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Abstract 
In this paper by using αg-open sets we define almost αg-normality and mild αg-normality also we continue the study 
of further properties of αg-normality. We show that these three axioms are regular open hereditary. We also define the 
class of almost αg-irresolute mappings and show that αg-normality is invariant under almost αg-irresolute M-αg-open 
continuous surjection.  
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1. Introduction 
 
In 1967, A. Wilansky has introduced the concept of US spaces. In 1968, C.E. Aull studied some separation axioms 
between the T1 and T2 spaces, namely, S1 and S2. Next, in 1982, S.P. Arya et al have introduced and studied the concept 
of semi-US spaces and also they made study of s-convergence, sequentially semi-closed sets, sequentially s-compact 
notions. G.B. Navlagi studied P-Normal Almost-P-Normal, Mildly-P-Normal and Pre-US spaces. Recently S. 
Balasubramanian and P. Aruna Swathi Vyjayanthi studied v-Normal Almost- v-Normal, Mildly-v-Normal and v-US 
spaces. Inspired with these we introduce αg-Normal Almost- αg-Normal, Mildly- αg-Normal, αg-US, αg-S1 and αg-
S2. Also we examine αg-convergence, sequentially αg-compact, sequentially αg-continuous maps, and sequentially sub 
αg-continuous maps in the context of these new concepts. All notions and symbols which are not defined in this paper 
may be found in the appropriate references. Throughout the paper X and Y denote Topological spaces on which no 
separation axioms are assumed explicitly stated.  
 
2. Preliminaries 
 
Definition 2.1:  A⊂ X is called                              
(i) g-closed if cl A⊆ U whenever A⊆ U and U is open in X.                    
(ii) αg-closed if αcl(A) ⊆ U whenever A⊆ U and U is α-open in X.                
 
Definition 2.2: A function f is said to be almost–pre-irresolute if for each x in X and each pre-neighborhood V of f(x), 
pcl(f –1(V)) is a pre-neighborhood of x. 
 
Definition 2.3:  A space X is said to be 
(i) T1 (T2) if for any x ≠ y in X, there exist (disjoint) open sets U; V in X such that x∈U and y∈V.             
(ii) weakly Hausdorff if each point of X is the intersection of regular closed sets of X.                     
(iii) normal[resp: mildly normal] if for any pair of disjoint [resp: regular-closed]closed sets F1 and F2, there exist 
disjoint open sets U and V such that F1 ⊂ U and F2 ⊂ V.   
(iv) almost normal if for each closed set A and each regular closed set B  such that A∩B = φ, there exist disjoint open 
sets U and V such that A⊂U and B⊂V. 
(v) weakly regular if for each pair consisting of a regular closed set A and a point x such that A ∩ {x} = φ, there exist 
disjoint open sets U and V such that x ∈ U  and A⊂V.   
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(vi) A subset A of a space X is S-closed relative to X if every cover of A by semiopen sets of X has a finite subfamily 
whose closures cover A.                                               
(vii) R0 if for any point x and a closed set F with x∉F in X, there exists a open set G containing F but not x. 
(viii) R1 iff for x, y ∈ X with cl{x} ≠ cl{y}, there exist disjoint open sets U and V such that cl{x}⊂ U, cl{y}⊂V. 
(ix) US-space if every convergent sequence has exactly one limit point to which it converges.              
(x) pre-US space if every pre-convergent sequence has exactly one limit point to which it converges.           
(xi) pre-S1 if it is pre-US and every sequence <xn> pre-converges with subsequence of <xn> pre-side points.      
(xii) pre-S2 if it is pre-US and every sequence <xn> in X pre-converges which has no pre-side point. 
(xiii)  is weakly countable compact if every infinite subset of X has a limit point in X. 
(xiv) Baire space if for any countable collection of closed sets with empty interior in X, their union also has empty 
interior in X. 
 
Definition 2.4: Let A⊂ X. Then a point x is said to be a  
(i)  limit point of A if each open set containing x contains some point y of A such that x ≠ y.  
(ii) T0–limit point of A if each open set containing x contains some point y of A such that cl{x} ≠ cl{y}, or equivalently, 

such that they are topologically distinct. 
(iii) pre-T0–limit point of A if each open set containing x contains some point y of A such that pcl{x} ≠ pcl{y}, or 

equivalently, such that they are topologically distinct. 
 
Note 1: Recall that two points are topologically distinguishable or distinct if there exists an open set containing one of 
the points but not the other; equivalently if they have disjoint closures. In fact, the T0–axiom is precisely to ensure that 
any two distinct points are topologically distinct. 
 
Example 1: Let X = {a, b, c, d} and τ = {{a}, {b, c}, {a, b, c}, X, φ}. Then b and c are the limit points but not the T0–
limit points of the set {b, c}. Further d is a T0–limit point of {b, c}. 
 
Example 2: Let X = (0, 1) and τ = {φ, X, and Un = (0, 1–1⁄n), n = 2, 3, 4,. . . }. Then every point of X is a limit point of 
X. Every point of X∼U2 is a T0–limit point of X, but no point of U2 is a T0–limit point of X. 
 
Definition 2.5: A set A together with all its T0–limit points will be denoted by T0–clA. 
 
Note 2:  i. Every T0–limit point of a set A is a limit point of the set but the converse is not true in general. 
 ii. In T0–space both are same. 
 
Note 3: R0–axiom is weaker than T1–axiom. It is independent of the T0–axiom. However T1 = R0+T0 
 
Note 4: Every countable compact space is weakly countable compact but converse is not true in general. However, a 
T1–space is weakly countable compact iff it is countable compact. 
 
3. αg-T0 LIMIT POINT:  
 
Definition 3.01: In X, a point x is said to be a αg-T0–limit point of A if each αg-open set containing x contains some 
point y of A such that αgcl{x} ≠ αgcl{y}, or equivalently; such that they are topologically distinct with respect to αg-
open sets. 
  
Example 3: regular open set ⇒ open set ⇒ α-open set ⇒ αg-open set we have 
r-T0–limit point ⇒ T0–limit point ⇒ α-T0–limit point ⇒ αg-T0–limit point 
 
Definition 3.02: A set A together with all its αg-T0–limit points is denoted by T0-αgcl(A) 
 
Lemma 3.01: If x is a αg-T0–limit point of a set A then x is αg-limit point of A. 
 
Lemma 3.02: If X is αg-T0–space then every αg-T0–limit point and every αg-limit point are equivalent. 
  
Corollary 3.03: If X is r-T0–space then every αg-T0–limit point and every αg-limit point are equivalent.  
 
Theorem 3.04: For x ≠ y ∈X,  

(i) x is a αg-T0–limit point of {y} iff x∉αgcl{y} and y∈αgcl{x}. 
(ii) x is not a αg-T0–limit point of {y} iff either x∈αgcl{y}or αgcl{x} = αgcl{y}. 
(iii) x is not a αg-T0–limit point of {y} iff either x∈αgcl{y}or y∈αgcl{x}. 

 
 



S. Balasubramanian1* & Ch. Chaitanya2/ On αg-Separation Axioms/ IJMA- 3(3), Mar.-2012, Page: 877-888 

© 2012, IJMA. All Rights Reserved                                                                                                                                                     879  

Corollary 3.05:  
(i) If x is a αg-T0–limit point of {y}, then y cannot be a αg-limit point of {x}. 
(ii) If αgcl{x} = αgcl{y}, then neither x is a αg-T0–limit point of {y} nor y is a αg-T0–limit point of {x}. 
(iii) If a singleton set A has no αg-T0–limit point in X, then αgclA = αgcl{x} for all x∈ αgcl{A}. 

 
Lemma 3.06: In X, if x is a αg-limit point of a set A, then in each of the following cases x becomes αg-T0–limit point of 
A ({x} ≠ A). 

(i) αgcl{x} ≠ αgcl{y} for y∈A, x ≠ y. 
(ii) αgcl{x} = {x} 
(iii) X is a αg-T0–space. 
(iv) A∼{x} is αg-open 

  
Corollary 3.07: In X, if x is a limit point of a set A, then in each of the following cases x becomes αg-T0–limit point of A 
({x} ≠ A). 

(i) αgcl{x} ≠ αgcl{y} for y∈A, x ≠ y. 
(ii) αgcl{x} = {x} 
(iii) X is a αg-T0–space. 
(iv) A∼{x} is αg-open 

 
4. αg-T0 AND αg-Ri AXIOMS, i = 0, 1: 
 
In view of Lemma 3.6(iii), αg-T0–axiom implies the equivalence of the concept of limit point of a set with that of αg-
T0–limit point of the set. But for the converse, if x∈ αgcl{y} then αgcl{x} ≠ αgcl{y} in general, but if x is a αg-T0–
limit point of {y}, then αgcl{x} = αgcl{y} 
 
Lemma 4.01: In a space X, a limit point x of {y} is a αg-T0–limit point of {y} iff  αgcl{x} ≠ αgcl{y}. 
 
This lemma leads to characterize the equivalence of αg-T0–limit point and αg-limit point of a set as the  αg-T0–axiom. 
 
Theorem 4.02: The following conditions are equivalent: 

(i) X is a αg-T0  space 
(ii) Every αg-limit point of a set A is a αg-T0–limit point of A 
(iii) Every r-limit point of a singleton set {x} is a αg-T0–limit point of {x} 
(iv) For any x, y in X, x ≠ y if x∈ αgcl{y}, then x is a αg-T0–limit point of  {y} 

 
Note 5: In a αg-T0–space X if every point of X is a r-limit point of X, then every point of X is αg-T0–limit point of X. 
But a space X in which each point is a αg-T0–limit point of X is not necessarily a αg-T0–space 
 
Theorem 4.03: The following conditions are equivalent: 

(i) X is a αg-R0  space 
(ii) For any x, y in X, if x∈ αgcl{y}, then x is not a αg-T0–limit point of {y} 
(iii) A  point αg-closure set has no αg-T0–limit point in X 
(iv) A singleton set has no αg-T0–limit point in X. 

 
Since every r-R0–space is αg-R0–space, we have the following corollary 
 
Corollary 4.04: The following conditions are equivalent: 

(i) X is a r-R0 space 
(ii) For any x, y in X, if x∈ αgcl{y}, then x is not a αg-T0–limit point of {y} 
(iii) A  point αg-closure set has no αg-T0–limit point in X 
(iv) A singleton set has no αg-T0–limit point in X. 

 
Theorem 4.05: In a αg-R0 space X, a point x is αg-T0–limit point of A iff every αg-open set containing x contains 
infinitely many points of A with each of which x is topologically distinct 
 
If αg-R0 space is replaced by rR0 space in the above theorem, we have the following corollaries: 
 
Corollary 4.06: In an rR0–space X,   

(i) If a point x is rT0–limit point of a set then every αg-open set containing x contains infinitely many points of A 
with each of which x is topologically distinct. 

(ii) If a point x is αg-T0–limit point of a set then every αg-open set containing x contains infinitely many points of 
A with each of which x is topologically distinct. 
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Theorem 4.07: X is αg-R0 space iff a set A of the form A = ∪ αgcl{xi i =1 to n} a finite union of point closure sets has no 
αg-T0–limit point. 
 
Corollary 4.08: If X is rR0 space and 

(i)If  A = ∪ αgcl{xi} i =1 to n, a finite union of point closure sets has no αg-T0–limit point. 
(ii)If X = ∪ αgcl{xi} i =1 to n ,then X  has no αg-T0–limit point. 

 
Theorem 4.09: The following conditions are equivalent: 

(i) X is αg-R0–space 
(ii) For any x and a set in X, x is a αg-T0–limit point of A iff every αg-open set containing x contains infinitely 

many points of A with each of which x is topologically distinct. 
 
Various characteristic properties of αg-T0–limit points studied so far is enlisted in the following theorem for a ready 
reference. 
 
Theorem 4.10: In a αg-R0–space, we have the following: 

(i)  A singleton set has no αg-T0–limit point in X. 
(ii)  A finite set has no αg-T0–limit point in X. 
(iii)  A point αg-closure has no set αg-T0–limit point in X 
(iv)  A finite union point αg-closure sets have no set αg-T0–limit point in X. 
(v)  For x, y∈ X, x∈T0– αgcl{y} iff x = y. 
(vi)  For any x, y∈ X, x ≠ y iff neither x is αg-T0–limit point of {y}nor y is αg-T0–limit point of {x} 
(vii)  For any x, y∈ X, x ≠ y iff T0– αgcl{x} ∩T0– αgcl{y} = φ. 
(viii)Any point x∈X is a αg-T0–limit point of a set A in X iff every αg-open set containing x contains  infinitely 
many points of A with each which x is topologically distinct. 

 
Theorem 4.11:  X is αg-R1 iff for any αg-open set U in X and points x, y such that x∈X∼U, y∈U, there exists a αg-open 
set V in X such that y∈V⊂U, x∉V. 
 
Lemma 4.12: In  αg-R1 space X, if x is a αg-T0–limit point of X, then for any non empty αg-open set U, there exists a 
non empty αg-open set V such that V⊂U, x∉ αgcl(V). 
 
Lemma 4.13: In a αg- regular space X,  if x is a αg-T0–limit point of X, then for any non empty αg-open set U, there 
exists a non empty αg-open set V such that αgcl(V)⊂U, x∉ αgcl(V). 
 
Corollary  4.14: In a regular space X, 

(i)  If x is a αg-T0–limit point of X, then for any non empty αg-open set U, there exists a non empty αg-open set V 
such that αgcl(V)⊂U, x∉ αgcl(V). 

(ii)  If x is a T0–limit point of X, then for any non empty αg-open set U, there exists a non empty      αg-open set V 
such that αgcl(V)⊂U, x∉ αgcl(V). 

 
Theorem 4.15: If X is a αg-compact αg-R1-space, then X is a Baire Space. 
 
Proof: Let {An} be a countable collection of αg-closed sets of X, each An having empty interior in X. Take A1, since 
A1 has empty interior, A1 does not contain any αg-open set say U0. Therefore we can choose a point y∈U0 such that 
y∉A1. For X is αg-regular, and y∈(X∼A1)∩U0, a αg-open set, we can find a αg-open set U1 in X such that y∈U1, 
αgcl(U1) ⊂(X∼A1)∩U0. Hence U1 is a non empty αg-open set in X such that αgcl(U1)⊂U0 and vcl(U1)∩A1 = φ. 
Continuing this process, in general, for given non empty αg-open set  Un-1, we can choose a point of Un -1 which is not 
in the αg-closed set An and a αg-open set Un containing this point such that αgcl(Un) ⊂Un-1 and αgcl(Un)∩An = φ. Thus 
we get a sequence of nested non empty αg-closed sets which satisfies the finite intersection property. Therefore ∩ 
αgcl(Un) ≠ φ. Then some x∈∩ αgcl(Un) which in turn implies that x∈Un-1 as αgcl(Un)⊂Un-1 and x∉An for each n. 
 
Corollary 4.16: If X is a compact αg-R1-space, then X is a Baire Space. 
 
Corollary 4.17: Let X be a αg-compact αg-R1-space. If {An} is a countable collection of αg-closed sets in X, each An 
having non-empty αg-interior in X, then there is a point of X which is not in any of the An. 
 
Corollary 4.18: Let X be a αg-compact R1-space. If {An} is a countable collection of αg-closed sets in X, each An 
having non-empty αg- interior in X, then there is a point of X which is not in any of the An. 
 
Theorem 4.19: Let X be a non empty compact αg-R1-space. If every point of X is a αg-T0–limit point of X then X is 
uncountable. 
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Proof: Since X is non empty and every point is a αg-T0-limit point of X, X must be infinite. If X is countable, we 
construct a sequence of αg- open sets {Vn} in X as follows: 
 
Let X = V1, then for x1 is a αg-T0-limit point of X, we can choose a non empty αg-open set V2 in X such that V2 ⊂V1 

and x1∉ αgclV2. Next for x2 and non empty αg-open set V2, we can choose a non empty       αg-open set V3 in X such 
that V3 ⊂V2 and x2∉αgclV3. Continuing this process for each xn and a non empty αg-open set Vn ,  we can choose a non 
empty αg-open set Vn+1 in X such that Vn+1 ⊂Vn and xn∉αgclVn+1.  
 
Now consider the nested sequence of αg-closed sets αgclV1 ⊃ αgclV2 ⊃ αgclV3 ⊃………⊃ αgclVn ⊃. . . Since X is 
αg-compact and {αgclVn} the sequence of αg-closed sets satisfies finite intersection property. By Cantors intersection 
theorem, there exists an x in X such that x∈αgclVn. Further x∈X and x∈V1, which is not equal to any of the points of 
X. Hence X is uncountable. 
 
Corollary 4.20: Let X be a non empty αg-compact αg-R1-space. If every point of X is a αg-T0–limit point of X then X is 
uncountable 
 
5. αg –T0-IDENTIFICATION SPACES AND αg –SEPARATION AXIOMS 
 
Definition 5.01: Let (X, τ) be a topological space and let ℜ be the equivalence relation on X defined by xℜy iff 
αgcl{x} =  αgcl{y} 
 
Problem 5.02: show that xℜy iff αgcl{x} = αgcl{y} is an equivalence relation 
 
Definition 5.03: The space (X0, Q(X0)) is called the αg-T0–identification space of (X,τ), where X0 is the set of 
equivalence classes of  ℜ and Q(X0) is the decomposition topology on X0. 
 
Let PX: (X,τ )→ (X0, Q(X0)) denote the natural map 
 
Lemma 5.04: If x∈X and A ⊂ X, then x∈ αgclA iff every αg-open set containing x intersects A. 
 
Theorem 5.05: The natural map PX:(X,τ)→ (X0, Q(X0)) is closed, open and PX –1(PX(O)) = O for all  O∈ PO(X,τ) and 
(X0, Q(X0)) is  αg-T0 
 
Proof: Let O∈ PO(X,τ ) and let C∈ PX (O). Then there exists x∈O such that PX(x) = C. If y∈C, then αgcl{y} = 
αgcl{x}, which, by lemma, implies y∈O. Since τ ⊂  PO(X,τ), then PX –1(PX(U)) = U for all U∈τ, which implies PX  is 
closed and open. 
 
Let G, H∈X0 such that G ≠ H; let x∈G and y∈H. Then αgcl{x} ≠  αgcl{y}, which implies x∉αgcl{y} or y∉αgcl{x}, 
say x∉αgcl{y}. Since PX is continuous and open, then G∈A = PX{X∼αgcl{y}}∉PO(X0, Q(X0)) and H∉A 
 
Theorem 5.06: The following are equivalent:  
(i) X is αg R0 (ii) X0 = {αgcl{x}: x∈X} and (iii) (X0, Q(X0)) is αg T1 
 
Proof:  
(i) ⇒ (ii) Let C∈X0, and let x∈C. If y∈C, then y∈αgcl{y} = αgcl{x}, which implies C∈αgcl{x}. If y∈αgcl{x}, then 
x∈αgcl{y}, since, otherwise, x∈X∼αgcl{y}∈PO(X,τ) which implies αgcl{x}⊂X∼αgcl{y}, which is a contradiction. 
Thus, if y∈αgcl{x}, then x∈αgcl{y}, which implies  αgcl{y} = αgcl{x} and y∈C. Hence X0 = {αgcl{x}: x∈X} 
 
(ii)⇒(iii) Let A ≠ B∈X0. Then there exists x, y∈X such that A = αgcl{x}; B = αgcl{y}, and αgcl{x}∩αgcl{y} = φ. 
Then A∈C = PX (X∼αgcl{y})∈PO(X0, Q(X0)) and B∉C. Thus (X0, Q(X0)) is αg-T1 

 

(iii) ⇒ (i) Let x∈U∈αGO(X). Let y∉U and Cx, Cy ∈X0 containing x and y respectively. Then       x∉ αgcl{y}, which 
implies Cx ≠ Cy and there exists αg-open set A such that Cx∈A and Cy∉A. Since PX is continuous and open, then y∈B = 
PX

–1(A)∈ x∈αg O(X) and x∉B, which implies y∉αgcl{x}. Thus αgcl{x}⊂ U. This is true for all αgcl{x} implies 
∩αgcl{x}⊂ U. Hence X is αg-R0 
 
Theorem 5.07: (X, τ ) is αg-R1 iff (X0, Q(X0)) is αg-T2 
 
The proof is straight forward from using theorems 5.05 and 5.06 and is omitted 
 
Theorem 5.08: X is αg-Ti; i = 0, 1, 2. iff there exists a αg-continuous, almost–open, 1–1 function from (X, τ) into a αg-
Ti  space ;  i = 0,1,2. respectively.  
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Proof: If X is αg-Ti;  i = 0,1,2., then the identity function on X satisfies the desired properties. The converse is (ii) part 
of Theorem 2.13. 
 
The following example shows that if ƒ: (X, τ )→ (Y, σ) is continuous, αg-open, bijective, A∈PO(Y, σ), and (Y, σ) αg- 
Ti ;  i = 0,1,2, then ƒ –1 (A) need not be αg –open and (X, τ ) need not be αg-Ti ;  i = 0,1,2 
 
Theorem 5.09: If ƒ: (X, τ )→ (Y, σ) is αg-continuous, αg-open, and x, y∈X such that αgcl{x} = αgcl{y}, then 
αgcl{ƒ(x)} = αgcl{ƒ(y)}. 
 
Theorem 5.10: The following are equivalent 
(i)   (X, τ) is αg-T0  
(ii)  Elements of X0 are singleton sets and  
(iii)There exists a αg-continuous, αg-open, 1–1 functionƒ: (X, τ )→ (Y, σ), where  (Y, σ) is αg-T0 
 
Proof:  (i) is equivalent to (ii) and (i) ⇒ (iii) are straight forward and is omitted.  
 
(iii) ⇒ (i)  Let x, y∈X such that ƒ(x) ≠ ƒ(y), which implies αgcl{ƒ(x)} ≠ αgcl{ƒ(y)}. Then by theorem 5.09, αgcl{x} ≠ 
αgcl{y}. Hence (X, τ ) is αg-T0 
 
Corollary 5.11: A space (X, τ ) is αg-Ti ;  i = 1,2 iff (X, τ ) is αg-Ti –- 1 ;  i = 1,2, respectively, and there exists a αg-
continuous , αg-open, 1–1 function ƒ: (X, τ ) into a αg-T0  space. 
 
Definition 5.04:ƒ:X→Y is point–αg-closure 1–1 iff for x, y∈X such that αgcl{x} ≠ αgcl{y}, αgcl{ƒ(x)} ≠ αgcl{ƒ(y)}. 
 
Theorem 5.12:  
(i)If ƒ: (X, τ )→ (Y, σ) is point– αg-closure 1–1 and (X, τ ) is αg-T0 , then ƒ is 1–1 
(ii)If ƒ: (X, τ )→ (Y, σ), where (X, τ )and (Y, σ) are αg-T0  then ƒ is point– αg-closure 1–1 iff ƒ is 1–1 
 
Proof: omitted 
 
The following result can be obtained by combining results for αg-T0– identification spaces, αg-induced functions and 
αg-Ti spaces;  i = 1,2. 
 
Theorem 5.13: X is αg-Ri ;  i = 0,1 iff there exists a αg-continuous , almost–open  point– αg-closure 1–1 function ƒ: 
(X, τ ) into a αg-Ri  space;  i = 0,1 respectively. 
 
6. αg-Normal; Almost αg-normal and Mildly αg-normal spaces 
 
Definition 6.1: A space X is said to be αg-normal if for any pair of disjoint closed sets F1 and F2 , there exist disjoint 
αg-open sets U and V such that F1 ⊂ U and F2 ⊂ V. 
 
Example 4: Let X = {a, b, c} and τ = {φ, {a}, {b, c}, X}. Then X is αg-normal. 
 
Example 5: Let X = {a, b, c, d} and τ = {φ,{b, d},{a, b, d},{b, c, d}, X}. Then X is not αg-normal and is not normal. 
 
We have the following characterization of αg-normality. 
 
Theorem 6.1: For a space X the following are equivalent: 
(i)   X is αg-normal. 
(ii)  For every pair of open sets U and V whose union is X, there exist αg-closed sets A and B such that A⊂U, B ⊂V and 

A∪B = X. 
(iii) For every closed set F and every open set G containing F, there  exists a αg-open set U such that           
      F⊂U⊂αgcl(U)⊂G. 
 
Proof: (i)⇒(ii): Let U and V be a pair of open sets in a αg-normal space X such that X = U∪V. Then X–U, X–V are 
disjoint closed sets. Since X is αg-normal there exist disjoint αg-open sets U1 and V1 such that X–U⊂U1 and X-V⊂V1. 
Let A = X–U1, B = X–V1. Then A and B are αg-closed sets such that A⊂U, B⊂V and A∪B = X. 
 
(b) ⇒(c): Let F be a closed set and G be an open set containing F. Then X–F and G are open sets whose union is X.  
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Then by (b), there exist αg-closed sets W1 and W2 such that W1 ⊂  X–F and W2 ⊂ G and    W1∪W2 = X. Then F⊂ X–W1, 
X–G ⊂ X–W2 and (X–W1)∩(X–W2) = φ. Let U = X–W1 and V= X–W2. Then U and V are disjoint αg-open sets such that 
F⊂U⊂X–V⊂G. As X–V is αg-closed set, we have αgcl(U) ⊂X–V and F⊂U⊂αgcl(U)⊂G. 
 
(c) ⇒ (a): Let F1 and F2 be any two disjoint closed sets of X. Put G = X–F2, then F1∩G = φ. F1⊂G where G is an open 
set. Then by (c), there exists a αg-open set U of X such that F1 ⊂ U ⊂ αgcl(U) ⊂G. It follows that F2 ⊂ X–αgcl(U) = V, 
say, then V is αg-open and U∩V = φ. Hence F1 and F2 are separated by αg-open sets U and V. Therefore X is αg-
normal. 
 
Theorem 6.2: A regular open subspace of a αg-normal space is αg-normal. 
 
Proof: Let Y be a regular open subspace of  a αg-normal space  X. Let A and B be disjoint closed subsets of Y. As Y is 
regular open, A, B are closed sets of X. By αg-normality of X, there exist disjoint αg-open sets U and V in X such that 
A ⊂U and B⊂V, U∩Y and V∩Y are αg-open in Y such that A⊂U∩Y and B⊂V∩Y. Hence Y is αg-normal. 
 
Example 6: Let X = {a, b, c} with τ = {φ, {a}, {b}, {a, b}, X} is αg-normal and αg-regular. 
 
However we observe that every αg-normal αg-R0 space is αg-regular. 
Now, we define the following. 
 
Definition 6.2: A function f: X → Y is said to be almost–αg-irresolute if for each x in X and each αg-neighborhood V 
of f(x), αgcl(f –1(V)) is a αg-neighborhood of x. 
 
Clearly every αg-irresolute map is almost αg-irresolute. 
 
The Proof of the following lemma is straightforward and hence omitted. 
 
Lemma 6.1: f is almost αg-irresolute iff  f-1(V) ⊂ αg-int(αgcl(f-1(V))))  for every V∈αgO(Y). 
 
Now we prove the following. 
 
Lemma 6.2: f is almost αg-irresolute iff f(αgcl(U)) ⊂ αgcl(f(U)) for every U∈αg O(X). 
 
Proof: Let U∈αg O(X).Suppose y∉ αgcl(f(U)). Then there exists V∈ αgO(y) such that V∩f(U) = φ. Hence f -1(V)∩U= 
φ. Since U∈αgO(X), we have αg-int(αgcl(f-1(V))) ∩ αgcl(U) = φ. Then by lemma 6.1, f -1(V)∩ αgcl(U) = φ and hence  
V∩f(αgcl(U)) = φ. This implies that y∉f(αgcl(U)). 
 
Conversely, if V∈αg O(Y), then W = X- αgcl(f-1(V)))∈ αg O(X). By hypothesis, f(αgcl(W))⊂ αgcl (f(W))) and hence 
X- αg-int(αgcl(f-1(V))) = αgcl(W)⊂f-1(αgcl(f(W)))⊂f(αgcl[f(X-f-1(V))])⊂f –1[αgcl(Y-V)] = f -1(Y-V) = X-f-1(V).  
Therefore, f-1(V)⊂ αg-int(αgcl(f-1(V))). By lemma 6.1, f is almost αg-irresolute. 
 
Now we prove the following result on the invariance of αg-normality. 
 
Theorem 6.3: If f  is an M-αg-open continuous almost αg-irresolute function from a αg-normal space X onto a space 
Y, then Y is αg-normal.  
 
Proof: Let A be a closed subset of Y and B be an open set containing A. Then by continuity of f,  f-1(A) is closed and 
 f-1(B) is an open set of X such that f-1 (A) ⊂ f-1(B). As X is αg-normal, there exists a αg-open set U in X such that f-1(A) 
⊂ U ⊂ αgcl(U)⊂ f-1(B). Then f(f-1(A))⊂ f(U) ⊂ f(αgcl(U)) ⊂ f(f-1(B)). Since f is M-αg-open almost αg-irresolute 
surjection, we obtain A⊂ f(U) ⊂ αgcl(f(U)) ⊂ B. Then again by Theorem 6.1 the space Y is αg-normal. 
 
Lemma 6.3: A mapping f  is M-αg-closed if and only if for each subset B in Y and for each αg-open set U in X 
containing f-1(B), there exists a αg-open set V containing B such that f-1(V)⊂U. 
 
Now we prove the following: 
 
Theorem 6.4: If f is an M-αg-closed continuous function from a αg-normal space onto a space Y, then Y is αg-normal. 
 
Proof of the theorem is routine and hence omitted. 
 
Now in view of lemma 2.2 [9] and lemma 6.3, we prove that the following result. 
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Theorem 6.5: If f is an M-αg-closed map from a weakly Hausdorff αg-normal space X onto a space Y such that f-1(y) 
is S-closed relative to X for each y∈Y , then Y is αg-T2. 
 
Proof: Let y1 and y2 be any two distinct points of Y. Since X is weakly Hausdorff, f -1(y1) and f -1(y2) are disjoint closed 
subsets of X by lemma 2.2 [9]. As X is αg-normal, there exist disjoint αg-open sets V1 and V2 such that f -1(yi) ⊂ Vi, for 
i = 1, 2. Since f is M-αg-closed, there exist αg-open sets U1 and U2 containing y1 and y2 such that f -1(Ui) ⊂ Vi  
for i = 1, 2. Then it follows that U1∩U2 = φ. Hence Y is αg-T2. 
 
Theorem 6.6: For a space X we have the following: 
(a) If X is normal then for any disjoint closed sets A and B, there exist disjoint αg-open sets U, V such that A ⊂ U and 

B ⊂ V; 
(b) If X is normal then for any closed set A and any open set V containing A, there exists an αg-open set U of X such 

that A⊂U⊂αgcl(U) ⊂V. 
 
Definition 6.2: X is said to be almost αg-normal if for each closed set A and each regular closed set B such that A∩B = 
φ, there exist disjoint αg-open sets U and V such that A⊂U and B⊂V. 
 
Clearly, every αg-normal space is almost αg-normal, but not conversely in general. 
 
Example 7: Let X = {a, b, c} and τ = {φ,{a}, {a, b}, {a, c}, X}.Then X is almost αg-normal and not αg-normal. 
 
Now, we have characterization of almost αg-normality in the following. 
 
Theorem 6.7: For a space X the following statements are equivalent: 
(i)  X is almost αg-normal 
(ii) For every pair of sets U and V , one of which is open and the other is regular open whose union is X, there exist αg-

closed sets G and H such that G⊂U ,H⊂V and G∪H = X. 
(iii) For every closed set A and every regular open set B containing A, there is a αg-open set V such that  A ⊂V⊂ 

αgcl(V) ⊂ B. 
 
Proof:  
(a)⇒(b) Let U be an open set and V be a regular open set in an almost αg-normal space X such that U∪V = X.  
Then (X-U) is closed set and (X-V) is regular closed set with (X-U)∩(X-V) = φ. By almost αg-normality of X, there 
exist disjoint αg-open sets U1 and V1 such that X-U ⊂ U1 and X-V ⊂ V1. Let G = X- U1 and H = X-V1. Then G and H 
are αg-closed sets such that G⊂U, H⊂V and G∪H = X. 
 
(b) ⇒ (c) and (c) ⇒ (a) are obvious. 
 
One can prove that almost αg-normality is also regular open hereditary. 
 
Almost αg-normality does not imply almost αg-regularity in general. However, we observe that every almost αg-
normal αg-R0 space is almost αg-regular. 
 
Next, we prove the following. 
 
Theorem 6.8: Every almost regular, v-compact space X is almost αg-normal. 
 
Recall that a function f: X→ Y is called rc-continuous if inverse image of regular closed set is regular closed. 
 
Now, we state the invariance of almost αg-normality in the following. 
 
Theorem 6.9: If f is continuous M-αg-open rc-continuous and almost αg-irresolute surjection from an almost αg-
normal space X onto a space Y, then Y is almost αg-normal. 
 
Definition 6.3: A space X is said to be mildly αg-normal if for every pair of disjoint regular closed sets F1 and F2 of X, 
there exist disjoint αg-open sets U and V such that F1 ⊂ U and F2  ⊂ V.  
 
Example 8: Let X = {a, b, c} and τ = {φ,{b},{a, b},{b, c}, X}. Then X is mildly αg-normal. 
 
We have the following characterization of mild αg-normality. 
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Theorem 6.10: For a space X the following are equivalent. 
(i)    X is mildly αg-normal.  
(ii)   For every pair of regular open sets U and V whose union is X, there exist αg-closed sets G and H such that G ⊂ U,  
        H ⊂ V and G∪H = X. 
(iii)  For any regular closed set A and every regular open set B containing A, there exists a αg-open set U such that    
        A⊂U⊂αgcl(U)⊂B. 
(iv)  For every pair of disjoint regular closed sets, there exist αg-open sets U and V such that A⊂U, B⊂V and    
       αgcl(U)∩ αgcl(V) = φ. 
 
This theorem may be proved by using the arguments similar to those of Theorem 6.7. 
 
Also, we observe that mild αg-normality is regular open hereditary. 
 
We define the following 
 
Definition 6.4:  A space X is weakly αg-regular if for each point x and a regular open set U containing {x}, there is a 
αg-open set V such that x∈V ⊂ clV ⊂ U. 
 
Example 9: Let X = {a, b, c} and τ = {φ,{b},{a, b},{b, c}, X}. Then X is weakly αg-regular. 
 
Example 10: Let X = {a, b, c} and τ = {φ,{a},{b},{a, b}, X}. Then X is not weakly αg-regular. 
 
Theorem 6.11: If f : X → Y is an M-αg-open rc-continuous and almost αg-irresolute function from a mildly αg-
normal space X onto a space Y, then Y is mildly αg-normal. 
Proof:  Let A be a regular closed set and B be a regular open set containing A. Then by rc-continuity of f,   f –1(A) is a 
regular closed set contained in the regular open set f-1(B). Since X is mildly αg-normal, there exists a αg-open set V 
such that f-1(A) ⊂V⊂ αgcl(V) ⊂ f –1(B)  by Theorem 6.10. As f is M-αg-open and almost αg-irresolute surjection, it 
follows that f(V)∈ αg O(Y) and A⊂ f(V) ⊂ αgcl(f(V))⊂ B. Hence Y is mildly αg-normal. 
 
Theorem 6.12: If f: X → Y is rc-continuous, M-αg-closed map from a mildly αg-normal space X onto a space Y, then 
Y is mildly αg-normal. 
 
7. αg-US spaces: 
 
Definition 7.1: A sequence <xn> is said to be αg-converges to a point x of X, written as <xn> →αg x if <xn> is 
eventually in every αg-open set containing x. 
 
Clearly, if a sequence <xn> r-converges to a point x of X, then <xn> αg-converges to x. 
 
Definition 7.2: X is said to be αg-US if every sequence <xn> in X αg-converges to a unique point. 
 
Theorem 7.1: Every αg-US space is αg-T1. 
 
Proof: Let X be αg-US space. Let x and y be two distinct points of X. Consider the sequence <xn> where xn = x for 
every n. Cleary, <xn> →αg x. Also, since x ≠ y and X is αg-US, <xn> cannot αg-converge to y, i.e, there exists a αg-
open set V containing y but not x. Similarly, for the sequence <yn> where yn = y for all n, and proceeding as above we 
get a αg-open set U containing x but not y. Thus, the space X is αg-T1. 
 
Theorem 7.2: Every αg-T2 space is αg-US. 
 
Proof: Let X be αg-T2 space and <xn> be a sequence in X. If possible suppose that <xn> αg-converge to two distinct 
points x and y. That is, <xn> is eventually in every αg-open set containing x and also in every αg-open set containing y.  
 
This is contradiction since X is αg-T2 space. Hence the space X is αg-US. 
 
Definition 7.3: A set F is sequentially αg-closed if every sequence in F αg-converges to a point in F. 
 
Theorem 7.3: X is αg-US iff the diagonal set is a sequentially αg-closed subset of X x X. 
 
 
Proof: Let X be αg-US. Let <xn , xn> be a sequence in ∆. Then <xn> is a sequence in X. As X is αg-US, <xn> →αg x 
for a unique x ∈ X. i.e., if <xn> →αg x and y. Thus, x = y. Hence ∆ is sequentially αg-closed. 
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Conversely, let ∆ be sequentially αg-closed and let <xn> →αg x and y. Hence <xn , xn> →αg (x,y). Since ∆ is 
sequentially αg-closed, (x,y) ∈∆ which means that  x = y  implies space X is αg-US. 
 
Definition 7.4: A subset G of a space X is said to be sequentially αg-compact if every sequence in G has a 
subsequence which αg-converges to a point in G. 
 
Theorem 7.4: In a αg-US space every sequentially αg-compact set is sequentially αg-closed. 
 
Proof: Let X be αg-US space. Let Y be a sequentially αg-compact subset of X. Let <xn> be a sequence in Y. Suppose 
that <xn> αg-converges to a point in X-Y. Let <xnp> be subsequence of <xn> that αg-converges to a point y ∈ Y since 
Y is sequentially αg-compact. Also, let a subsequence <xnp> of <xn> αg-converge to x ∈ X-Y. Since <xnp> is a 
sequence in the αg-US space X, x = y. Thus, Y is sequentially αg-closed set. 
 
Next, we give a hereditary property of αg-US spaces. 
 
Theorem 7.5: Every regular open subset of a αg-US space is αg-US. 
 
Proof: Let X be a αg-US space and Y ⊂ X be an regular open set. Let <xn> be a sequence in Y. Suppose that <xn> αg-
converges to x and y in Y. We shall prove that <xn> αg-converges to x and y in X. Let U be any αg-open subset of X 
containing x and V be any αg-open set of X containing y. Then, U∩Y and V∩Y are αg-open sets in Y. Therefore, <xn> 
is eventually in U∩Y and V∩Y and so in U and V. Since X is αg-US, this implies that x = y. Hence the subspace Y is 
αg-US. 
 
Theorem 7.6: A space X is αg-T2 iff it is both αg-R1 and αg-US. 
 
Proof: Let X be αg-T2 space. Then X is αg-R1 and αg-US by Theorem 7.2. 
 
Conversely, let X be both αg-R1 and αg-US space. By Theorem 7.1, X is both αg-T1 and αg-R1 and, it follows that 
space X is αg-T2. 
 
Definition 7.5: A point y is a αg-cluster point of sequence <xn> iff <xn> is frequently in every αg-open set containing 
x. The set of all αg-cluster points of <xn> will be denoted by αg-cl(xn). 
 
Definition 7.6: A point y is αg-side point of a sequence <xn> if y is a αg-cluster point of <xn> but no subsequence of 
<xn> αg-converges to y. 
 
Now, we define the following. 
 
Definition 7.7: A space X is said to be  
(i)  αg-S1 if it is αg-US and every sequence <xn> αg-converges with subsequence of <xn> αg-side points. 
(ii) αg-S2 if it is αg-US and every sequence <xn> in X αg-converges which has no αg-side point. 
 
Lemma 7.1: Every αg-S2 space is αg-S1 and Every αg-S1 space is αg-US. 
 
Now using the notion of sequentially continuous functions, we define the notion of sequentially αg-continuous 
functions. 
 
Definition 7.8: A function f is said to be sequentially αg-continuous at x ∈ X if f(xn) →αg f(x) whenever <xn> →αg x. If 
f is sequentially αg-continuous at all x∈X, then f is said to be sequentially αg-continuous. 
 
Theorem 7.7: Let f and g be two sequentially αg-continuous functions. If Y is αg-US, then the set A = {x | f(x) = g(x)} 
is sequentially αg-closed. 
 
Proof: Let Y be αg-US and suppose that there is a sequence <xn> in A αg-converging to x ∈ X. Since f and g are 
sequentially αg-continuous functions, f(xn) →αg f(x) and g(xn) →αg g(x). Hence f(x) = g(x) and x ∈ A. Therefore, A is 
sequentially αg-closed. 
 
Next, we prove the product theorem for αg-US spaces. 
 
Theorem 7.8: Product of arbitrary family of αg-US spaces is αg-US. 
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Proof: Let X = ∏λ∈∧ Xλ  where Xλ is αg-US. Let a sequence <xn> in X αg-converges to x (= xλ) and y (= yλ). Then 
<xnλ> →αg xλ and yλ for all λ ∈ ∧. For suppose there exists a µ∈∧ such that <xnµ> does not αg-converges to xµ.  
 
Then there exists a τµ-αg-open set Uµ containing xµ such that <xnµ> is not eventually in Uµ. Consider the set U = ∏λ∈∧ 
Xλ x Uµ. Then U is a αg-open subset of X and x ∈ U. Also, <xn> is not eventually in U, which contradicts the fact that 
<xn> →αg x. Thus we get <xnλ> →αg xλ and yλ for all λ ∈ ∧. Since Xλ is αg-US for each λ∈∧. Thus x = y. Hence X is 
αg-US. 
 
8. Sequentially sub-αg-continuity: 
 
Definition 8.1: A function f is said to be 
(i) sequentially nearly αg-continuous if for each point x∈X and each sequence <xn> →αg x in X, there exists a 

subsequence <xnk> of  <xn> such that <f(xnk)>→ αg f(x). 
(ii) sequentially sub-αg-continuous if for each point x∈X and each sequence <xn> →αg x in X, there exists a   
      subsequence <xnk> of <xn> and a point y∈Y such that <f(xnk)> →αg y. 
(iii) sequentially αg-compact preserving if f(K) is sequentially αg-compact in Y for every sequentially αg-compact set  
       K of X. 
 
Lemma 8.1: Every function f is sequentially sub-αg-continuous if Y is a sequentially αg-compact. 
 
Proof: Let <xn> →αg x in X. Since Y is sequentially αg-compact, there exists a subsequence {f(xnk)} of {f(xn)} αg-
converging to a point y∈Y. Hence f is sequentially sub-αg-continuous. 
 
Theorem 8.1: Every sequentially nearly αg-continuous function is sequentially αg-compact         preserving. 
 
Proof: Assume f is sequentially nearly αg-continuous and K any sequentially αg-compact subset of X. Let <yn> be any 
sequence in f (K). Then for each positive integer n, there exists a point xn ∈ K such that       f(xn) = yn. Since <xn> is a 
sequence in the sequentially αg-compact set K, there exists a subsequence <xnk> of <xn> αg-converging to a point x ∈ 
K. By hypothesis, f is sequentially nearly αg-continuous and hence there exists a subsequence <xj> of <xnk> such that 
f(xj)→ αg f(x). Thus, there exists a subsequence <yj> of <yn> αg-converging to f(x)∈f(K). This shows that f(K) is 
sequentially αg-compact set in Y. 
 
Theorem 8.2: Every sequentially α-continuous function is sequentially αg-continuous. 
 
Proof: Let f be a sequentially α-continuous and <xn> →α x∈X. Then <xn> →α x. Since f is sequentiallyα-continuous, 
f(xn)→αf(x). But we know that <xn>→αx implies <xn> →αg x and hence f(xn)→ αg f(x) implies f is sequentially αg-
continuous. 
 
Theorem 8.3: Every sequentially αg-compact preserving function is sequentially sub-αg-continuous. 
 
Proof: Suppose f is a sequentially αg-compact preserving function. Let x be any point of X and <xn> any sequence in 
X αg-converging to x. We shall denote the set {xn | n= 1, 2, 3 …} by A  and K = A ∪ {x}. Then K is sequentially αg-
compact since (xn) →αg x. By hypothesis, f is sequentially αg-compact preserving and hence f(K) is a sequentially αg-
compact set of Y. Since {f(xn)} is a sequence in f(K), there exists a subsequence {f(xnk)} of {f(xn)} αg-converging to a 
point y∈f(K). This implies that f is sequentially sub-αg-continuous. 
 
Theorem 8.4: A function f: X→ Y is sequentially αg-compact preserving iff f/K: K → f (K) is sequentially sub-αg-
continuous for each sequentially αg-compact subset K of X.  
 
Proof: Suppose f is a sequentially αg-compact preserving function. Then f (K) is sequentially αg-compact set in Y for 
each sequentially αg-compact set K of X. Therefore, by Lemma 8.1 above, f/K: K→ f(K) is sequentially αg-continuous 
function.  
 
Conversely, let K be any sequentially αg-compact set of X. Let <yn> be any sequence in f(K). Then for each positive 
integer n, there exists a point xn∈K such that f (xn) = yn. Since <xn> is a sequence in the sequentially αg-compact set K, 
there exists a subsequence <xnk> of <xn> αg-converging to a point x ∈ K. By hypothesis,  f /K: K→ f(K) is sequentially  
 
sub-αg-continuous and hence there exists a subsequence <ynk> of <yn> αg-converging to a point y∈ f(K).This implies 
that f(K) is sequentially αg-compact set in Y. Thus, f is sequentially αg-compact preserving function. 
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The following corollary gives a sufficient condition for a sequentially sub-αg-continuous function to be sequentially 
αg-compact preserving. 
 
Corollary 8.1: If f is sequentially sub-αg-continuous and f (K) is sequentially αg-closed set in Y for each sequentially 
αg-compact set K of X, then f is sequentially αg-compact preserving function. 
 
Proof: Omitted. 
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