A NOTE ON INTUITIONISTIC FUZZY #-GENERALIZED SEMI IRRESOLUTE MAPPINGS

¹S. Maragathavalli & ²K. Ramesh*

¹Department of Mathematics, Sree Saraswathi thyagaraja College, Pollachi, Tamilnadu, India E-mail: smvalli@rediffmail.com

²Department of Mathematics, SVS College of Engineering, Coimbatore, Tamilnadu, India E-mail: rameshfuzzy@gmail.com

(Received on: 11-02-12; Accepted on: 26-03-12)

(Received on: 11 02 12, Recepted on: 20 05 12)

ABSTRACT

In this paper a new class of mapping called intuitionistic fuzzy **T**-generalized semi irresolute mapping in intuitionistic fuzzy topological space is introduced and some of its properties are studied.

Keywords and Phrases: Intuitionistic fuzzy topology, intuitionistic fuzzy π -generalized semi closed set, intuitionistic fuzzy π -generalized semi open set, intuitionistic fuzzy π -generalized semi irresolute mapping, intuitionistic fuzzy π $T_{1/2}$ space and intuitionistic fuzzy π $T_{1/2}$ space.

AMS Classification Code: 54A40.

1. INTRODUCTION

After the introduction of Fuzzy set (FS) by Zadeh [12] in 1965 and fuzzy topology by Chang [3] in 1967, several researches were worked on the generalizations of the notions of fuzzy sets and fuzzy topology. The concept of intuitionistic fuzzy set (IFS) was introduced by Atanassov in 1983 as a generalization of fuzzy sets. In 1997, Coker [4] introduced the concept of intuitionistic fuzzy topological space. In this paper, we introduce the notion of intuitionistic fuzzy π - generalized semi irresolute mapping in intuitionistic fuzzy topological space and studied some of their properties. We provide some characterizations of intuitionistic fuzzy π - generalized semi irresolute mapping and established the relationships with other classes of early defined forms of intuitionistic fuzzy mappings.

1. PRELIMINARIES

Definition 2.1: [1] Let X be a non empty fixed set. An intuitionistic fuzzy set (IFS in short) A in X is an object having the form $A = \{ \langle x, \mu_A(x), \nu_A(x) \rangle / x \in X \}$ where the functions $\mu_A(x)$: $X \to [0, 1]$ and $\nu_A(x)$: $X \to [0, 1]$ denote the degree of membership (namely $\mu_A(x)$) and the degree of non-membership (namely $\nu_A(x)$) of each element $x \in X$ to the set A respectively and $0 \le \mu_A(x) + \nu_A(x) \le 1$ for each $x \in X$.

Definition 2.2: [1] Let A and B be IFSs of the forms

 $A = \{\langle x, \mu_A(x), \nu_A(x) \rangle / x \in X\}$ and $B = \{\langle x, \mu_B(x), \nu_B(x) \rangle / x \in X\}$. Then

- (1) $A \subseteq B$ if and only if $\mu_A(x) \le \mu_B(x)$ and $\nu_A(x) \ge \nu_B(x)$ for all $x \in X$
- (2) A = B if and only if $A \subseteq B$ and $B \subseteq A$
- (3) $A^c = \{ \langle x, v_A(x), \mu_A(x) \rangle / x \in X \}$
- $(4) \ A \cap B = \{ \langle \ x, \, \mu_A(x) \wedge \mu_B(x), \nu_A(x) \vee \nu_B(x) \ \rangle \, / \, x \in X \}$
- (5) $A \cup B = \{\langle x, \mu_A(x) \vee \mu_B(x), \nu_A(x) \wedge \nu_B(x) \rangle / x \in X \}$

For the sake of simplicity, we shall use the notation $A = \langle x, \mu_A, \nu_A \rangle$ instead of $A = \{\langle x, \mu_A(x), \nu_A(x) \rangle / x \in X \}$. Also for the sake of simplicity, we shall use the notation $A = \langle x, (\mu_A, \mu_B), (\nu_A, \nu_B) \rangle$ instead of $A = \langle x, (A/\mu_A, B/\mu_B), (A/\nu_A, B/\nu_B) \rangle$. The intuitionistic fuzzy sets $0_{\sim} = \{\langle x, 0, 1 \rangle / x \in X \}$ and $1_{\sim} = \{\langle x, 1, 0 \rangle / x \in X \}$ are respectively the empty set and the whole set of X.

Definition 2.3: [4] An intuitionistic fuzzy topology (IFT in short) on a non empty X is a family τ of IFSs in X satisfying the following axioms:

- (a) 0_{\sim} , $1_{\sim} \in \tau$,
- (b) $G_1 \cap G_2 \in \tau$, for any $G_1, G_2 \in \tau$,
- (c) \cup $G_i \in \tau$ for any arbitrary family $\{G_i / i \in J\} \subseteq \tau$.

In this case the pair (X, τ) is called an intuitionistic fuzzy topological space (IFTS in short) and any IFS in τ is known as an intuitionistic fuzzy open set (IFOS for short) in X. The complement A^c of an IFOS A in an IFTS (X, τ) is called an intuitionistic fuzzy closed set (IFCS for short) in X.

Definition 2.4: [4] Let (X, τ) be an IFTS and $A = \langle x, \mu_A, \nu_A \rangle$ be an IFS in X. Then, the intuitionistic fuzzy interior and an intuitionistic fuzzy closure are defined by

```
int(A) = \bigcup \{ G / G \text{ is an IFOS in } X \text{ and } G \subseteq A \},
cl(A) = \bigcap \{ K / K \text{ is an IFCS in } X \text{ and } A \subset K \}.
```

Definition 2.5: [7] Let f be a mapping from an IFTS (X, τ) into an IFTS (Y, σ) . Then f is said to be

- (i) An intuitionistic fuzzy closed (IF closed in short) mapping if f(A) is an IFCS A in Y for each IFCS in X
- (ii) An intuitionistic fuzzy α -closed (IF α closed in short) mapping if f(A) is an IF α CS in Y for every IFCS A in X
- (iii) An intuitionistic fuzzy semiclosed (IFS closed in short) mapping if f(A) is an IFSCS in Y for every IFCS A in X
- (iv) An intuitionistic fuzzy preclosed (IFP closed in short) mapping if f(A) is an IFPCS in Y for every IFCS A in X.

Definition 2.6: [7] Let f be a mapping from an IFTS (X, τ) into an IFTS (Y, σ) . Then f is said to be

- (i) An intuitionistic fuzzy generalized closed (IFG closed in short) mapping if f(A) is an IFGCS in Y for every IFCS A in X
- (ii) An intuitionistic fuzzy pre-regular closed (IFPR closed in short) mapping if f(A) is an IFRCS in Y for every IFRCS A in X .

Definition 2.7:[7] Let f be a mapping from an IFTS (X, τ) into an IFTS (Y, σ) . Then f is said to be an intuitionistic fuzzy almost closed (IFA closed in short) mapping if f(A) is an IFCS in Y for every IFRCS A in X.

Definition 2.8:[8] A subset of A of a space (X, τ) is called:

- (i) regular open if A = int(cl(A))
- (ii) **z** open if A is the union of regular open sets.

Definition 2.9: An IFS $A = \{\langle x, \mu_A(x), \nu_A(x) \rangle / x \in X \}$ in an IFTS (X, τ) is called an

- (a) intuitionistic fuzzy semi closed set [7] (IFSCS) if $int(cl(A)) \subseteq A$
- (b) intuitionistic fuzzy α -closed set [7] (IF α CS) if cl(int(cl(A))) \subseteq A
- (c) intuitionistic fuzzy pre-closed set [7] (IFPCS) if $cl(int(A)) \subset A$
- (d) intuitionistic fuzzy regular closed set [7] (IFRCS) if cl(int(A)) = A
- (e) intuitionistic fuzzy generalized closed set [9] (IFGCS) if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is an IFOS
- (f) intuitionistic fuzzy generalized semi closed set [8] (IFGSCS) if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is an IFOS
- (g) intuitionistic fuzzy α generalized closed set [8] (IF α GCS) if α cl(A) \subseteq U whenever A \subseteq U and U is an IFOS.
- (h) intuitionistic fuzzy π -generalized semi closed set [8] (IF π GSCS) if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is an IF π OS.

An IFS A is called intuitionistic fuzzy semi open set, intuitionistic fuzzy α -open set, intuitionistic fuzzy pre-open set, intuitionistic fuzzy generalized open set, intuitionistic fuzzy generalized semi open set, intuitionistic fuzzy α generalized open set and intuitionistic fuzzy π - generalized semi open set(IFSOS, IF α OS, IFPOS, IFROS, IFGOS, IF α OS, IF α OS and IF π GSOS) if the complement of A^c is an IFSCS, IF α CS, IFPCS, IFGCS, IFGCS, IF α CS and IF α CSCS respectively.

Result 2.10: [8] Every IFCS, IFSCS, IFGCS, IFRCS, IF α CS, IFGSCS is an IF π GSCS but the converses may not be true in general. (Every IFOS, IFSOS, IFGOS, IF α OS, IFGSOS is an IF π GSOS but the converses may not be true in general).

Definition 2.11: [5] Let f be a mapping from an IFTS (X, τ) into an IFTS (Y, σ) . Then f is said to be intuitionistic fuzzy continuous (IF continuous in short) if $f^{-1}(B) \in IFO(X)$ for every $B \in \sigma$.

Definition 2.12: [7] Let f be a mapping from an IFTS (X, τ) into an IFTS (Y, σ) . Then f is said to be

- (a) intuitionistic fuzzy semi continuous (IFS continuous in short) if $f^{-1}(B) \in IFSO(X)$ for every $B \in \sigma$
- (b) intuitionistic fuzzy α continuous (IF α continuous in short) if $f^{-1}(B) \in IF\alpha O(X)$ for every $B \in \sigma$
- (c) intuitionistic fuzzy pre continuous (IFP continuous in short) if $f^{-1}(B) \in IFPO(X)$ for every $B \in \sigma$
- (d) intuitionistic fuzzy completely continuous if $f^{-1}(B) \in IFRO(X)$ for every $B \in \sigma$.

Definition 2.13: [6] A mapping f: $(X, \tau) \to (Y, \sigma)$ is called an intuitionistic fuzzy γ continuous (IF γ continuous in short) if f⁻¹(B) is an IF γ OS in (X, τ) for every B $\in \sigma$.

Definition 2.14: [12] Let f be a mapping from an IFTS (X, τ) into an IFTS (Y, σ) . Then f is said to be an intuitionistic fuzzy generalized continuous (IFG continuous in short) if $f^{-1}(B) \in IFGCS(X)$ for every IFCS B in Y.

Result 2.15: [12] Every IF continuous mapping is an IFG continuous mapping but the converse may not be true in general.

Definition 2.16: [10] A mapping f: $(X, \tau) \to (Y, \sigma)$ is called an intuitionistic fuzzy generalized semi continuous (IFGS continuous in short) if f⁻¹(B) is an IFGSCS in (X, τ) for every IFCS B of (Y, σ) .

Definition 2.17: [9] A mapping f: $(X, \tau) \to (Y, \sigma)$ is called an intuitionistic fuzzy π - generalized continuous (IF π GS continuous in short) if f $^{-1}$ (B) is an IF π GSCS in (X, τ) for every IFCS B of (Y, σ) .

Definition 2.18: [12] An IFTS (X, τ) is called an intuitionistic fuzzy $T_{1/2}$ (IFT_{1/2} in short) space if every IFGCS in X is an IFCS in X.

Definition 2.19: [11] Let f be a mapping from an IFTS (X, τ) into an IFTS (Y, σ) . Then f is said to be an intuitionistic fuzzy irresolute (IF irresolute in short) if $f^{-1}(B) \in IFCS(X)$ for every IFCS B in Y.

Definition 2.20: [11] Let f be a mapping from an IFTS (X, τ) into an IFTS (Y, σ) . Then f is said to be an intuitionistic fuzzy generalized irresolute (IFG irresolute in short) if $f^{-1}(B) \in IFGCS(X)$ for every IFGCS B in Y.

Result 2.21: [8] Every IFGSCS is an IFTGSCS but not conversely.

Definition 2.22:[8] An IFTS (X, τ) is said to be an intuitionistic fuzzy $T_{1/2}$ (IF $T_{1/2}$ in short) space if every IFTGSCS in X is an IFCS in X.

Definition 2.23:[8] An IFTS (X, τ) is said to be an intuitionistic fuzzy $\mathbb{T}_{1/2}$ (IF $\mathbb{T}_{1/2}$ in short) space if every IF \mathbb{T}_{2} GSCS in X is an IFGCS in X.

3. INTUITIONISTIC FUZZY π - GENERALIZED SEMI IRRESOLUTE MAPPINGS

In this section, we have introduced intuitionistic fuzzy π - generalized semi irresolute mappings and studied some of their properties.

Definition 3.1: A mapping $f: (X, \tau) \to (Y, \sigma)$ is called an intuitionistic fuzzy π - generalized semi irresolute (IF π GS irresolute) mapping if $f^{-1}(A)$ is an IF π GSCS in (X, τ) for every IF π GSCS A of (Y, σ) .

Theorem 3.2: If $f: (X, \tau) \to (Y, \sigma)$ be an IF π GS irresolute mapping, then f is an IF π GS continuous mapping but not conversely.

Proof: Let A be any IFCS in Y. Since every IFCS is an IF π GSCS, A is an IF π GSCS in Y. Since f is an IF π GS irresolute mapping, f⁻¹(A) is an IF π GSCS in X. Hence f is an IF π GS continuous mapping.

 $(0.3_u, 0.3_v)$ \rangle is an IF π GSCS in Y. But $f^{-1}(B) = \langle x, (0.1_a, 0.1_b), (0.3_a, 0.3_b) \rangle$ is not an IF π GSCS in X. Therefore f is not an IF π GS irresolute mapping.

Theorem 3.4: If $f:(X, \tau) \to (Y, \sigma)$ is an IF \overline{x} GS irresolute mapping, then f is an IFGS continuous mapping but not conversely.

Proof: Let A be an IFCS in Y. Since every IFCS is an IF π GSCS, A is an IF π GSCS in Y. By hypothesis, f⁻¹(A) is an IF π GSCS in X. This implies f⁻¹(A) is an IFGSCS in X. Hence f is an IFGS continuous mapping.

Example 3.5: Let $X = \{a, b\}$, $Y = \{u, v\}$ and $G_1 = \langle x, (0.2_a, 0.4_b), (0.5_a, 0.4_b) \rangle$, $G_2 = \langle x, (0.1_a, 0.3_b), (0.3_a, 0.4_b) \rangle$, $G_3 = \langle x, (0.1_a, 0.3_b), (0.5_a, 0.4_b) \rangle$, $G_4 = \langle x, (0.2_a, 0.4_b), (0.3_a, 0.4_b) \rangle$, $G_5 = \langle x, (0.4a, 0.4_b), (0.3_a, 0.4_b) \rangle$, $G_6 = \langle y, (0.4_u, 0.2_v), (0.5_u, 0.5_v) \rangle$. Then $\tau = \{0., G_1, G_2, G_3, G_4, G_5, 1.\}$ and $\sigma = \{0., G_6, 1.\}$ are IFTs on X and Y respectively. Define a mapping $f: (X, \tau) \to (Y, \sigma)$ by f(a) = u and f(b) = v. Then f is an IFGS continuous mapping. Let $B = \langle y, (0_u, 0.3_v), (0.5_u, 0.4_v) \rangle$ is an IFTGSCS in Y. But $f^{-1}(B) = \langle x, (0_a, 0.3_b), (0.5_a, 0.4_b) \rangle$ is not an IFTGSCS in X. Therefore f is not an IFTGS irresolute mapping.

Theorem 3.6: If $f:(X, \tau) \to (Y, \sigma)$ is an IFTGS irresolute mapping, then f is an IF continuous mapping if X is an IFTGT space.

Proof: Let A be an IFCS in Y. Then A is an IF π GSCS in Y. Since f is an IF π GS irresolute mapping, f $^{-1}$ (A) is an IF π GSCS in X. Since X is an IF π m $T_{1/2}$ space, f $^{-1}$ (A) is an IFCS in X. Hence f is an IF continuous mapping.

Theorem 3.7: Let $f:(X, \tau) \to (Y, \sigma)$ and $g:(Y, \sigma) \to (Z, \eta)$ be any two IF $\mathbb{T}GS$ irresolute mappings. Then $g \circ f:(X, \tau) \to (Z, \eta)$ is an IF $\mathbb{T}GS$ irresolute mapping.

Proof: Let A be an IF π GSCS in Z. Then by hypothesis, $g^{-1}(A)$ is an IF π GSCS in Y. Since f is an IF π GSCS irresolute mapping, $f^{-1}(g^{-1}(A))$ is an IF π GSCS in X. That is $(g \circ f)^{-1}(A)$ is an IF π GSCS in X. Hence $g \circ f$ is an IF π GS irresolute mapping.

Theorem 3.8: Let $f: (X, \tau) \to (Y, \sigma)$ be an IFTGS irresolute mapping and $g: (Y, \sigma) \to (Z, \eta)$ be an IFTGS continuous mapping. Then $g \circ f: (X, \tau) \to (Z, \eta)$ is an IFTGS continuous mapping.

Proof: Let A be an IFCS in Z. Then by hypothesis, $g^{-1}(A)$ is an IF π GSCS in Y. Since f is an IF π GS irresolute mapping, $f^{-1}(g^{-1}(A))$ is an IF π GSCS in X. That is $(g \circ f)^{-1}(A)$ is an IF π GSCS in X. Hence $g \circ f$ is an IF π GS continuous mapping.

Theorem 3.9: If $f:(X, \tau) \to (Y, \sigma)$ be an IF $\overline{\pi}GS$ irresolute mapping, then f is an IFG irresolute mapping if X is an IF $\overline{\pi}_{0}T_{1/2}$ space.

Proof: Let A be an IFGCS in Y. Then A is an IF π GSCS in Y. Therefore $f^{-1}(A)$ is an IF π GSCS in X, by hypothesis. Since X is an IF π B $T_{1/2}$ space, $f^{-1}(A)$ is an IFGCS in X. Hence f is an IFG irresolute mapping.

Theorem 3.10: Let $f:(X,\tau)\to (Y,\sigma)$ be a mapping from an IFTS X into an IFTS Y. Then the following conditions are equivalent if X and Y are IF $_{10}$ T_{1/2} spaces:

- (i) f is an IF#GS irresolute mapping
- (iii) $cl(f^{-1}(B)) \subseteq f^{-1}(cl(B))$ for each IFS B of Y.

Proof: (i) \Rightarrow (ii): Obviously true.

(ii) \Rightarrow (iii): Let B be any IFS in Y. Clearly $B \subseteq cl(B)$. Then $f^{-1}(B) \subseteq f^{-1}(cl(B))$. Since cl(B) is an IFCS in Y, cl(B) is an IFTGSCS in Y. Therefore $f^{-1}(cl(B))$ is an IFTGSCS in X, by hypothesis. Since X is an IFTTGSC, if $f^{-1}(cl(B))$ is an IFCS in X. Hence $cl(f^{-1}(B)) \subseteq cl(f^{-1}(cl(B))) = f^{-1}(cl(B))$. That is $cl(f^{-1}(B)) \subseteq f^{-1}(cl(B))$.

(iii) \Rightarrow (i): Let B be an IF#GSCS in Y. Since Y is an IF# $T_{1/2}$ space, B is an IFCS in Y and cl(B) = B.

Hence $f^{-1}(B) = f^{-1}(cl(B)) \supset cl(f^{-1}(B))$, by hypothesis. But clearly $f^{-1}(B) \subset cl(f^{-1}(B))$. Therefore, $cl(f^{-1}(B)) = f^{-1}(B)$.

This implies f⁻¹(B) is an IFCS in X and hence it is an IFTGSCS in X. Thus f is an IFTGS irresolute mapping.

Theorem 3.11: Let $f:(X, \tau) \to (Y, \sigma)$ be an IF continuous mapping and (Y, σ) is an IF $mT_{1/2}$ space. Then the following statements are equivalent:

- (i) f is an IFTGS irresolute mapping
- (ii) f is an IFTGS continuous mapping

Proof: (i) \Rightarrow (ii): Follows from the theorem 3.2.

(ii) \Rightarrow (i): Let f be an IF#GS continuous mapping . Let A be an IF#GSCS in (Y,σ) . Since (Y,σ) is an IF $_{1/2}$ space, A is an IFCS in (Y,σ) and by hypothesis f $^{-1}(A)$ is an IF#GSCS in (X,τ) . Therefore f is an IF#GS irresolute mapping.

Theorem 3.12: Let $f:(X, \tau) \to (Y, \sigma)$ be a mapping from an IFTS X into IFTS Y. Then the following conditions are equivalent

- (i) f is an IF#GS irresolute mapping
- (ii) f⁻¹(B) is an IF#GSOS in X for every IF#GSOS B in Y.

Proof: (i) \Rightarrow (ii): Let B be an IF#GSOS in Y, then B^c is an IF#GSCS in Y. Since f is an IF#GS irresolute mapping, $f^{-1}(B^c)$ is an IF#GSCS in X. But $f^{-1}(B^c) = (f^{-1}(B))^c$, implies $f^{-1}(B)$ is an IF#GSOS in X.

(ii) \Rightarrow (i): Let B be an IF#GSCS in Y. By our assumption $f^{-1}(B^c)$ is an IF#GSOS in X for every IF#GSOS B^c in Y. But $f^{-1}(B^c) = (f^{-1}(B))^c$, which implies $f^{-1}(B)$ is an IF#GSCS in X. Hence f is an IF#GS irresolute mapping.

Theorem 3.13: Let $f: (X, \tau) \to (Y, \sigma)$ be an IF π GS irresolute mapping and $g: (Y, \sigma) \to (Z, \delta)$ is an IF α continuous mapping, then $g \circ f: (X, \tau) \to (Z, \delta)$ is an IF π GS continuous mapping.

Proof: Let A be an IFCS in Z. Then $g^{-1}(A)$ is an IF α CS in Y, Since g is IF α continuous. Since every IF α CS is an IF α GSCS, $g^{-1}(A)$ is an IF α GSCS in Y. But f is an IF α GS irresolute mapping. Therefore $f^{-1}(g^{-1}(A))$ is an IF α GSCS in X. Hence g o f is an IF α GS continuous mapping.

Theorem 3.14: Let $f: (X, \tau) \to (Y, \sigma)$ be an IF π GS irresolute mapping and $g: (Y, \sigma) \to (Z, \delta)$ is an IF α G continuous mapping, then $g \circ f: (X, \tau) \to (Z, \delta)$ is an IF π GS continuous mapping.

Proof: Let A be an IFCS in Z. By assumption, $g^{-1}(A)$ is an IF α GCS in Y. Since every IF α GCS is an IF α GSCS, $g^{-1}(A)$ is an IF α GSCS in Y. But f is an IF α GSCS irresolute mapping, implies $f^{-1}(g^{-1}(A))$ is an IF α GSCS in X. Hence $g \circ f$ is an IF α GSCS continuous mapping.

Theorem 3.15: Let $f: (X, \tau) \to (Y, \sigma)$ be an IF π GS irresolute mapping and $g: (Y, \sigma) \to (Z, \delta)$ is an IFG continuous mapping, then $g \circ f: (X, \tau) \to (Z, \delta)$ is an IF π GS continuous mapping.

Proof: Let A be an IFCS in Z. By assumption, $g^{-1}(A)$ is an IF π GSCS in Y. Since every IFGCS is an IF π GSCS, $g^{-1}(A)$ is an IF π GSCS in Y. But f is an IF π GS irresolute mapping. Therefore $f^{-1}(g^{-1}(A))$ is an IF π GSCS in X. Hence $g \circ f$ is an IF π GS continuous mapping.

Theorem 3.16: Let $f: (X, \tau) \to (Y, \sigma)$ be an IF π GS irresolute mapping and $g: (Y, \sigma) \to (Z, \delta)$ is an IFGS continuous mapping, then gof: $(X, \tau) \to (Z, \delta)$ is an IF π GS continuous mapping.

Proof: Let A be an IFCS in Z. Then $g^{-1}(A)$ is an IFGSCS in Y, Since g is an IFGS continuous. Since every IFGSCS is an IF π GSCS, $g^{-1}(A)$ is an IF π GSCS in Y. Since f is an IF π GS irresolute mapping, $f^{-1}(g^{-1}(A))$ is an IF π GSCS in X. Hence gof is an IF π GS continuous mapping.

Definition 3.17: Let A be an IFS in an IFTS (X, τ) . Then π -generalized Semi closure of A $(\pi gscl(A)$ in short) and π -generalized semi interior of A $(\pi gsint(A)$ in short) are defined by

 π gsint(A) = \cup { G / G is an IF π GSOS in X and G \subseteq A } π gscl(A) = \cap { K / K is an IF π GSCS in X and A \subseteq K }.

Proposition 3.18: If A is an IFS in X, then $A \subseteq \pi gscl(A) \subseteq cl(A)$.

Proof: The result follows from the definition.

Theorem 3.19: If A is an IF π GSCS in X then π gscl(A) = A.

Proof: Since A is an IF π GSCS, π gscl(A) is the smallest IF π GSCS which contains A, which is nothing but A. Hence π gscl(A) = A.

Theorem 3.20: If A is an IF π GSOS in X then π gsint(A) = A.

Proof: Similar to above theorem.

Proposition 3.21: Let (X, τ) be any IFTS. Let A and B be any two intuitionistic fuzzy sets in (X, τ) . Then the intuitionistic fuzzy π -generalized Semi closure operator satisfies the following properties.

- (i) $A \subseteq \pi gscl(A)$
- (ii) π gsint(A) \subseteq A
- (iii) $A \subseteq B \Rightarrow \pi gscl(A) \subseteq \pi gscl(B)$
- $(iv) \ A \subseteq B \Rightarrow \ \pi gsint(A) \subseteq \pi gsint(B)$

Theorem 3.22: If $f: (X, \tau) \to (Y, \sigma)$ is an IF**T**GS irresolute mapping, then $f(\mathbb{T}gscl(A)) \subseteq cl(A)$ for every IFS A of X.

Proof: Let A be an IFCS of X. Then cl(f(A)) is an IFCS of Y. Since every IFCS is an IFTGSCS, cl(f(A)) is an IFTGSCS

in Y. Since f is IF π GS irresolute, f⁻¹(cl(f(A))) is IF π GSCS in X. Clearly A \subseteq f⁻¹(cl(f(A))).

Therefore $\pi \operatorname{gscl}(A) \subseteq \pi \operatorname{gscl}(f^{-1}(\operatorname{clf}(A)))) = f^{-1}(\operatorname{clf}(A))$. Hence $\operatorname{f}(\pi \operatorname{gscl}(A)) \subseteq \operatorname{cl}(f(A))$ for every IFS A of X.

Theorem 3.23: If $f: (X, \tau) \to (Y, \sigma)$ is IF π GS irresolute, then π gscl($f^{-1}(B)$) $\subseteq f^{-1}(cl(B))$ for every IFS B of Y.

Proof: Let B be an IFS of Y. Then cl(B) is an IFCS of Y. since every IFCS is an IF π GSCS, cl(B) is an IF π GSCS in Y. By hypothesis, $f^{-1}(cl(B))$ is IF π GSCS in X. Clearly B \subseteq cl(B) implies $f^{-1}(B) \subseteq f^{-1}(cl(B))$. Therefore, π gscl($f^{-1}(B)$) $\subset \pi$ gscl $(f^{-1}(cl(B))) = f^{-1}(cl(B))$. Hence π gscl($f^{-1}(B)) \subseteq f^{-1}(cl(B))$ for every IFS B of Y.

Theorem 3.24: Let $f:(X, \tau) \to (Y, \sigma)$ be a mapping from an IFTS X into IFTS Y. Then the following conditions are equivalent

- (i) f is an IF#GS irresolute mapping
- (ii) f⁻¹(B) is an IF#GSOS in X, for each IF#GSOS in Y
- (iii) $f^{-1}(\mathbb{Z}gsint(B)) \subset \mathbb{Z}gsint(f^{-1}(B))$
- (iv) π gscl (f⁻¹(B)) \subseteq f⁻¹(cl(B)) for every IFS B of Y.

Proof:

- (i) \Rightarrow (ii): is obviously true.
- (ii) \Rightarrow (iii): Let B be an IF#GSCS in Y and #gsint(B) \subseteq B. Then $f^{-1}(\mathbb{Z}gsint(B)) \subseteq f^{-1}(B)$. Sinc #gsint(B) is an IF#GSOS in Y, $f^{-1}(\mathbb{Z}gsint(B))$ is an IF#GSOS in X, by hypothesis. Hence $f^{-1}(\mathbb{Z}gsint(B)) \subseteq \mathbb{Z}gsint(f^{-1}(B))$.
- (iii) \Rightarrow (iv): is obvious by taking complement in (iii).
- (iv) \Rightarrow (i): Let B be an IF#GSCS in Y and #gscl(B) = B. Hence $f^{-1}(B) = f^{-1}(\#gscl(B)) \supseteq \#gscl(f^{-1}(B))$. Therefore, #gscl($f^{-1}(B)$) = $f^{-1}(B)$. This implies $f^{-1}(B)$ is an IF#GSCS in X. Thus f is an IF#GS irresolute mapping.

REFERENCES

- [1] Atanassov K., Intuitionistic fuzzy sets , Fuzzy Sets and Systems, 20 (1986), 87-96.
- [2] Bhattacharyya P. and Lahiri B.K., Semi generalized closed sets in topology, Indian J. Math, 29(1987), 375-382.
- [3] Chang C.L., Fuzzy topological spaces, J. Math. Anal. Appl, 24(1968), 182-190.
- [4] Coker D., An introduction to intuitionistic fuzzy topological spaces, Fuzzy sets and systems, 88(1997), 81-89.
- [5] Gurcay H., Haydar A. and Coker, D., On fuzzy continuity in intuitionistic fuzzy topological spaces, jour.of fuzzy math, 5(1997), 365-378.
- [6] Hanafy I.M., Intuitionistic fuzzy γ continuity, Canad. Math Bull XX (2009), 1-11.
- [7] Joung Kon Jeon, Young Bae Jun and Jin Han Park, Intuitionistic fuzzy alpha continuity and intuitionistic fuzzy pre continuity, International journal of Mathematical and Mathematical Sciences, (2005), 3091-3101.
- [8] Maragathavalli S. and Ramesh K., Intuitionistic fuzzy <u>a</u> generalized semi closed sets, Advances in Theoretical and Applied Sciences, 1 (2012), 33-42.
- [9] Maragathavalli S. and Ramesh K., Intuitionistic fuzzy #-generalized semi continuous mappings, International Journal of Computer Applications, 37 (2012), 30-34.
- [10] Sakthivel K., Intuitionistic Fuzzy Alpha Generalized Continuous Mappings and Intuitionistic Alpha Generalized Irresolute Mappings, Applied Mathematical Sciences, 4(2010), 1831-1842.
- [11] Thakur S.S. and Rekha Chaturvedi, R.G-closed sets in intuitionistic fuzzy topological spaces, Universities Din Bacau Studii Si Cercertar Stiintifice, 6(2006), 257-272.

[12] Zadeh L.A., Fuzzy sets, Information control, 8 (1965), 338-353.
