αg -limit point of a set A is a αg -T₀-limit point of A
- (iii) Every r-limit point of a singleton set $\{x\}$ is a αg - T_0 -limit point of $\{x\}$
- (iv) For any x, y in X, $x \neq y$ if $x \in \alpha gcl\{y\}$, then x is a $\alpha g-T_0$ -limit point of $\{y\}$

Note 5: In a αg -T₀-space X if every point of X is a r-limit point of X, then every point of X is αg -T₀-limit point of X. But a space X in which each point is a αg -T₀-limit point of X is not necessarily a αg -T₀-space

Theorem 4.03: The following conditions are equivalent:

- (i) X is a αg -R₀ space
- (ii) For any x, y in X, if $x \in \alpha gcl\{y\}$, then x is not a αg -T₀-limit point of $\{y\}$
- (iii) A point αg -closure set has no αg - T_0 -limit point in X
- (iv) A singleton set has no αg - T_0 -limit point in X.

Since every r-R₀-space is α g-R₀-space, we have the following corollary

Corollary 4.04: The following conditions are equivalent:

- (i) X is a r- R_0 space
- (ii) For any x, y in X, if $x \in \alpha gcl\{y\}$, then x is not a αg -T₀-limit point of $\{y\}$
- (iii) A point αg -closure set has no αg - T_0 -limit point in X
- (iv) A singleton set has no αg - T_0 -limit point in X.

Theorem 4.05: In a αg - R_0 space X, a point x is αg - T_0 -limit point of A iff every αg -open set containing x contains infinitely many points of A with each of which x is topologically distinct

If αg -R₀ space is replaced by rR₀ space in the above theorem, we have the following corollaries:

Corollary 4.06: In an rR_0 -space X,

- (i) If a point x is rT_0 -limit point of a set then every αg -open set containing x contains infinitely many points of A with each of which x is topologically distinct.
- (ii) If a point x is αg - T_0 -limit point of a set then every αg -open set containing x contains infinitely many points of A with each of which x is topologically distinct.

Theorem 4.07: X is αg - R_0 space iff a set A of the form $A = \bigcup \alpha gcl\{x_{i \ i \ = l \ to \ n}\}$ a finite union of point closure sets has no αg - T_0 -limit point.

Corollary 4.08: If X is rR_0 space and

(i)If $A = \bigcup \alpha gcl\{x_i\}$ i = 1 to n, a finite union of point closure sets has no αg - T_0 -limit point. (ii)If $X = \bigcup \alpha gcl\{x_i\}$ i = 1 to n, then X has no αg - T_0 -limit point.

Theorem 4.09: The following conditions are equivalent:

- (i) X is αg -R₀-space
- (ii) For any x and a set in X, x is a αg - T_0 -limit point of A iff every αg -open set containing x contains infinitely many points of A with each of which x is topologically distinct.

Various characteristic properties of αg -T₀-limit points studied so far is enlisted in the following theorem for a ready reference.

Theorem 4.10: In a αg - R_0 -space, we have the following:

- (i) A singleton set has no αg - T_0 -limit point in X.
- (ii) A finite set has no αg - T_0 -limit point in X.
- (iii) A point αg -closure has no set αg - T_0 -limit point in X
- (iv) A finite union point αg -closure sets have no set αg - T_0 -limit point in X.
- (v) For $x, y \in X$, $x \in T_0$ $\alpha gcl\{y\}$ iff x = y.
- (vi) For any $x, y \in X$, $x \neq y$ iff neither x is αg - T_0 -limit point of $\{y\}$ nor y is αg - T_0 -limit point of $\{x\}$
- (vii) For any $x, y \in X, x \neq y$ iff $T_0 \alpha gcl\{x\} \cap T_0 \alpha gcl\{y\} = \phi$.

(viii) Any point $x \in X$ is a αg - T_0 -limit point of a set A in X iff every αg -open set containing x contains infinitely many points of A with each which x is topologically distinct.

Theorem 4.11: X is αg - R_1 iff for any αg -open set U in X and points x, y such that $x \in X \sim U$, $y \in U$, there exists a αg -open set V in X such that $y \in V \subset U$, $x \notin V$.

Lemma 4.12: In αg - R_1 space X, if x is a αg - T_0 -limit point of X, then for any non empty αg -open set U, there exists a non empty αg -open set V such that $V \subset U$, $x \notin \alpha gcl(V)$.

Lemma 4.13: In a αg - regular space X, if x is a αg - T_0 -limit point of X, then for any non empty αg -open set U, there exists a non empty αg -open set V such that $\alpha gcl(V) \subset U$, $x \notin \alpha gcl(V)$.

Corollary 4.14: In a regular space X,

- (i) If x is a αg - T_0 -limit point of X, then for any non empty αg -open set U, there exists a non empty αg -open set V such that $\alpha gcl(V) \subset U$, $x \notin \alpha gcl(V)$.
- (ii) If x is a T_0 -limit point of X, then for any non empty αg -open set U, there exists a non empty αg -open set V such that $\alpha gcl(V) \subset U$, $x \notin \alpha gcl(V)$.

Theorem 4.15: If X is a α g-compact α g- R_1 -space, then X is a Baire Space.

Proof: Let $\{A_n\}$ be a countable collection of αg -closed sets of X, each A_n having empty interior in X. Take A_1 , since A_1 has empty interior, A_1 does not contain any αg -open set say U_0 . Therefore we can choose a point $y \in U_0$ such that $y \notin A_1$. For X is αg -regular, and $y \in (X \sim A_1) \cap U_0$, a αg -open set, we can find a αg -open set U_1 in X such that $y \in U_1$, $\alpha gcl(U_1) \subset (X \sim A_1) \cap U_0$. Hence U_1 is a non empty αg -open set in X such that $\alpha gcl(U_1) \subset U_0$ and $vcl(U_1) \cap A_1 = \phi$. Continuing this process, in general, for given non empty αg -open set U_{n-1} , we can choose a point of U_{n-1} which is not in the αg -closed set A_n and a αg -open set U_n containing this point such that $\alpha gcl(U_n) \subset U_{n-1}$ and $\alpha gcl(U_n) \cap A_n = \phi$. Thus we get a sequence of nested non empty αg -closed sets which satisfies the finite intersection property. Therefore $\cap \alpha gcl(U_n) \neq \phi$. Then some $x \in \cap \alpha gcl(U_n)$ which in turn implies that $x \in U_{n-1}$ as $\alpha gcl(U_n) \subset U_{n-1}$ and $x \notin A_n$ for each n.

Corollary 4.16: If X is a compact αg - R_1 -space, then X is a Baire Space.

Corollary 4.17: Let X be a α g-compact α g- R_1 -space. If $\{A_n\}$ is a countable collection of α g-closed sets in X, each A_n having non-empty α g-interior in X, then there is a point of X which is not in any of the A_n .

Corollary 4.18: Let X be a α g-compact R_1 -space. If $\{A_n\}$ is a countable collection of α g-closed sets in X, each A_n having non-empty α g- interior in X, then there is a point of X which is not in any of the A_n .

Theorem 4.19: Let X be a non empty compact αg - R_1 -space. If every point of X is a αg - T_0 -limit point of X then X is uncountable.

© 2012, IJMA. All Rights Reserved

Proof: Since X is non empty and every point is a αg -T₀-limit point of X, X must be infinite. If X is countable, we construct a sequence of αg - open sets {V_n} in X as follows:

Let $X = V_1$, then for x_1 is a αg -T₀-limit point of X, we can choose a non empty αg -open set V_2 in X such that $V_2 \subset V_1$ and $x_1 \notin \alpha g c l V_2$. Next for x_2 and non empty αg -open set V_2 , we can choose a non empty αg -open set V_3 in X such that $V_3 \subset V_2$ and $x_2 \notin \alpha g c l V_3$. Continuing this process for each x_n and a non empty αg -open set V_n , we can choose a non empty αg -open set V_{n+1} in X such that $V_{n+1} \subset V_n$ and $x_n \notin \alpha g c l V_{n+1}$.

Now consider the nested sequence of αg -closed sets $\alpha g c l V_1 \supset \alpha g c l V_2 \supset \alpha g c l V_3 \supset \ldots \supset \alpha g c l V_n \supset \ldots$ Since X is αg -compact and $\{\alpha g c l V_n\}$ the sequence of αg -closed sets satisfies finite intersection property. By Cantors intersection theorem, there exists an x in X such that $x \in \alpha g c l V_n$. Further $x \in X$ and $x \in V_1$, which is not equal to any of the points of X. Hence X is uncountable.

Corollary 4.20: Let X be a non empty αg -compact αg - R_1 -space. If every point of X is a αg - T_0 -limit point of X then X is uncountable

5. αg –T₀-IDENTIFICATION SPACES AND αg –SEPARATION AXIOMS

Definition 5.01: Let (X, τ) be a topological space and let \Re be the equivalence relation on X defined by $x\Re y$ iff $\alpha gcl\{x\} = \alpha gcl\{y\}$

Problem 5.02: show that x \Re y iff $\alpha gcl\{x\} = \alpha gcl\{y\}$ is an equivalence relation

Definition 5.03: The space $(X_0, Q(X_0))$ is called the αg -T₀-identification space of (X, τ) , where X_0 is the set of equivalence classes of \Re and $Q(X_0)$ is the decomposition topology on X_0 .

Let $P_X: (X, \tau) \rightarrow (X_0, Q(X_0))$ denote the natural map

Lemma 5.04: If $x \in X$ and $A \subset X$, then $x \in \alpha$ gclA iff every α g-open set containing x intersects A.

Theorem 5.05: The natural map $P_X:(X,\tau) \rightarrow (X_{0}, Q(X_0))$ is closed, open and $P_X^{-1}(P_X(O)) = O$ for all $O \in PO(X,\tau)$ and $(X_0, Q(X_0))$ is $\alpha g \cdot T_0$

Proof: Let $O \in PO(X, \tau)$ and let $C \in P_X$ (O). Then there exists $x \in O$ such that $P_X(x) = C$. If $y \in C$, then $\alpha gcl\{y\} = \alpha gcl\{x\}$, which, by lemma, implies $y \in O$. Since $\tau \subset PO(X, \tau)$, then $P_X^{-1}(P_X(U)) = U$ for all $U \in \tau$, which implies P_X is closed and open.

Let G, $H \in X_0$ such that $G \neq H$; let $x \in G$ and $y \in H$. Then $\alpha gcl\{x\} \neq \alpha gcl\{y\}$, which implies $x \notin \alpha gcl\{y\}$ or $y \notin \alpha gcl\{x\}$, say $x \notin \alpha gcl\{y\}$. Since P_X is continuous and open, then $G \in A = P_X\{X \sim \alpha gcl\{y\}\} \notin PO(X_0, Q(X_0))$ and $H \notin A$

Theorem 5.06: The following are equivalent: (i) X is $\alpha g R_0$ (ii) $X_0 = \{ \alpha gcl\{x\} : x \in X \}$ and (iii) $(X_0, Q(X_0))$ is $\alpha g T_1$

Proof:

(i) \Rightarrow (ii) Let $C \in X_0$, and let $x \in C$. If $y \in C$, then $y \in \alpha gcl\{y\} = \alpha gcl\{x\}$, which implies $C \in \alpha gcl\{x\}$. If $y \in \alpha gcl\{x\}$, then $x \in \alpha gcl\{y\}$, since, otherwise, $x \in X \sim \alpha gcl\{y\} \in PO(X, \tau)$ which implies $\alpha gcl\{x\} \subset X \sim \alpha gcl\{y\}$, which is a contradiction. Thus, if $y \in \alpha gcl\{x\}$, then $x \in \alpha gcl\{y\}$, which implies $\alpha gcl\{y\} = \alpha gcl\{x\}$ and $y \in C$. Hence $X_0 = \{\alpha gcl\{x\}: x \in X\}$

(ii) \Rightarrow (iii) Let $A \neq B \in X_0$. Then there exists x, $y \in X$ such that $A = \alpha gcl\{x\}$; $B = \alpha gcl\{y\}$, and $\alpha gcl\{x\} \cap \alpha gcl\{y\} = \phi$. Then $A \in C = P_X(X \sim \alpha gcl\{y\}) \in PO(X_0, Q(X_0))$ and $B \notin C$. Thus $(X_0, Q(X_0))$ is $\alpha g \cdot T_1$

(iii) \Rightarrow (i) Let $x \in U \in \alpha GO(X)$. Let $y \notin U$ and C_x , $C_y \in X_0$ containing x and y respectively. Then $x \notin \alpha gcl\{y\}$, which implies $C_x \neq C_y$ and there exists αg -open set A such that $C_x \in A$ and $C_y \notin A$. Since P_X is continuous and open, then $y \in B = P_X^{-1}(A) \in x \in \alpha g O(X)$ and $x \notin B$, which implies $y \notin \alpha gcl\{x\}$. Thus $\alpha gcl\{x\} \subset U$. This is true for all $\alpha gcl\{x\}$ implies $\cap \alpha gcl\{x\} \subset U$. Hence X is αg -R₀

Theorem 5.07: (X, τ) is $\alpha g \cdot R_1$ iff $(X_0, Q(X_0))$ is $\alpha g \cdot T_2$

The proof is straight forward from using theorems 5.05 and 5.06 and is omitted

Theorem 5.08: X is αg - T_i ; i = 0, 1, 2. iff there exists a αg -continuous, almost-open, 1–1 function from (X, τ) into a αg - T_i space; i = 0,1,2. respectively.

© 2012, IJMA. All Rights Reserved

Proof: If *X* is αg -T_i; i = 0,1,2., then the identity function on X satisfies the desired properties. The converse is (ii) part of Theorem 2.13.

The following example shows that if $f: (X, \tau) \rightarrow (Y, \sigma)$ is continuous, αg -open, bijective, $A \in PO(Y, \sigma)$, and $(Y, \sigma) \alpha g$ - T_i ; i = 0,1,2, then $f^{-1}(A)$ need not be αg -open and (X, τ) need not be αg - T_i ; i = 0,1,2

Theorem 5.09: If $f: (X, \tau) \to (Y, \sigma)$ is a g-continuous, a g-open, and $x, y \in X$ such that $\alpha gcl\{x\} = \alpha gcl\{y\}$, then $\alpha gcl\{f(x)\} = \alpha gcl\{f(y)\}$.

Theorem 5.10: The following are equivalent

(i) (X, τ) is αg-T₀
(ii) Elements of X₀ are singleton sets and
(iii)There exists a αg-continuous, αg-open, 1–1 function f: (X, τ)→(Y, σ), where (Y, σ) is αg-T₀

Proof: (i) is equivalent to (ii) and (i) \Rightarrow (iii) are straight forward and is omitted.

(iii) \Rightarrow (i) Let x, y \in X such that $f(x) \neq f(y)$, which implies $\alpha gcl\{f(x)\} \neq \alpha gcl\{f(y)\}$. Then by theorem 5.09, $\alpha gcl\{x\} \neq \alpha gcl\{y\}$. Hence (X, τ) is αg -T₀

Corollary 5.11: A space (X, τ) is αg - T_i ; i = 1,2 iff (X, τ) is αg - T_{i-1} ; i = 1,2, respectively, and there exists a αg -continuous, αg -open, 1-1 function $f: (X, \tau)$ into a αg - T_0 space.

Definition 5.04: $f:X \rightarrow Y$ is point- αg -closure 1-1 iff for x, $y \in X$ such that $\alpha gcl\{x\} \neq \alpha gcl\{y\}$, $\alpha gcl\{f(x)\} \neq \alpha gcl\{f(y)\}$.

Theorem 5.12:

(i)If $f: (X, \tau) \rightarrow (Y, \sigma)$ is point- α g-closure 1-1 and (X, τ) is α g- T_0 , then f is 1-1 (ii)If $f: (X, \tau) \rightarrow (Y, \sigma)$, where (X, τ) and (Y, σ) are α g- T_0 then f is point- α g-closure 1-1 iff f is 1-1

Proof: omitted

The following result can be obtained by combining results for αg -T₀- identification spaces, αg -induced functions and αg -T_i spaces; i = 1,2.

Theorem 5.13: X is αg - R_i ; i = 0,1 iff there exists a αg -continuous, almost-open point- αg -closure 1–1 function f: (X, τ) into a αg - R_i space; i = 0,1 respectively.

6. ag-Normal; Almost ag-normal and Mildly ag-normal spaces

Definition 6.1: A space X is said to be αg -normal if for any pair of disjoint closed sets F_1 and F_2 , there exist disjoint αg -open sets U and V such that $F_1 \subset U$ and $F_2 \subset V$.

Example 4: Let $X = \{a, b, c\}$ and $\tau = \{\phi, \{a\}, \{b, c\}, X\}$. Then X is α g-normal.

Example 5: Let $X = \{a, b, c, d\}$ and $\tau = \{\phi, \{b, d\}, \{a, b, d\}, \{b, c, d\}, X\}$. Then X is not α g-normal and is not normal.

We have the following characterization of α g-normality.

Theorem 6.1: For a space X the following are equivalent:

- (i) X is αg -normal.
- (ii) For every pair of open sets U and V whose union is X, there exist αg -closed sets A and B such that $A \subset U, B \subset V$ and $A \cup B = X$.
- (iii) For every closed set F and every open set G containing F, there exists a α g-open set U such that $F \subset U \subset \alpha gcl(U) \subset G$.

Proof: (i) \Rightarrow (ii): Let *U* and *V* be a pair of open sets in a α g-normal space *X* such that $X = U \cup V$. Then *X*–*U*, *X*–*V* are disjoint closed sets. Since X is α g-normal there exist disjoint α g-open sets U_1 and V_1 such that $X-U \subset U_1$ and $X-V \subset V_1$. Let $A = X-U_1$, $B = X-V_1$. Then *A* and *B* are α g-closed sets such that $A \subset U$, $B \subset V$ and $A \cup B = X$.

(b) \Rightarrow (c): Let *F* be a closed set and *G* be an open set containing *F*. Then *X*–*F* and *G* are open sets whose union is *X*.

Then by (b), there exist αg -closed sets W_1 and W_2 such that $W_1 \subset X - F$ and $W_2 \subset G$ and $W_1 \cup W_2 = X$. Then $F \subset X - W_1$, $X - G \subset X - W_2$ and $(X - W_1) \cap (X - W_2) = \phi$. Let $U = X - W_1$ and $V = X - W_2$. Then U and V are disjoint αg -open sets such that $F \subset U \subset X - V \subset G$. As X - V is αg -closed set, we have $\alpha gcl(U) \subset X - V$ and $F \subset U \subset \alpha gcl(U) \subset G$.

(c) \Rightarrow (a): Let F_1 and F_2 be any two disjoint closed sets of X. Put $G = X - F_2$, then $F_1 \cap G = \phi$. $F_1 \subset G$ where G is an open set. Then by (c), there exists a α g-open set U of X such that $F_1 \subset U \subset \alpha gcl(U) \subset G$. It follows that $F_2 \subset X - \alpha gcl(U) = V$, say, then V is α g-open and $U \cap V = \phi$. Hence F_1 and F_2 are separated by α g-open sets U and V. Therefore X is α g-normal.

Theorem 6.2: A regular open subspace of a αg-normal space is αg-normal.

Proof: Let Y be a regular open subspace of a α g-normal space X. Let A and B be disjoint closed subsets of Y. As Y is regular open, A, B are closed sets of X. By α g-normality of X, there exist disjoint α g-open sets U and V in X such that A \subset U and B \subset V, U \cap Y and V \cap Y are α g-open in Y such that A \subset U \cap Y and B \subset V \cap Y. Hence Y is α g-normal.

Example 6: Let $X = \{a, b, c\}$ with $\tau = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}$ is α g-normal and α g-regular.

However we observe that every αg -normal αg - R_0 space is αg -regular. Now, we define the following.

Definition 6.2: A function $f: X \to Y$ is said to be almost- αg -irresolute if for each x in X and each αg -neighborhood V of f(x), $\alpha g c l(f^{-1}(V))$ is a αg -neighborhood of x.

Clearly every αg -irresolute map is almost αg -irresolute.

The Proof of the following lemma is straightforward and hence omitted.

Lemma 6.1: *f* is almost α g-irresolute iff $f^1(V) \subset \alpha$ g-int(α gcl($f^1(V)$))) for every $V \in \alpha gO(Y)$.

Now we prove the following.

Lemma 6.2: *f* is almost αg -irresolute iff $f(\alpha gcl(U)) \subset \alpha gcl(f(U))$ for every $U \in \alpha g O(X)$.

Proof: Let $U \in \alpha g O(X)$. Suppose $y \notin \alpha gcl(f(U))$. Then there exists $V \in \alpha gO(y)$ such that $V \cap f(U) = \phi$. Hence $f^{-1}(V) \cap U = \phi$. Since $U \in \alpha gO(X)$, we have αg -int($\alpha gcl(f^{-1}(V))) \cap \alpha gcl(U) = \phi$. Then by lemma 6.1, $f^{-1}(V) \cap \alpha gcl(U) = \phi$ and hence $V \cap f(\alpha gcl(U)) = \phi$. This implies that $y \notin f(\alpha gcl(U))$.

Conversely, if $V \in \alpha g O(Y)$, then W = X- $\alpha gcl(f^{1}(V)) \in \alpha g O(X)$. By hypothesis, $f(\alpha gcl(W)) \subset \alpha gcl(f(W)))$ and hence X- αg -int($\alpha gcl(f^{1}(V))) = \alpha gcl(W) \subset f^{1}(\alpha gcl(f(W))) \subset f(\alpha gcl(f(X-f^{1}(V)))) \subset f^{-1}[\alpha gcl(Y-V)] = f^{-1}(Y-V) = X-f^{1}(V)$. Therefore, $f^{1}(V) \subset \alpha g$ -int($\alpha gcl(f^{1}(V)))$. By lemma 6.1, *f* is almost αg -irresolute.

Now we prove the following result on the invariance of α g-normality.

Theorem 6.3: If f is an M- α g-open continuous almost α g-irresolute function from a α g-normal space X onto a space Y, then Y is α g-normal.

Proof: Let A be a closed subset of Y and B be an open set containing A. Then by continuity of *f*, $f^{1}(A)$ is closed and $f^{1}(B)$ is an open set of X such that $f^{1}(A) \subset f^{1}(B)$. As X is α g-normal, there exists a α g-open set U in X such that $f^{1}(A) \subset f^{1}(B)$. $C \cup C = \alpha gcl(U) \subset f^{1}(B)$. Then $f(f^{1}(A)) \subset f(U) \subset f(\alpha gcl(U)) \subset f(f^{1}(B))$. Since *f* is M- α g-open almost α g-irresolute surjection, we obtain $A \subset f(U) \subset \alpha gcl(f(U)) \subset B$. Then again by Theorem 6.1 the space Y is α g-normal.

Lemma 6.3: A mapping f is M- α g-closed if and only if for each subset B in Y and for each α g-open set U in X containing $f^{1}(B)$, there exists a α g-open set V containing B such that $f^{1}(V) \subset U$.

Now we prove the following:

Theorem 6.4: If *f* is an M-αg-closed continuous function from a αg-normal space onto a space Y, then Y is αg-normal.

Proof of the theorem is routine and hence omitted.

Now in view of lemma 2.2 [9] and lemma 6.3, we prove that the following result.

Theorem 6.5: If *f* is an M- α g-closed map from a weakly Hausdorff α g-normal space X onto a space Y such that $f^{1}(y)$ is S-closed relative to X for each $y \in Y$, then Y is α g-T₂.

Proof: Let y_1 and y_2 be any two distinct points of Y. Since X is weakly Hausdorff, $f^{-1}(y_1)$ and $f^{-1}(y_2)$ are disjoint closed subsets of X by lemma 2.2 [9]. As X is αg -normal, there exist disjoint αg -open sets V_1 and V_2 such that $f^{-1}(y_i) \subset V_i$, for i = 1, 2. Since *f* is M- αg -closed, there exist αg -open sets U_1 and U_2 containing y_1 and y_2 such that $f^{-1}(U_i) \subset V_i$ for i = 1, 2. Then it follows that $U_1 \cap U_2 = \phi$. Hence Y is αg -T₂.

Theorem 6.6: For a space *X* we have the following:

- (a) If X is normal then for any disjoint closed sets A and B, there exist disjoint αg -open sets U, V such that A \subset U and B \subset V;
- (b) If X is normal then for any closed set A and any open set V containing A, there exists an αg -open set U of X such that $A \subset U \subset \alpha gcl(U) \subset V$.

Definition 6.2: X is said to be almost αg -normal if for each closed set A and each regular closed set B such that $A \cap B = \phi$, there exist disjoint αg -open sets U and V such that $A \subset U$ and $B \subset V$.

Clearly, every αg -normal space is almost αg -normal, but not conversely in general.

Example 7: Let $X = \{a, b, c\}$ and $\tau = \{\phi, \{a\}, \{a, b\}, \{a, c\}, X\}$. Then X is almost α g-normal and not α g-normal.

Now, we have characterization of almost α g-normality in the following.

Theorem 6.7: For a space X the following statements are equivalent:

- (i) X is almost αg -normal
- (ii) For every pair of sets U and V, one of which is open and the other is regular open whose union is X, there exist α g-closed sets G and H such that G \subset U, H \subset V and G \cup H = X.
- (iii) For every closed set A and every regular open set B containing A, there is a αg -open set V such that $A \subset V \subset \alpha gcl(V) \subset B$.

Proof:

(a) \Rightarrow (b) Let U be an open set and V be a regular open set in an almost α g-normal space X such that $U \cup V = X$. Then (X-U) is closed set and (X-V) is regular closed set with $(X-U) \cap (X-V) = \phi$. By almost α g-normality of X, there exist disjoint α g-open sets U₁ and V₁ such that $X-U \subset U_1$ and $X-V \subset V_1$. Let $G = X-U_1$ and $H = X-V_1$. Then G and H are α g-closed sets such that $G \subset U$, $H \subset V$ and $G \cup H = X$.

(b) \Rightarrow (c) and (c) \Rightarrow (a) are obvious.

One can prove that almost α g-normality is also regular open hereditary.

Almost αg -normality does not imply almost αg -regularity in general. However, we observe that every almost αg -normal αg -R₀ space is almost αg -regular.

Next, we prove the following.

Theorem 6.8: Every almost regular, ν-compact space X is almost αg-normal.

Recall that a function $f: X \rightarrow Y$ is called rc-continuous if inverse image of regular closed set is regular closed.

Now, we state the invariance of almost α g-normality in the following.

Theorem 6.9: If f is continuous M- α g-open rc-continuous and almost α g-irresolute surjection from an almost α g-normal space X onto a space Y, then Y is almost α g-normal.

Definition 6.3: A space X is said to be mildly αg -normal if for every pair of disjoint regular closed sets F_1 and F_2 of X, there exist disjoint αg -open sets U and V such that $F_1 \subset U$ and $F_2 \subset V$.

Example 8: Let $X = \{a, b, c\}$ and $\tau = \{\phi, \{b\}, \{a, b\}, \{b, c\}, X\}$. Then X is mildly α g-normal.

We have the following characterization of mild α g-normality.

Theorem 6.10: For a space X the following are equivalent.

- (i) X is mildly αg -normal.
- (ii) For every pair of regular open sets U and V whose union is X, there exist αg -closed sets G and H such that $G \subset U$, $H \subset V$ and $G \cup H = X$.
- (iii) For any regular closed set A and every regular open set B containing A, there exists a αg -open set U such that $A \subset U \subset \alpha gcl(U) \subset B$.
- (iv) For every pair of disjoint regular closed sets, there exist αg -open sets U and V such that $A \subset U$, $B \subset V$ and $\alpha gcl(U) \cap \alpha gcl(V) = \phi$.

This theorem may be proved by using the arguments similar to those of Theorem 6.7.

Also, we observe that mild α g-normality is regular open hereditary.

We define the following

Definition 6.4: A space X is weakly αg -regular if for each point x and a regular open set U containing {x}, there is a αg -open set V such that $x \in V \subset clV \subset U$.

Example 9: Let $X = \{a, b, c\}$ and $\tau = \{\phi, \{b\}, \{a, b\}, \{b, c\}, X\}$. Then X is weakly α g-regular.

Example 10: Let $X = \{a, b, c\}$ and $\tau = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}$. Then X is not weakly α g-regular.

Theorem 6.11: If $f : X \to Y$ is an M- α g-open rc-continuous and almost α g-irresolute function from a mildly α g-normal space X onto a space Y, then Y is mildly α g-normal.

Proof: Let A be a regular closed set and B be a regular open set containing A. Then by rc-continuity of f, $f^{-1}(A)$ is a regular closed set contained in the regular open set $f^{1}(B)$. Since X is mildly αg -normal, there exists a αg -open set V such that $f^{1}(A) \subset V \subset \alpha gcl(V) \subset f^{-1}(B)$ by Theorem 6.10. As f is M- αg -open and almost αg -irresolute surjection, it follows that $f(V) \in \alpha gO(Y)$ and $A \subset f(V) \subset \alpha gcl(f(V)) \subset B$. Hence Y is mildly αg -normal.

Theorem 6.12: If $f: X \to Y$ is rc-continuous, M- αg -closed map from a mildly αg -normal space X onto a space Y, then Y is mildly αg -normal.

7. αg-US spaces:

Definition 7.1: A sequence $\langle x_n \rangle$ is said to be αg -converges to a point x of X, written as $\langle x_n \rangle \rightarrow^{\alpha g} x$ if $\langle x_n \rangle$ is eventually in every αg -open set containing x.

Clearly, if a sequence $\langle x_n \rangle$ *r*-converges to a point x of X, then $\langle x_n \rangle \alpha g$ -converges to x.

Definition 7.2: X is said to be α g-US if every sequence $\langle x_n \rangle$ in X α g-converges to a unique point.

Theorem 7.1: Every αg -US space is αg -T₁.

Proof: Let X be αg -US space. Let x and y be two distinct points of X. Consider the sequence $\langle x_n \rangle$ where $x_n = x$ for every n. Cleary, $\langle x_n \rangle \rightarrow^{\alpha g} x$. Also, since $x \neq y$ and X is αg -US, $\langle x_n \rangle$ cannot αg -converge to y, i.e, there exists a αg -open set V containing y but not x. Similarly, for the sequence $\langle y_n \rangle$ where $y_n = y$ for all n, and proceeding as above we get a αg -open set U containing x but not y. Thus, the space X is αg -T₁.

Theorem 7.2: Every αg -T₂ space is αg -US.

Proof: Let X be αg -T₂ space and $\langle x_n \rangle$ be a sequence in X. If possible suppose that $\langle x_n \rangle \alpha g$ -converge to two distinct points x and y. That is, $\langle x_n \rangle$ is eventually in every αg -open set containing x and also in every αg -open set containing y.

This is contradiction since X is αg -T₂ space. Hence the space X is αg -US.

Definition 7.3: A set F is sequentially α g-closed if every sequence in F α g-converges to a point in F.

Theorem 7.3: X is αg -US iff the diagonal set is a sequentially αg -closed subset of X x X.

Proof: Let X be αg -US. Let $\langle x_n, x_n \rangle$ be a sequence in Δ . Then $\langle x_n \rangle$ is a sequence in X. As X is αg -US, $\langle x_n \rangle \rightarrow^{\alpha g} x$ for a unique $x \in X$. i.e., if $\langle x_n \rangle \rightarrow^{\alpha g} x$ and y. Thus, x = y. Hence Δ is sequentially αg -closed.

Conversely, let Δ be sequentially αg -closed and let $\langle x_n \rangle \rightarrow^{\alpha g} x$ and y. Hence $\langle x_n \rangle$, $x_n \rangle \rightarrow^{\alpha g} (x,y)$. Since Δ is sequentially αg -closed, $(x,y) \in \Delta$ which means that x = y implies space X is αg -US.

Definition 7.4: A subset G of a space X is said to be sequentially αg -compact if every sequence in G has a subsequence which αg -converges to a point in G.

Theorem 7.4: In a α g-US space every sequentially α g-compact set is sequentially α g-closed.

Proof: Let X be α g-US space. Let Y be a sequentially α g-compact subset of X. Let $\langle x_n \rangle$ be a sequence in Y. Suppose that $\langle x_n \rangle \alpha$ g-converges to a point in X-Y. Let $\langle x_{np} \rangle$ be subsequence of $\langle x_n \rangle$ that α g-converges to a point $y \in Y$ since Y is sequentially α g-compact. Also, let a subsequence $\langle x_{np} \rangle$ of $\langle x_n \rangle \alpha$ g-converge to $x \in X$ -Y. Since $\langle x_{np} \rangle$ is a sequence in the α g-US space X, x = y. Thus, Y is sequentially α g-closed set.

Next, we give a hereditary property of αg -US spaces.

Theorem 7.5: Every regular open subset of a α g-US space is α g-US.

Proof: Let X be a αg -US space and Y \subset X be an regular open set. Let $\langle x_n \rangle$ be a sequence in Y. Suppose that $\langle x_n \rangle \alpha g$ -converges to x and y in Y. We shall prove that $\langle x_n \rangle \alpha g$ -converges to x and y in X. Let U be any αg -open subset of X containing x and V be any αg -open set of X containing y. Then, U \cap Y and V \cap Y are αg -open sets in Y. Therefore, $\langle x_n \rangle$ is eventually in U \cap Y and V \cap Y and so in U and V. Since X is αg -US, this implies that x = y. Hence the subspace Y is αg -US.

Theorem 7.6: A space X is αg -T₂ iff it is both αg -R₁ and αg -US.

Proof: Let X be αg -T₂ space. Then X is αg -R₁ and αg -US by Theorem 7.2.

Conversely, let X be both αg -R₁ and αg -US space. By Theorem 7.1, X is both αg -T₁ and αg -R₁ and, it follows that space X is αg -T₂.

Definition 7.5: A point y is a αg -cluster point of sequence $\langle x_n \rangle$ iff $\langle x_n \rangle$ is frequently in every αg -open set containing x. The set of all αg -cluster points of $\langle x_n \rangle$ will be denoted by αg -cl(x_n).

Definition 7.6: A point y is αg -side point of a sequence $\langle x_n \rangle$ if y is a αg -cluster point of $\langle x_n \rangle$ but no subsequence of $\langle x_n \rangle \alpha g$ -converges to y.

Now, we define the following.

Definition 7.7: A space X is said to be (i) αg -S₁ if it is αg -US and every sequence $\langle x_n \rangle \alpha g$ -converges with subsequence of $\langle x_n \rangle \alpha g$ -side points. (ii) αg -S₂ if it is αg -US and every sequence $\langle x_n \rangle$ in X αg -converges which has no αg -side point.

Lemma 7.1: Every αg -S₂ space is αg -S₁ and Every αg -S₁ space is αg -US.

Now using the notion of sequentially continuous functions, we define the notion of sequentially αg -continuous functions.

Definition 7.8: A function *f* is said to be sequentially αg -continuous at $x \in X$ if $f(x_n) \rightarrow \alpha g f(x)$ whenever $\langle x_n \rangle \rightarrow \alpha g x$. If *f* is sequentially αg -continuous at all $x \in X$, then *f* is said to be sequentially αg -continuous.

Theorem 7.7: Let *f* and *g* be two sequentially αg -continuous functions. If Y is αg -US, then the set A = {x | *f*(x) = *g*(x)} is sequentially αg -closed.

Proof: Let Y be αg -US and suppose that there is a sequence $\langle x_n \rangle$ in A αg -converging to $x \in X$. Since f and g are sequentially αg -continuous functions, $f(x_n) \rightarrow^{\alpha g} f(x)$ and $g(x_n) \rightarrow^{\alpha g} g(x)$. Hence f(x) = g(x) and $x \in A$. Therefore, A is sequentially αg -closed.

Next, we prove the product theorem for αg -US spaces.

Theorem 7.8: Product of arbitrary family of αg-US spaces is αg-US.

Proof: Let $X = \prod_{\lambda \in \wedge} X_{\lambda}$ where X_{λ} is αg -US. Let a sequence $\langle x_n \rangle$ in X αg -converges to $x (= x_{\lambda})$ and $y (= y_{\lambda})$. Then $\langle x_{n\lambda} \rangle \rightarrow^{\alpha g} x_{\lambda}$ and y_{λ} for all $\lambda \in \wedge$. For suppose there exists a $\mu \in \wedge$ such that $\langle x_{n\mu} \rangle$ does not αg -converges to x_{μ} .

Then there exists a τ_{μ} - αg -open set U_{μ} containing x_{μ} such that $\langle x_{n\mu} \rangle$ is not eventually in U_{μ} . Consider the set $U = \prod_{\lambda \in \wedge} X_{\lambda} x U_{\mu}$. Then U is a αg -open subset of X and $x \in U$. Also, $\langle x_n \rangle$ is not eventually in U, which contradicts the fact that $\langle x_n \rangle \rightarrow^{\alpha g} x$. Thus we get $\langle x_{n\lambda} \rangle \rightarrow^{\alpha g} x_{\lambda}$ and y_{λ} for all $\lambda \in \wedge$. Since X_{λ} is αg -US for each $\lambda \in \wedge$. Thus x = y. Hence X is αg -US.

8. Sequentially sub- α g-continuity:

Definition 8.1: A function *f* is said to be

- (i) sequentially nearly αg -continuous if for each point $x \in X$ and each sequence $\langle x_n \rangle \rightarrow^{\alpha g} x$ in X, there exists a subsequence $\langle x_n \rangle$ of $\langle x_n \rangle$ such that $\langle f(x_{nk}) \rangle \rightarrow^{\alpha g} f(x)$.
- (ii) sequentially sub- αg -continuous if for each point $x \in X$ and each sequence $\langle x_n \rangle \rightarrow^{\alpha g} x$ in X, there exists a subsequence $\langle x_n \rangle$ of $\langle x_n \rangle$ and a point $y \in Y$ such that $\langle f(x_n) \rangle \rightarrow^{\alpha g} y$.
- (iii) sequentially αg -compact preserving if f(K) is sequentially αg -compact in Y for every sequentially αg -compact set K of X.

Lemma 8.1: Every function f is sequentially sub- α g-continuous if Y is a sequentially α g-compact.

Proof: Let $\langle x_n \rangle \rightarrow^{\alpha g} x$ in X. Since Y is sequentially αg -compact, there exists a subsequence $\{f(x_{nk})\}$ of $\{f(x_n)\}$ αg -converging to a point $y \in Y$. Hence *f* is sequentially sub- αg -continuous.

Theorem 8.1: Every sequentially nearly α g-continuous function is sequentially α g-compact preserving.

Proof: Assume *f* is sequentially nearly αg -continuous and K any sequentially αg -compact subset of X. Let $\langle y_n \rangle$ be any sequence in *f* (K). Then for each positive integer n, there exists a point $x_n \in K$ such that $f(x_n) = y_n$. Since $\langle x_n \rangle$ is a sequence in the sequentially αg -compact set K, there exists a subsequence $\langle x_{nk} \rangle$ of $\langle x_n \rangle \alpha g$ -converging to a point $x \in K$. By hypothesis, *f* is sequentially nearly αg -continuous and hence there exists a subsequence $\langle x_j \rangle$ of $\langle x_{nk} \rangle$ such that $f(x_j) \rightarrow \alpha g$ f(x). Thus, there exists a subsequence $\langle y_j \rangle$ of $\langle y_n \rangle \alpha g$ -converging to $f(x) \in f(K)$. This shows that f(K) is sequentially αg -compact set in Y.

Theorem 8.2: Every sequentially α -continuous function is sequentially α g-continuous.

Proof: Let *f* be a sequentially α -continuous and $\langle x_n \rangle \rightarrow^{\alpha} x \in X$. Then $\langle x_n \rangle \rightarrow^{\alpha} x$. Since *f* is sequentially α -continuous, $f(x_n) \rightarrow^{\alpha} f(x)$. But we know that $\langle x_n \rangle \rightarrow^{\alpha} x$ implies $\langle x_n \rangle \rightarrow^{\alpha g} x$ and hence $f(x_n) \rightarrow^{\alpha g} f(x)$ implies *f* is sequentially α -continuous.

Theorem 8.3: Every sequentially α g-compact preserving function is sequentially sub- α g-continuous.

Proof: Suppose *f* is a sequentially αg -compact preserving function. Let x be any point of X and $\langle x_n \rangle$ any sequence in X αg -converging to x. We shall denote the set $\{x_n | n = 1, 2, 3 ...\}$ by A and $K = A \cup \{x\}$. Then K is sequentially αg -compact since $(x_n) \rightarrow^{\alpha g} x$. By hypothesis, *f* is sequentially αg -compact preserving and hence *f*(K) is a sequentially αg -compact set of Y. Since $\{f(x_n)\}$ is a sequence in *f*(K), there exists a subsequence $\{f(x_{nk})\}$ of $\{f(x_n)\}$ αg -converging to a point $y \in f(K)$. This implies that *f* is sequentially sub- αg -continuous.

Theorem 8.4: A function $f: X \to Y$ is sequentially αg -compact preserving iff $f_{/K}: K \to f(K)$ is sequentially sub- αg -continuous for each sequentially αg -compact subset K of X.

Proof: Suppose *f* is a sequentially αg -compact preserving function. Then *f*(K) is sequentially αg -compact set in Y for each sequentially αg -compact set K of X. Therefore, by Lemma 8.1 above, $f_{/K}: K \rightarrow f(K)$ is sequentially αg -continuous function.

Conversely, let K be any sequentially αg -compact set of X. Let $\langle y_n \rangle$ be any sequence in f(K). Then for each positive integer n, there exists a point $x_n \in K$ such that $f(x_n) = y_n$. Since $\langle x_n \rangle$ is a sequence in the sequentially αg -compact set K, there exists a subsequence $\langle x_n \rangle$ of $\langle x_n \rangle \alpha g$ -converging to a point $x \in K$. By hypothesis, $f_{/K}: K \rightarrow f(K)$ is sequentially

sub- α g-continuous and hence there exists a subsequence $\langle y_{nk} \rangle$ of $\langle y_n \rangle \alpha$ g-converging to a point $y \in f(K)$. This implies that f(K) is sequentially α g-compact set in Y. Thus, *f* is sequentially α g-compact preserving function.

The following corollary gives a sufficient condition for a sequentially sub- α g-continuous function to be sequentially α g-compact preserving.

Corollary 8.1: If *f* is sequentially sub- α g-continuous and *f* (K) is sequentially α g-closed set in Y for each sequentially α g-compact set K of X, then *f* is sequentially α g-compact preserving function.

Proof: Omitted.

Acknowledgment

The Authors are thankful to the referees for their comments and suggestions for the development of the paper.

References

[1] S.P. Arya and M.P. Bhamini, A note on semi-US spaces, Ranchi Uni. Math. J. Vol. 13 (1982), 60-68.

[2] Ashish Kar and P.Bhattacharyya, Some weak separation axioms, Bull. Cal. Math. Soc., 82 (1990), 415-422.

[3] C.E. Aull, Sequences in topological spaces, Comm. Math. (1968), 329-36.

[4] S. Balasubramanian and P. Aruna Swathi Vyjayanthi, On *v*-separation axioms Inter. J. Math. Archive, Vol 2, No. 8(2011) 1464-1473.

[5] S. Balasubramanian and M. Lakshmi Sarada, *gpr*–separation axioms, Bull. Kerala Math. Association, Vol 8. No.1 (2011)157 – 173.

[6] H.F. Cullen, Unique sequential limits, Boll. UMI, 20 (1965) 123-127.

[7] Charles Dorsett, semi-T₁, semi-T₂ and semi-R₁ spaces, Ann. Soc. Sci. Bruxelles, 92 (1978) 143-158.

[8] K.K. Dube and B.L. namdeo, T_0 -Limit point of a set and its implications, J. Tripura Math. Soc, Vol.9 (2007)85-96.

[9] G. L. Garg and D. Sivaraj, presemiclosed mappings, Periodica Math. Hung., 19(2) (1988), 97-106.

[10] S. R. Malghan and G. B. Navalagi, Almost –p-regular, p-completely regular and almost –p-completely regular spaces, Bull. Math. Soc. Sci. Math., R.S.R. Tome 34(82), nr.4 (1990), 317-326.

[11] S. N. Maheshwari and R. Prasad, Some new separation axioms, Ann. Soc. Sci., Bruxelles, 89 (1975), 395-402.

[12] G. B. Navalagi, Further properties of preseparation axioms, (Unpublished)

[13] G. B. Navalagi, P-Normal Almost-P-Normal, Mildly-P-Normal, Topology Atlas.

[14] G. B. Navalagi, Pre-US Spaces, Topology Atlas.

[15] T.Noiri, Almost continuity and some separation axioms, Glasnik Mat.,9(29)(1974),131-135.

[16] T. Noiri, Sequentially subcontinuous functions, Accad. Naz. Dei. Lincei. Estratto dei. Rendiconti. Della Classe di Sci. Fis. Mat. Nat. Series. VIII, Vol. LVIII, fase. 3 (1975), 370-376.

[17] Paul and Bhattacharyya, On p-normal spaces, Soochow Jour.Math., Vol.21. No.3, (1995), 273-289

[18.] M. K. Singal and S. P. Arya, On almost normal and almost completely regular spaces, Glasnik Mat., 5(25) (1970), 141-152.

[19] M. K. Singal and A. R. Singal, Mildly normal spaces, Kyungpook Math. J., 13(1) (1973)27-31.

[20] T. Thompson, S-closed spaces, Proc. Amer. Math. Soc., 60(1976)335-338.

[21] A. Wilansky, Between T₁ and T₂, Amer. Math. Monthly. 74 (1967), 261-266.
