A NOTE ON INTUITIONISTIC FUZZY π-GENERALIZED SEMI IRRESOLUTE MAPPINGS

1S. Maragathavalli & 2K. Ramesh*

1Department of Mathematics, Sree Saraswathi thyagaraja College, Pollachi, Tamilnadu, India
E-mail: smvalli@rediffmail.com

2Department of Mathematics, SVS College of Engineering, Coimbatore, Tamilnadu, India
E-mail: rameshfuzzy@gmail.com

(Received on: 11-02-12; Accepted on: 26-03-12)

ABSTRACT

In this paper a new class of mapping called intuitionistic fuzzy π-generalized semi irresolute mapping in intuitionistic fuzzy topological space is introduced and some of its properties are studied.

Keywords and Phrases: Intuitionistic fuzzy topology, intuitionistic fuzzy π-generalized semi closed set, intuitionistic fuzzy π-generalized semi open set, intuitionistic fuzzy π-generalized semi irresolute mapping, intuitionistic fuzzy $\pi_{1/2}$ space and intuitionistic fuzzy $\pi_{1/2}$ space.

AMS Classification Code: 54A40.

1. INTRODUCTION

After the introduction of Fuzzy set (FS) by Zadeh [12] in 1965 and fuzzy topology by Chang [3] in 1967, several researches were worked on the generalizations of the notions of fuzzy sets and fuzzy topology. The concept of intuitionistic fuzzy set (IFS) was introduced by Atanassov in 1983 as a generalization of fuzzy sets. In 1997, Coker [4] introduced the concept of intuitionistic fuzzy topological space. In this paper, we introduce the notion of intuitionistic fuzzy π-generalized semi irresolute mapping in intuitionistic fuzzy topological space and studied some of their properties. We provide some characterizations of intuitionistic fuzzy π-generalized semi irresolute mapping and established the relationships with other classes of early defined forms of intuitionistic fuzzy mappings.

1. PRELIMINARIES

Definition 2.1: [1] Let X be a non empty fixed set. An intuitionistic fuzzy set (IFS in short) A in X is an object having the form $A = \{ (x, \mu_A(x), \nu_A(x)) / x \in X \}$ where the functions $\mu_A(x): X \rightarrow [0, 1]$ and $\nu_A(x): X \rightarrow [0, 1]$ denote the degree of membership (namely $\mu_A(x)$) and the degree of non-membership (namely $\nu_A(x)$) of each element $x \in X$ to the set A respectively and $0 \leq \mu_A(x) + \nu_A(x) \leq 1$ for each $x \in X$.

Definition 2.2: [1] Let A and B be IFSs of the forms $A = \{ (x, \mu_A(x), \nu_A(x)) / x \in X \}$ and $B = \{ (x, \mu_B(x), \nu_B(x)) / x \in X \}$. Then

(1) $A \subseteq B$ if and only if $\mu_A(x) \leq \mu_B(x)$ and $\nu_A(x) \geq \nu_B(x)$ for all $x \in X$

(2) $A = B$ if and only if $A \subseteq B$ and $B \subseteq A$

(3) $A^c = \{ (x, \mu_A(x), \nu_A(x)) / x \in X \}$

(4) $A \cap B = \{ (x, \mu_A(x) \land \mu_B(x), \nu_A(x) \lor \nu_B(x)) / x \in X \}$

(5) $A \cup B = \{ (x, \mu_A(x) \lor \mu_B(x), \nu_A(x) \land \nu_B(x)) / x \in X \}$

For the sake of simplicity, we shall use the notation $A = \{ (x, \mu_A(x), \nu_A(x)) / x \in X \}$ instead of $A = \{ (x, \mu_A(x), \nu_A(x)) / x \in X \}$. Also for the sake of simplicity, we shall use the notation $A = \{ (x, (\mu_A, \mu_B), (\nu_A, \nu_B)) / x \in X \}$ instead of $A = \{ (x, (\mu_A, \mu_B), (\nu_A, \nu_B)) / x \in X \}$.

Corresponding author: 2K. Ramesh, E-mail: rameshfuzzy@gmail.com
Definition 2.3: [4] An intuitionistic fuzzy topology (IFT in short) on a non empty X is a family τ of IFSs in X satisfying the following axioms:

(a) $\emptyset, X \in \tau$,
(b) $G_1 \cap G_2 \in \tau$ for any $G_1, G_2 \in \tau$,
(c) $\bigcup_{i \in I} G_i \in \tau$ for any arbitrary family $\{G_i / i \in I\} \subseteq \tau$.

In this case the pair (X, τ) is called an intuitionistic fuzzy topological space (IFTS in short) and any IFS in τ is known as an intuitionistic fuzzy open set (IFOS for short) in X. The complement A^c of an IFOS A in an IFTS (X, τ) is called an intuitionistic fuzzy closed set (IFCS for short) in X.

Definition 2.4: [4] Let (X, τ) be an IFTS and $A = \langle x, \mu_A, \nu_A \rangle$ be an IFS in X. Then, the intuitionistic fuzzy interior and an intuitionistic fuzzy closure are defined by

$$\text{int}(A) = \bigcup \{ G / G \text{ is an IFOS in } X \text{ and } G \subseteq A \},$$

$$\text{cl}(A) = \bigcap \{ K / K \text{ is an IFCS in } X \text{ and } A \subseteq K \}.$$
Definition 2.12: [7] Let \(f \) be a mapping from an IFTS \((X, \tau)\) into an IFTS \((Y, \sigma)\). Then \(f \) is said to be (a) intuitionistic fuzzy semi continuous (IFS continuous in short) if \(f^{-1}(B) \in \text{IFSO}(X) \) for every \(B \in \sigma \) (b) intuitionistic fuzzy \(\alpha \)-continuous (IF\(\alpha \) continuous in short) if \(f^{-1}(B) \in \text{IFIo}(X) \) for every \(B \in \sigma \) (c) intuitionistic fuzzy pre continuous (IFP continuous in short) if \(f^{-1}(B) \in \text{IFPO}(X) \) for every \(B \in \sigma \) (d) intuitionistic fuzzy completely continuous if \(f^{-1}(B) \in \text{IFRO}(X) \) for every \(B \in \sigma \).

Definition 2.13: [6] A mapping \(f: (X, \tau) \rightarrow (Y, \sigma) \) is called an intuitionistic fuzzy \(\gamma \) continuous (IF\(\gamma \) continuous in short) if \(f^{-1}(B) \) is an IF\(\gamma \)OS in \((X, \tau)\) for every \(B \in \sigma \).

Definition 2.14: [12] Let \(f \) be a mapping from an IFTS \((X, \tau)\) into an IFTS \((Y, \sigma)\). Then \(f \) is said to be an intuitionistic fuzzy generalized continuous (IFG continuous in short) if \(f^{-1}(B) \in \text{IFGCS}(X) \) for every IFCS \(B \) in \(Y \).

Result 2.15: [12] Every IF continuous mapping is an IFG continuous mapping but the converse may not be true in general.

Definition 2.16: [10] A mapping \(f: (X, \tau) \rightarrow (Y, \sigma) \) is called an intuitionistic fuzzy generalized semi continuous (IFGS continuous in short) if \(f^{-1}(B) \) is an IFGCS in \((X, \tau)\) for every IFCS \(B \) of \((Y, \sigma)\).

Definition 2.17: [9] A mapping \(f: (X, \tau) \rightarrow (Y, \sigma) \) is called an intuitionistic fuzzy \(\pi \)-generalized continuous (IF\(\pi \)GS continuous in short) if \(f^{-1}(B) \) is an IF\(\pi \)GCS in \((X, \tau)\) for every IFCS \(B \) of \((Y, \sigma)\).

Definition 2.18: [12] An IFTS \((X, \tau)\) is called an intuitionistic fuzzy \(T_{1/2} \) (IFT\(T_{1/2} \) in short) space if every IFGCS in \(X \) is an IFCS in \(X \).

Definition 2.19: [11] Let \(f \) be a mapping from an IFTS \((X, \tau)\) into an IFTS \((Y, \sigma)\). Then \(f \) is said to be an intuitionistic fuzzy irresolute (IF irresolute in short) if \(f^{-1}(B) \in \text{IFRO}(X) \) for every IFCS \(B \) in \(Y \).

Definition 2.20: [11] Let \(f \) be a mapping from an IFTS \((X, \tau)\) into an IFTS \((Y, \sigma)\). Then \(f \) is said to be an intuitionistic fuzzy generalized irresolute (IFG irresolute in short) if \(f^{-1}(B) \in \text{IFGCS}(X) \) for every IFGCS \(B \) in \(Y \).

Result 2.21: [8] Every IFGCS is an IF\(\pi \)GCS but not conversely.

Definition 2.22: [8] An IFTS \((X, \tau)\) is said to be an intuitionistic fuzzy \(\pi_\alpha T_{1/2} \) (IF\(\pi_\alpha T_{1/2} \) in short) space if every IF\(\pi \)GCS in \(X \) is an IFCS in \(X \).

Definition 2.23: [8] An IFTS \((X, \tau)\) is said to be an intuitionistic fuzzy \(\pi_\beta T_{1/2} \) (IF\(\pi_\beta T_{1/2} \) in short) space if every IF\(\pi \)GCS in \(X \) is an IFCS in \(X \).

3. INTUITIONISTIC FUZZY \(\pi \)-GENERALIZED SEMI IRRESOLUTE MAPPINGS

In this section, we have introduced intuitionistic fuzzy \(\pi \)-generalized semi irresolute mappings and studied some of their properties.

Definition 3.1: A mapping \(f: (X, \tau) \rightarrow (Y, \sigma) \) is called an intuitionistic fuzzy \(\pi \)-generalized semi irresolute (IF\(\pi \)GS irresolute) mapping if \(f^{-1}(A) \) is an IF\(\pi \)GCS in \((X, \tau)\) for every IF\(\pi \)GCS \(A \) of \((Y, \sigma)\).

Theorem 3.2: If \(f: (X, \tau) \rightarrow (Y, \sigma) \) be an IF\(\pi \)GS irresolute mapping, then \(f \) is an IF\(\pi \)GS continuous mapping but not conversely.

Proof: Let \(A \) be any IFCS in \(Y \). Since every IFCS is an IF\(\pi \)GCS, \(A \) is an IF\(\pi \)GCS in \(Y \). Since \(f \) is an IF\(\pi \)GS irresolute mapping, \(f^{-1}(A) \) is an IF\(\pi \)GSCS in \(X \). Hence \(f \) is an IF\(\pi \)GS continuous mapping.

Example 3.3: Let \(X = \{ a, b \} \), \(Y = \{ u, v \} \) and \(G_1 = \langle x, (0.1_a, 0.2_b), (0.3_a, 0.3_b) \rangle \), \(G_2 = \langle x, (0.1_a, 0.2_b), (0.3_a, 0.3_b) \rangle \), \(G_3 = \langle x, (0.1_a, 0.2_b), (0.3_a, 0.3_b) \rangle \). Then \(\tau = \{ 0, G_1, G_2, G_3 \} \) are IFTs on \(X \) and \(Y \) respectively. Define a mapping \(f: (X, \tau) \rightarrow (Y, \sigma) \) by \(f(a) = u \) and \(f(b) = v \). Then \(f \) is an IF\(\pi \)GS continuous mapping. Let \(B = \langle y, (0.1_u, 0.1_v) \rangle \),
Theorem 3.4: If \(f : (X, \tau) \to (Y, \sigma) \) is an IF\(\pi \)GS irresolute mapping, then \(f \) is an IFGS continuous mapping but not conversely.

Proof: Let \(A \) be an IFCS in \(Z \). Then \(f^{-1}(A) \) is an IFCS in \(X \). Hence \(f^{-1}(A) \) is an IF\(\pi \)GCS in \(X \). Therefore \(f \) is not an IF\(\pi \)GS irresolute mapping.

Example 3.5: Let \(X = \{ a, b \} \), \(Y = \{ u, v \} \) and \(G_1 = \{ x, (0.2a, 0.4b), (0.3a, 0.4b) \}, G_2 = \{ x, (0.1a, 0.3b), (0.3a, 0.4b) \}, G_3 = \{ x, (0.2a, 0.4b), (0.3a, 0.4b) \}, G_4 = \{ x, (0.1a, 0.3b), (0.2a, 0.5b) \}, G_5 = \{ x, (0.1a, 0.3b), (0.3a, 0.4b) \}, G_6 = \{ x, (0.2a, 0.4b), (0.2a, 0.5b) \} \). Then \(\tau = \{ 0, G_1, G_2, G_3, G_4, G_5, 1 \} \) are IFTs on \(X \) and \(Y \) respectively. Define a mapping \(f : (X, \tau) \to (Y, \sigma) \) by \(f(a) = u \) and \(f(b) = v \). Then \(f \) is an IFGS continuous mapping. Let \(B = \{ y, (0a, 0.3b), (0.5a, 0.4b) \} \) is an IF\(\pi \)GCS in \(Y \). But \(f^{-1}(B) = \{ x, (0a, 0.3b), (0.3a, 0.4b) \} \) is not an IF\(\pi \)GCS in \(X \). Therefore \(f \) is not an IF\(\pi \)GS irresolute mapping.

Theorem 3.6: If \(f : (X, \tau) \to (Y, \sigma) \) is an IF\(\pi \)GS irresolute mapping, then \(f \) is an IF continuous mapping if \(X \) is an IF\(\pi \)T_{1/2} space.

Proof: Let \(A \) be an IFCS in \(Z \). Then \(f^{-1}(A) \) is an IFCS in \(X \). Hence \(f^{-1}(A) \) is an IFGCS in \(X \). Therefore \(f \) is not an IF\(\pi \)GS irresolute mapping. Conversely.

Theorem 3.7: If \(f : (X, \tau) \to (Y, \sigma) \) is an IF\(\pi \)GS irresolute mapping, then \(f \) is an IF continuous mapping.

Proof: Let \(A \) be an IF\(\pi \)GCS in \(Z \). Then \(f^{-1}(A) \) is an IFCS in \(X \). Hence \(f^{-1}(A) \) is an IF\(\pi \)GCS in \(X \). Therefore \(f \) is not an IF\(\pi \)GS irresolute mapping.

Theorem 3.8: If \(f : (X, \tau) \to (Y, \sigma) \) is an IF\(\pi \)GS irresolute mapping, then \(f \) is an IFGCS in \(X \). Therefore \(f^{-1}(A) \) is an IFCS in \(X \). Hence \(f \) is an IF\(\pi \)GCS in \(X \).

Proof: Let \(A \) be an IFCS in \(Z \). Then \(f^{-1}(A) \) is an IFCS in \(X \). Hence \(f^{-1}(A) \) is an IFGCS in \(X \). Therefore \(f \) is not an IF\(\pi \)GS irresolute mapping.

Theorem 3.9: If \(f : (X, \tau) \to (Y, \sigma) \) is an IF\(\pi \)GS irresolute mapping, then \(f \) is an IFGCS in \(X \). Therefore \(f^{-1}(A) \) is an IFCS in \(X \). Hence \(f \) is an IF\(\pi \)GCS in \(X \).

Proof: (i) \(\Rightarrow \) (ii): Obviously true.

(ii) \(\Rightarrow \) (iii): Let \(B \) be any IFS in \(Y \). Clearly \(B \subseteq \text{cl}(B) \). Since \(\text{cl}(B) \) is an IFCS in \(Y \), \(\text{cl}(B) \) is an IFGCS in \(Y \). Therefore \(f^{-1}(\text{cl}(B)) \) is an IF\(\pi \)GCS in \(X \). Since \(X \) is an IF\(\pi \)T_{1/2} space, \(f^{-1}(\text{cl}(B)) \) is an IF\(\pi \)GCS in \(X \). Hence \(\text{cl}(f^{-1}(B)) \subseteq f^{-1}(\text{cl}(B)) \) for each IFS \(B \) of \(Y \).

(iii) \(\Rightarrow \) (i): Let \(B \) be an IF\(\pi \)GCS in \(Y \). Since \(Y \) is an IF\(\pi \)T_{1/2} space, \(B \) is an IFCS in \(Y \) and \(\text{cl}(B) = B \).
Hence $f^{-1}(B) = f^{-1}(\text{cl}(B)) \supseteq \text{cl}(f^{-1}(B))$, by hypothesis. But clearly $f^{-1}(B) \subseteq \text{cl}(f^{-1}(B))$. Therefore, $\text{cl}(f^{-1}(B)) = f^{-1}(B)$.

This implies $f^{-1}(B)$ is an IFCS in X and hence it is an IFGTCS in X. Thus f is an IFGTG irresolute mapping.

Theorem 3.11: Let $f: (X, \tau) \rightarrow (Y, \sigma)$ be an IF continuous mapping and (Y, σ) is an IF $\pi_{T_{1/2}}$ space. Then the following statements are equivalent:

(i) f is an IFGTG irresolute mapping

(ii) f is an IFGTG continuous mapping

Proof: (i) \Rightarrow (ii): Follows from the theorem 3.2.

(ii) \Rightarrow (i): Let f be an IFGTG continuous mapping. Let A be an IFGTGCS in (Y, σ). Since (Y, σ) is an IF $\pi_{T_{1/2}}$ space, A is an IFCS in (Y, σ) and by hypothesis $f^{-1}(A)$ is an IFGTGCS in (X, τ). Therefore f is an IFGTG irresolute mapping.

Theorem 3.12: Let $f: (X, \tau) \rightarrow (Y, \sigma)$ be a mapping from an IFTS X into IFTS Y. Then the following conditions are equivalent

(i) f is an IFGTG irresolute mapping

(ii) $f^{-1}(B)$ is an IFGTGOS in X for every IFGTGOS B in Y.

Proof: (i) \Rightarrow (ii): Let B be an IFGTGOS in Y, then B^c is an IFGTGCS in Y. Since f is an IFGTG irresolute mapping, $f^{-1}(B^c)$ is an IFGTGCS in X. But $f^{-1}(B^c) = (f^{-1}(B))^c$, implies $f^{-1}(B)$ is an IFGTGOS in X.

(ii) \Rightarrow (i): Let B be an IFGTGCS in Y. By our assumption $f^{-1}(B^c)$ is an IFGTGOS in X for every IFGTGOS B^c in Y. But $f^{-1}(B^c) = (f^{-1}(B))^c$, which implies $f^{-1}(B)$ is an IFGTGCS in X. Hence f is an IFGTG irresolute mapping.

Theorem 3.13: Let $f: (X, \tau) \rightarrow (Y, \sigma)$ be an IFGTG irresolute mapping and $g: (Y, \sigma) \rightarrow (Z, \delta)$ is an IFα continuous mapping, then $g \circ f: (X, \tau) \rightarrow (Z, \delta)$ is an IFGTG continuous mapping.

Proof: Let A be an IFCS in Z. Then $g^{-1}(A)$ is an IFαCS in Y. Since g is IFα continuous, every IFαCS is an IFGTGCS, $g^{-1}(A)$ is an IFGTGCS in Y. But f is an IFGTG irresolute mapping. Therefore $f^{-1}(g^{-1}(A))$ is an IFGTGSCS in X. Hence $g \circ f$ is an IFGTG continuous mapping.

Theorem 3.14: Let $f: (X, \tau) \rightarrow (Y, \sigma)$ be an IFGTG irresolute mapping and $g: (Y, \sigma) \rightarrow (Z, \delta)$ is an IFα continuous mapping, then $g \circ f: (X, \tau) \rightarrow (Z, \delta)$ is an IFGTG continuous mapping.

Proof: Let A be an IFCS in Z. By assumption, $g^{-1}(A)$ is an IFαCS in Y. Since every IFαCS is an IFGTGCS, $g^{-1}(A)$ is an IFGTGCS in Y. But f is an IFGTG irresolute mapping, implies $f^{-1}(g^{-1}(A))$ is an IFGTGSCS in X. Hence $g \circ f$ is an IFGTG continuous mapping.

Theorem 3.15: Let $f: (X, \tau) \rightarrow (Y, \sigma)$ be an IFGTG irresolute mapping and $g: (Y, \sigma) \rightarrow (Z, \delta)$ is an IFδ continuous mapping, then $g \circ f: (X, \tau) \rightarrow (Z, \delta)$ is an IFGTG continuous mapping.

Proof: Let A be an IFCS in Z. By assumption, $g^{-1}(A)$ is an IFGCS in Y. Since every IFGCS is an IFGTGCS, $g^{-1}(A)$ is an IFGTGCS in Y. But f is an IFGTG irresolute mapping. Therefore $f^{-1}(g^{-1}(A))$ is an IFGTGSCS in X. Hence $g \circ f$ is an IFGTG continuous mapping.

Theorem 3.16: Let $f: (X, \tau) \rightarrow (Y, \sigma)$ be an IFGTG irresolute mapping and $g: (Y, \sigma) \rightarrow (Z, \delta)$ is an IFG continuous mapping, then $g \circ f: (X, \tau) \rightarrow (Z, \delta)$ is an IFGTG continuous mapping.

Proof: Let A be an IFCS in Z. Then $g^{-1}(A)$ is an IFGCS in Y. Since g is an IFG continuous. Since every IFGCS is an IFGTGCS, $g^{-1}(A)$ is an IFGTGCS in Y. But f is an IFGTG irresolute mapping, $f^{-1}(g^{-1}(A))$ is an IFGTGSCS in X. Hence $g \circ f$ is an IFGTG continuous mapping.

Definition 3.17: Let A be an IFS in an IFTS (X, τ). Then π-generalized Semi closure of A ($\pi_{gscl}(A)$ in short) and π-generalized semi interior of A ($\pi_{gsint}(A)$ in short) are defined by
Proposition 3.18: If A is an IFS in X, then $A \subseteq \pi_{gscl}(A) \subseteq \text{cl}(A)$.

Proof: The result follows from the definition.

Theorem 3.19: If A is an IFπGSCS in X then $\pi_{gscl}(A) = A$.

Proof: Since A is an IFπGSCS, $\pi_{gscl}(A)$ is the smallest IFπGSCS which contains A, which is nothing but A. Hence $\pi_{gscl}(A) = A$.

Theorem 3.20: If A is an IFπGSOS in X then $\pi_{gsint}(A) = A$.

Proof: Similar to above theorem.

Proposition 3.21: Let (X, τ) be any IFTS. Let A and B be any two intuitionistic fuzzy sets in (X, τ). Then the intuitionistic fuzzy π-generalized Semi closure operator satisfies the following properties.

(i) $A \subseteq \pi_{gscl}(A)$
(ii) $\pi_{gsint}(A) \subseteq A$
(iii) $A \subseteq B \Rightarrow \pi_{gscl}(A) \subseteq \pi_{gscl}(B)$
(iv) $A \subseteq B \Rightarrow \pi_{gsint}(A) \subseteq \pi_{gsint}(B)$

Theorem 3.22: If $f: (X, \tau) \rightarrow (Y, \sigma)$ is an IFπGS irresolute mapping, then $f(\pi_{gscl}(A)) \subseteq \text{cl}(A)$ for every IFS A of X.

Proof: Let A be an IFCS of X. Then $\text{cl}(f(A))$ is an IFCS of Y. Since every IFCS is an IFπGSCS, $\text{cl}(f(A))$ is an IFπGSCS in Y. Since f is IFπGS irresolute, $f^{-1}(\text{cl}(f(A)))$ is IFπGSCS in X. Clearly $A \subseteq f^{-1}(\text{cl}(f(A)))$.

Therefore $\pi_{gscl}(A) \subseteq \pi_{gscl}(f^{-1}(\text{cl}(f(A)))) = f^{-1}(\text{cl}(f(A)))$. Hence $f(\pi_{gscl}(A)) \subseteq \text{cl}(A)$ for every IFS A of X.

Theorem 3.23: If $f: (X, \tau) \rightarrow (Y, \sigma)$ is IFπGS irresolute, then $\pi_{gscl}(f^{-1}(B)) \subseteq f^{-1}(\text{cl}(B))$ for every IFS B of Y.

Proof: Let B be an IFS of Y. Then $\text{cl}(B)$ is an IFCS of Y. Since every IFCS is an IFπGSCS, $\text{cl}(B)$ is an IFπGSCS in Y. By hypothesis, $f^{-1}(\text{cl}(B))$ is IFπGSCS in X. Clearly $B \subseteq \text{cl}(B)$ implies $f^{-1}(B) \subseteq f^{-1}(\text{cl}(B))$. Therefore, $\pi_{gscl}(f^{-1}(B)) \subseteq \pi_{gscl}(f^{-1}(\text{cl}(B))) = f^{-1}(\text{cl}(B))$. Hence $\pi_{gscl}(f^{-1}(B)) \subseteq f^{-1}(\text{cl}(B))$ for every IFS B of Y.

Theorem 3.24: Let $f: (X, \tau) \rightarrow (Y, \sigma)$ be a mapping from an IFTS X into IFTS Y. Then the following conditions are equivalent

(i) f is an IFπGS irresolute mapping
(ii) $f^{-1}(B)$ is an IFπGSOS in X, for each IFπGSOS in Y
(iii) $f^{-1}(\pi_{gsint}(B)) \subseteq \pi_{gsint}(f^{-1}(B))$
(iv) $\pi_{gscl}(f^{-1}(B)) \subseteq f^{-1}(\text{cl}(B))$ for every IFS B of Y.

Proof:

(i) \Rightarrow (ii): is obviously true.

(ii) \Rightarrow (iii): Let B be an IFπGSCS in Y and $\pi_{gsint}(B) \subseteq B$. Then $f^{-1}(\pi_{gsint}(B)) \subseteq f^{-1}(B)$. Since $\pi_{gsint}(B)$ is an IFπGSOS in Y, $f^{-1}(\pi_{gsint}(B))$ is an IFπGSOS in X, by hypothesis. Hence $f^{-1}(\pi_{gsint}(B)) \subseteq \pi_{gsint}(f^{-1}(B))$.

(iii) \Rightarrow (iv): is obvious by taking complement in (iii).

(iv) \Rightarrow (i): Let B be an IFπGSCS in Y and $\pi_{gscl}(B) = B$. Hence $f^{-1}(B) = f^{-1}(\pi_{gscl}(B)) \subseteq \pi_{gscl}(f^{-1}(B))$. Therefore, $\pi_{gscl}(f^{-1}(B)) = f^{-1}(B)$. This implies $f^{-1}(B)$ is an IFπGSCS in X. Thus f is an IFπGS irresolute mapping.
REFERENCES
