International Journal of Mathematical Archive-3(3), 2012, Page: 1017-1028

 (c) $\$$ MA Available online through www.ijma.info ISSN 2229-5046
SOME RESULTS ON ELEGANT GRAPHS

V. Lakshmi Alias Gomathi ${ }^{1 *}$, A. Nellai Murugan ${ }^{2}$ and A. Nagarajan ${ }^{3}$
Research Scholar, V.O.C. College, Tuticorin, India
Assistant Professor, V.O.C. College, Tuticorin, India
Associate Professor, V.O.C. College, Tuticorin, India
E-mail: lakshmi10674@gmail.com

(Received on: 11-02-12; Accepted on: 06-03-12)

Abstract

In 1981, Chang, Hsu and Rogers [1] defined an elegant labeling f of a graph G with q edges as an injective function from the vertices of G to the set $\{0,1,2, \ldots, q\}$ such that when each edge $x y$ is assigned the label $(f(x)+f(y))$ (\bmod $(q+1)$), the resulting edge labels are distinct and non - zero. In this paper, certain families of graphs are shown to be elegant.

AMS Classification Number: AMS_05C78.
Keywords and phrases: Graph labeling, cycles, paths, total graph, jelly fish, $K_{2}+m K_{1},\left(P_{2} \cup m K_{1}\right)+N_{2},\left\langle C_{3}, K_{1, m}\right\rangle$, ($\left.K_{4}-\{e\}\right)_{t}$, etc., and elegant labeling.

1. INTRODUCTION

In this paper, by a graph we mean an undirected graph without loops or multiple edges. For notations and terminology, we follow Bondy and Murthy [2].

Throughout this paper, we denote the cycle on n vertices by C_{n} and the path on n vertices by P_{n}. Also, f stands for a $1-1$ function from $V(G)$ to a subset of the set of non - negative integers and for any edge $e=x y \in E(G)$, $f *(x y)=f(x)+f(y)$. We call $f *$ the induced edge labeling of G (induced by f).

Chang, Hsu and Rogers [1] defined an elegant labeling f of a graph G with q edges as an injective function from the vertices of G to the set $\{0,1,2 \ldots q\}$ such that when each edge $x y$ is assigned the label $(f(x)+f(y))(\bmod (q+1))$, the resulting edge labels are distinct and non - zero. In this paper, certain families of graphs are shown to be elegant.

Balakrishnan, Selvam and Yegnanarayanan [3] have shown that the bistar $B_{n, n}$ is elegant if and only if n is even. For example, an elegant labeling of $B_{2,2}$ is shown in Figure 1.1.

Fig. 1.1
Theorem 1.1: The total possibilities of the edge labeling in an elegant graph is $\frac{q^{2}}{2}$ when q is even and $\frac{q^{2}+1}{2}$ when q is odd.
Proof: case (i) when q is even.
Sub case (i): Let the edge label be k.
The possible edge labels are $\left\{(\mathrm{i}, \mathrm{q}-\mathrm{i}+\mathrm{k}+1): \mathrm{k}+1 \leq \mathrm{i} \leq \frac{q}{2}+\left\lceil\frac{k-1}{2}\right\rceil\right\} \cup\left\{(\mathrm{i}, \mathrm{k}-\mathrm{i}): 0 \leq \mathrm{i} \leq\left\lceil\frac{k}{2}\right\rceil-1\right\}$ and its total is $\frac{q}{2}$.

[^0]Hence, the total possible edge labels is $\mathrm{q}\left(\frac{q}{2}\right)=\frac{q^{2}}{2}$

Case (ii) when q is odd.

Sub case (i): Let the edge label be \mathbf{k} and let \mathbf{k} be odd with $\mathbf{1 \leq k} \leq \mathbf{q}$.
The possible edge labels are $\left\{(\mathrm{i}, \mathrm{q}-\mathrm{i}+\mathrm{k}+1): \mathrm{k}+1 \leq \mathrm{i} \leq \frac{q+1}{2}+\frac{k-1}{2}\right\} \cup\left\{(\mathrm{i}, \mathrm{k}-\mathrm{i}): 0 \leq \mathrm{i} \leq \frac{k-1}{2}\right\}$ and its total is $\frac{q+1}{2}$
Hence, the total possible odd edge label is $\left(\frac{q+1}{2}\right)\left(\frac{q+1}{2}\right)$
Sub case (ii): Let the edge label be k and let k be even with $\mathbf{2 \leq k \leq q - 1}$.
The possible edge labels are $\left\{(\mathrm{i}, \mathrm{q}-\mathrm{i}+\mathrm{k}+1): \mathrm{k}+1 \leq \mathrm{i} \leq \frac{q+1}{2}+\frac{k-2}{2}\right\} \cup\left\{(\mathrm{i}, \mathrm{k}-\mathrm{i}): 0 \leq \mathrm{i} \leq \frac{k}{2}-1\right\}$ and its total is $\frac{q-1}{2}$.

Hence, the total possible even edge labels is $\left(\frac{q-1}{2}\right)\left(\frac{q-1}{2}\right)$
Therefore, the total possible edge label is,

$$
\left(\frac{q+1}{2}\right)\left(\frac{q+1}{2}\right)+\left(\frac{q-1}{2}\right)\left(\frac{q-1}{2}\right)=\frac{q^{2}+1}{2}, \text { when } \mathrm{q} \text { is odd }
$$

Hence, the total possibilities of the edge labeling in an elegant graph is $\frac{q^{2}}{2}$ when q is even and $\frac{q^{2}+1}{2}$ when q is odd.

2. DEFINITIONS:

Definition 2.1: Consider the graph $C_{n} \times P_{m}$. Let $C_{n}{ }^{i}, 1 \leq i \leq m$ denote the m cycles in the graph $C_{n} \times P_{m}$, corresponding to each vertex of v_{i} of P_{m}. Add a new vertex v and join it to all the vertices of $C_{n}{ }^{1}, C_{n}{ }^{2}, C_{n}{ }^{3}, \ldots, C_{n}{ }^{m}$. The resulting graph be called as $\mathrm{C}_{\mathrm{n}, \mathrm{m}}$.

Definition 2.2: [4] Let $C_{n, m}{ }^{\dagger}$ denotes the graph obtained from $C_{n} \times P_{m}$ by taking two new distinct vertices, say u and v and joining u to all the vertices of $C_{n}{ }^{1}$ and v to all the vertices of $C_{n}{ }^{m}$.

Definition 2.3: The total graph $T(G)$ of G has the vertex set $V(G) \cup E(G)$ in which two vertices are adjacent whenever they are either adjacent or incident in G. The vertex set of $T\left(P_{n}\right)$ is $\left\{u_{i}, v_{j}: 1 \leq i \leq n, 1 \leq j \leq n-1\right\}$ and the edge set of $T\left(P_{n}\right)$ is $\left\{\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}+1}, \mathrm{v}_{\mathrm{j}} \mathrm{v}_{\mathrm{j}+1}, \mathrm{u}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}}, \mathrm{u}_{\mathrm{i}+1} \mathrm{v}_{\mathrm{i}}: 1 \leq \mathrm{i} \leq \mathrm{n}-1,1 \leq \mathrm{j} \leq \mathrm{n}-2\right\}$.

For example, $\mathrm{T}\left(\mathrm{P}_{3}\right)$ is shown in Figure 2.1.

Fig. 2.1
Definition 2.4: The graph $P_{n}{ }^{2}$ is a graph with vertex set $V\left(P_{n}{ }^{2}\right)=\left\{u_{i}: 1 \leq i \leq n\right\}$ and $E\left(P_{n}{ }^{2}\right)=\left\{u_{i} u_{i+1}: 1 \leq i \leq n-1\right\} \cup$ $\left\{\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}+2}: 1 \leq \mathrm{i} \leq \mathrm{n}-2\right\}$.

Definition 2.5: The graph $K_{2}+m K_{1}$ is the join of the graph K_{2} and m disjoint copies of K_{1}. Some authors call this graph a Book with triangular pages.

V. Lakshmi Alias Gomathi ${ }^{1}$, A. Nellai Murugan ${ }^{2}$ and A. Nagarajan ${ }^{3}$ / SOME RESULTS ON ELEGANT GRAPHS/IJMA- 3(3),

Mar.-2012, Page: 1016-1028
For example, $K_{2}+4 K_{1}$ is shown in Figure 2.2.

Fig. 2.2
Definition 2.6: The graph $\left(\mathrm{P}_{2} \cup \mathrm{mK}_{1}\right)+\mathrm{N}_{2}$ is a graph with vertex set $\left\{\mathrm{z}_{1}, \mathrm{z}_{2}, \mathrm{x}_{1}, \mathrm{x}_{2} \ldots \mathrm{x}_{\mathrm{m}}\right\} \cup\left\{\mathrm{y}_{1}, \mathrm{y}_{2}\right\}$ and the edge set $\left\{\mathrm{z}_{1} \mathrm{z}_{2}, \mathrm{y}_{1} \mathrm{z}_{1}, \mathrm{y}_{1} \mathrm{z}_{2}, \mathrm{y}_{2} \mathrm{z}_{1}, \mathrm{y}_{2} \mathrm{z}_{2}\right\} \cup\left\{\mathrm{y}_{1} \mathrm{x}_{\mathrm{i}}, \mathrm{y}_{2} \mathrm{x}_{\mathrm{i}} / 1 \leq \mathrm{i} \leq \mathrm{m}\right\}$.

For example, $\left(\mathrm{P}_{2} \cup 2 \mathrm{~K}_{1}\right)+\mathrm{N}_{2}$ is shown in Figure 2.3. z_{1}

Fig. 2.3
Definition 2.7: For integers $m, n \geq 0$, we consider the graph Jelly Fish $J(m, n)$ with vertex set $V(J(m, n))=\{u, v, x, y\}$ $\cup\left\{\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{m}}\right\} \cup\left\{\mathrm{y}_{1}, \mathrm{y}_{2}, \ldots, \mathrm{y}_{\mathrm{n}}\right\}$ and the edge set $\mathrm{E}(\mathrm{J}(\mathrm{m}, \mathrm{n}))=\{(\mathrm{u}, \mathrm{x}),(\mathrm{u}, \mathrm{y}),(\mathrm{u}, \mathrm{v}),(\mathrm{v}, \mathrm{x}),(\mathrm{v}, \mathrm{y})\} \cup\left\{\left(\mathrm{x}_{\mathrm{i}}, \mathrm{x}\right) / 1 \leq \mathrm{i}\right.$ $\leq \mathrm{m}\} \cup\left\{\left(\mathrm{y}_{\mathrm{j}}, \mathrm{y}\right) / 1 \leq \mathrm{j} \leq \mathrm{n}\right\}$.

For example, $J(3,4)$ is shown in Figure 2.4.

Fig. 2.4
Definition 2.8: $\left\langle\mathrm{C}_{3}, \mathrm{~K}_{1, \mathrm{~m}}\right\rangle(\mathrm{m} \geq 1)$ be the graph obtained by attaching $\mathrm{K}_{1, \mathrm{~m}}$ to one vertex of the cycle C_{3}.
For example, $\left\langle\mathrm{C}_{3}, \mathrm{~K}_{1,4}\right\rangle$ is shown in Figure 2.5.

Fig. 2.5

V. Lakshmi Alias Gomathi ${ }^{1}$, A. Nellai Murugan ${ }^{2}$ and A. Nagarajan ${ }^{3}$ / SOME RESULTS ON ELEGANT GRAPHS/IJMA- 3(3), Mar.-2012, Page: 1016-1028

Definition 2.9: $\left(\mathrm{K}_{4}-\{\mathrm{e}\}\right)_{\mathrm{t}}$ is the one edge union of $\mathrm{K}_{4}-\{\mathrm{e}\}$.
For example, $\left(\mathrm{K}_{4}-\{\mathrm{e}\}\right)_{3}$ is shown in Figure 2.6.

Fig. 2.6
Definition 2.10: Let T be any tree. Denote the tree obtained from T by considering 2 copies of T by adding an edge between them by T (2) and in general, the graph obtained from $\mathrm{T}_{\mathrm{n}-1}$ and T by adding an edge between them is denoted by $T(n)$. Note that $T(1)$ is nothing but T.

For example, T and T (2) are shown in Figure 2.7.

Fig. 2.7
Definition 2.11: Let G be a graph with a fixed vertex v_{o} and let $v_{10}, v_{20}, \ldots, v_{m o}$ be the vertices in m copies of G respectively corresponding to the vertex v_{o}. The graph $\left[\mathrm{P}_{\mathrm{m}}, G\right]$ is a graph obtained from m copies of G by joining $\mathrm{v}_{\mathrm{i} 0}$ and $\mathrm{v}_{(\mathrm{i}+1) 0}$ by an edge for each $\mathrm{i}, 1 \leq \mathrm{i} \leq \mathrm{m}-1$.

For example, $\left[\mathrm{P}_{2}, \mathrm{C}_{3}\right]$ is shown in Figure 2.8

Fig. 2.8

3. MAIN RESULTS:

Theorem 3.1: $\quad\left[\mathrm{P}_{2 \mathrm{~m}-1}, \mathrm{C}_{3}\right]$ is an elegant graph for $\mathrm{m} \geq 1$.
Proof: Let $\mathrm{u}_{1}{ }^{\mathrm{j}}, \mathrm{u}_{2}{ }^{\mathrm{j}}, \mathrm{u}_{3}{ }^{\mathrm{j}}$ be the vertices of $\mathrm{j}^{\text {th }}$ copy of C_{3}.
Define a function $\mathrm{f}: \mathrm{V} \rightarrow\{0,1,2, \ldots, \mathrm{q}=8 \mathrm{~m}-5\}$ as follows :

$$
\begin{aligned}
& \mathrm{f}\left(\mathrm{u}_{1}^{\mathrm{j}}\right)=4(\mathrm{j}-1), \quad 1 \leq \mathrm{j} \leq 2 \mathrm{~m}-1 \\
& \mathrm{f}\left(\mathrm{u}_{2}^{\mathrm{j}}\right)=4 \mathrm{j}-2,1 \leq \mathrm{j} \leq 2 \mathrm{~m}-1 \\
& \mathrm{f}\left(\mathrm{u}_{3}^{\mathrm{j}}\right)=4 \mathrm{j}-1,1 \leq \mathrm{j} \leq 2 \mathrm{~m}-1
\end{aligned}
$$

V. Lakshmi Alias Gomathi ${ }^{1 *}$, A. Nellai Murugan ${ }^{2}$ and A. Nagarajan ${ }^{3}$ / SOME RESULTS ON ELEGANT GRAPHS/ IJMA- 3(3),

 Mar.-2012, Page: 1016-1028The induced edge labels are given as,

$$
\begin{aligned}
& f\left(u_{1}{ }^{j} u_{2}{ }^{j}\right)= \begin{cases}8 j-6, & 1 \leq j \leq m \\
8(j-m)-2, & m+1 \leq j \leq 2 m-1\end{cases} \\
& f\left(u_{2}{ }^{j} u_{3}{ }^{j}\right)= \begin{cases}8 j-3, & 1 \leq j \leq m-1 \\
8(j-m)+1, & m \leq j \leq 2 m-1\end{cases} \\
& f\left(u_{1}{ }^{j} u_{3}{ }^{j}\right)= \begin{cases}8 j-5, & 1 \leq j \leq m \\
8(j-m)-1, & m+1 \leq j \leq 2 m-1\end{cases} \\
& f\left(u_{1}{ }^{j} u_{1}{ }^{j+1}\right)= \begin{cases}8 j, & 1 \leq j \leq m-1 \\
8(j-m)+4, & m+1 \leq j \leq 2 m-1\end{cases}
\end{aligned}
$$

Hence, $\left[\mathrm{P}_{2 \mathrm{~m}-1}, \mathrm{C}_{3}\right]$ is an elegant graph for $\mathrm{m} \geq 1$.
For example, an elegant labeling of $\left[\mathrm{P}_{3}, \mathrm{C}_{3}\right]$ is shown in Figure 3.1.

Fig. 3.1
Theorem 3.2: Comb $P_{n} \odot K_{1}$ is an elegant graph.
Proof: Let $u_{1}, u_{2}, \ldots, u_{n}$ be the vertices of the path P_{n} and $v_{1}, v_{2}, \ldots, v_{n}$ be the corresponding pendant vertices.
Define an one to one function $\mathrm{f}: \mathrm{V} \rightarrow\{0,1,2, \ldots, \mathrm{q}=2 \mathrm{n}-1\}$ as follows:

$$
\begin{aligned}
& \mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=2 \mathrm{i}-1,1 \leq \mathrm{i} \leq \mathrm{n} \\
& \mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=2(\mathrm{i}-1), 1 \leq \mathrm{i} \leq \mathrm{n}
\end{aligned}
$$

The induced edge labels are given as,

$$
\begin{array}{ll}
\mathrm{f}\left(\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}+1}\right) & = \begin{cases}4 \mathrm{i}, & 1 \leq \mathrm{i} \leq \frac{n-1}{2} \\
4 \mathrm{i}-2 \mathrm{n}, & \frac{n-1}{2}+1 \leq \mathrm{i} \leq \mathrm{n}-1\end{cases} \\
\mathrm{f}\left(\mathrm{u}_{\mathrm{i}} \mathrm{~V}_{\mathrm{i}}\right) & = \begin{cases}4 \mathrm{i}-3, & 1 \leq \mathrm{i} \leq \frac{n+1}{2} \\
4 \mathrm{i}-2 \mathrm{n}-3, & \frac{n+1}{2}+1 \leq \mathrm{i} \leq \mathrm{n}\end{cases}
\end{array}
$$

It is easy to check that $f(E)=(1,2,3, \ldots, q\}$. Hence, comb $P_{n} \odot K_{1}$ is an elegant graph.
For example, an elegant labeling of $\mathrm{P}_{5} \odot \mathrm{~K}_{1}$ is shown in Figure 3.2.

Fig. 3.2

V. Lakshmi Alias Gomathi ${ }^{1}$, A. Nellai Murugan ${ }^{2}$ and A. Nagarajan ${ }^{3}$ / SOME RESULTS ON ELEGANT GRAPHS/IJMA- 3(3), Mar.-2012, Page: 1016-1028

Theorem 3.3: The graph $K_{2}+m K_{1}$ is an elegant graph for all m.

Proof : Let u, v be the vertices of K_{2} and $u_{1}, u_{2}, \ldots, u_{m}$ be the remaining vertices of the graph $K_{2}+m K_{1}$ with edges $\left\{\left(\mathrm{u}_{\mathrm{i}}\right),\left(\mathrm{v}_{\mathrm{i}}\right): 1 \leq \mathrm{i} \leq \mathrm{m}\right\}$.

Define an one to one function $\mathrm{f}: \mathrm{V} \rightarrow\{0,1,2,3, \ldots, \mathrm{q}=2 \mathrm{~m}+1\}$ by

$$
\begin{aligned}
& \mathrm{f}(\mathrm{u})=0, \mathrm{f}(\mathrm{v})=2 \mathrm{~m}+1, \\
& \mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=2 \mathrm{i}, 1 \leq \mathrm{i} \leq \mathrm{m} .
\end{aligned}
$$

The induced edge labels are given as,

$$
\begin{aligned}
& \mathrm{f}\left(\mathrm{uu}_{\mathrm{i}}\right)=2 \mathrm{i}, 1 \leq \mathrm{i} \leq \mathrm{m} \\
& \mathrm{f}(\mathrm{uv})=2 \mathrm{~m}+1 \\
& \mathrm{f}\left(\mathrm{vu}_{\mathrm{i}}\right)=2 \mathrm{i}-1,1 \leq \mathrm{i} \leq \mathrm{m}
\end{aligned}
$$

Hence, the graph $\mathrm{K}_{2}+\mathrm{mK} \mathrm{K}_{1}$ is an elegant graph for all m .
For example, an elegant labeling of $\mathrm{K}_{2}+4 \mathrm{~K}_{1}$ is shown in Figure 3.3.

Fig. 3.3
Lemma 3.4: $C_{3} \times P_{n}$ is an elegant graph.
Proof: Let $V\left(C_{3} \times P_{n}\right)=\left\{\mathrm{u}_{\mathrm{ij}} / 1 \leq \mathrm{i} \leq 3 \quad \& 1 \leq \mathrm{j} \leq \mathrm{n}\right\}$ and $\mathrm{E}\left(\mathrm{C}_{3} \times \mathrm{P}_{\mathrm{n}}\right)=\left\{\left(\mathrm{u}_{1 \mathrm{j}} \mathrm{u}_{2 \mathrm{j}}\right),\left\{\left(\mathrm{u}_{2 \mathrm{j}} \mathrm{u}_{3 \mathrm{j}}\right),\left\{\left(\mathrm{u}_{3 \mathrm{j}} \mathrm{u}_{1 \mathrm{j}}\right),: 1 \leq \mathrm{j} \leq \mathrm{n}\right\} \cup\right.\right.$ $\left\{\left(\mathrm{u}_{\mathrm{i}, \mathrm{j}} \mathrm{u}_{\mathrm{i}, \mathrm{j}+1}\right): 1 \leq \mathrm{j} \leq \mathrm{n}-1\right\}$.

Define an one to one function $\mathrm{f}: \mathrm{V} \rightarrow\{0,1,2, \ldots, \mathrm{q}=6 \mathrm{n}-3\}$ as follows:

$$
\begin{aligned}
& \mathrm{f}\left(\mathrm{u}_{\mathrm{ij}}\right)=\mathrm{i}-1,1 \leq \mathrm{i} \leq 3 \text { for } \mathrm{j}=1 \\
& \mathrm{f}\left(\mathrm{u}_{21}\right)=4, \mathrm{f}\left(\mathrm{u}_{22}\right)=5, \mathrm{f}\left(\mathrm{u}_{23}\right)=6 \text { and }
\end{aligned}
$$

Let $\mathrm{a}=\mathrm{i}+\mathrm{j}$ where the summation is taken modulo 3 with residues 1,2,3.

$$
\mathrm{f}\left(\mathrm{u}_{\mathrm{aj}}\right)=\mathrm{f}\left(\mathrm{u}_{(\mathrm{a}+1)}(\mathrm{j}-1)\right)+\mathrm{i}, 1 \leq \mathrm{i} \leq 3 \text { for } 3 \leq \mathrm{j} \leq \mathrm{n}
$$

Clearly, the edge labels $1,2,3, \ldots, q=6 n-3$.

For example, an elegant labeling of $\mathrm{C}_{3} \times \mathrm{P}_{4}$ is shown in Figure 3.4.

Fig. 3.4
Theorem 3.5: $C_{3, n}$ is an elegant graph for any n.
Proof: $\mathrm{C}_{3} \times \mathrm{P}_{\mathrm{n}}$ is an elegant graph by lemma 3.4. Let $\mathrm{V}\left(\mathrm{C}_{3, \mathrm{n}}\right)=\left\{\mathrm{v}, \mathrm{u}_{\mathrm{ij}}: 1 \leq \mathrm{i} \leq 3,1 \leq \mathrm{j} \leq \mathrm{n}\right\}$ and $\mathrm{E}\left(\mathrm{C}_{3, \mathrm{n}}\right)=\mathrm{E}\left(\mathrm{C}_{3} \times \mathrm{P}_{\mathrm{n}}\right)$ $\cup\left\{\mathrm{vu}_{\mathrm{ij}}: 1 \leq \mathrm{i} \leq 3,1 \leq \mathrm{j} \leq \mathrm{n}\right\}$

Define $\mathrm{f}\left(\mathrm{u}_{\mathrm{ij}}\right)$ as in lemma 3.4 and

$$
f(v)=6 n-2
$$

The edge labels of $\mathrm{u}_{\mathrm{ij}} \mathrm{v}$ is $6 \mathrm{n}-2+\mathrm{f}\left(\mathrm{u}_{\mathrm{ij}}\right), 1 \leq \mathrm{i} \leq 3$ and $1 \leq \mathrm{j} \leq \mathrm{n}$.
Clearly, the edge labels of $\mathrm{C}_{3} \times \mathrm{P}_{\mathrm{n}}$ are distinct and non - zero.
For example, an elegant labeling of $\mathrm{C}_{3,4}$ is shown in Figure 3.5.

Fig. 3.5
Theorem 3.6: $\mathrm{C}_{3, \mathrm{n}}{ }^{\dagger}$ is an elegant graph for any m.
Proof: $\mathrm{C}_{3} \times \mathrm{P}_{\mathrm{n}}$ is an elegant graph by lemma 3.4. Let $\mathrm{V}\left(\mathrm{C}_{3, \mathrm{n}}{ }^{\dagger}\right)=\mathrm{V}\left(\mathrm{C}_{3} \times \mathrm{P}_{\mathrm{n}}\right) \cup\{\mathrm{u}, \mathrm{v}\}$ and $\mathrm{E}\left(\mathrm{C}_{3, \mathrm{n}}{ }^{\dagger}\right)=\mathrm{E}\left(\mathrm{C}_{3} \times \mathrm{P}_{\mathrm{n}}\right) \cup\{(\mathrm{u}$ $\left.\left.\mathrm{u}_{\mathrm{i} 1}\right),\left(\mathrm{v}_{\mathrm{in}}\right): 1 \leq \mathrm{i} \leq 3,1 \leq \mathrm{j} \leq \mathrm{n}\right\}$

Define $\mathrm{f}\left(\mathrm{u}_{\mathrm{ij}}\right)$ as in lemma 3.4 and $\mathrm{f}(\mathrm{u})=6 \mathrm{n}-2, \mathrm{f}(\mathrm{v})=3 \mathrm{n}+4$
The labels of the edges $u_{11} u, u_{12} u, u_{13} u, u_{n 1} v, u_{n 2} v, u_{n 3} v$ as $6 n-2,6 n-1, \ldots 6 n+3$.
Hence, the edge labels of $\mathrm{C}_{3, \mathrm{n}}{ }^{\dagger}$ distinct and non - zero.

V. Lakshmi Alias Gomathi ${ }^{1 *}$, A. Nellai Murugan ${ }^{2}$ and A. Nagarajan ${ }^{3}$ / SOME RESULTS ON ELEGANT GRAPHS/ IJMA- 3(3),

Mar.-2012, Page: 1016-1028
For example, an elegant labeling of $\mathrm{C}_{3,4}{ }^{\dagger}$ is shown in Figure 3.6.

Fig. 3.6
Theorem 3.7: The total graph $T\left(P_{n}\right)$ is an elegant for any positive integer n.
Proof: Let $\mathrm{P}_{\mathrm{n}}=\mathrm{u}_{1}, \mathrm{u}_{2}, \ldots, \mathrm{u}_{\mathrm{n}}$ and let $\mathrm{V}\left(\mathrm{T}\left(\mathrm{P}_{\mathrm{n}}\right)\right)=\mathrm{V}\left(\mathrm{P}_{\mathrm{n}}\right) \cup\left\{\mathrm{v}_{\mathrm{i}}: 1 \leq \mathrm{i} \leq \mathrm{n}-1\right\}$ and $\mathrm{E}\left(\mathrm{T}\left(\mathrm{P}_{\mathrm{n}}\right)\right)=\mathrm{E}\left(\mathrm{P}_{\mathrm{n}}\right) \cup\left\{\mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}+1}\right.$: $1 \leq \mathrm{i} \leq \mathrm{n}-1\} \cup\left\{\left(\mathrm{u}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}}\right),\left(\mathrm{v}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}+1}\right): 1 \leq \mathrm{i} \leq \mathrm{n}-1\right\}$. The total number of edges is $3 \mathrm{n}-4$.

Define an one to one function $f: V \rightarrow\{0,1,2,3 \ldots q=4 n-5\}$ by

$$
\begin{aligned}
& f\left(u_{i}\right)=\left\{\begin{array}{l}
i, \quad 1 \leq i \leq 2 \\
2 i-3,3 \leq i \leq n
\end{array}\right. \\
& f\left(v_{j}\right)=\left\{\begin{array}{l}
0, j=1 \\
2 j, 2 \leq j \leq n-1
\end{array}\right.
\end{aligned}
$$

The labels of the edges are given as:

$$
\begin{aligned}
& f\left(u_{i} u_{i+1}\right)= \begin{cases}2 i+1, & 1 \leq i \leq 2 \\
4(i-1), & 3 \leq i \leq n-1\end{cases} \\
& f\left(v_{j} v_{j+1}\right)= \begin{cases}4, & i=1 \\
4 i+2, & 2 \leq i \leq n-2\end{cases} \\
& f\left(u_{i} v_{i}\right)= \\
& f\left(u_{i+1} v_{i}\right)= \begin{cases}5 i-4, & 1 \leq i \leq 2 \\
4 i-3, & 3 \leq i \leq n-1\end{cases} \\
&
\end{aligned}
$$

Hence, the culd gidapı $\perp\left(r_{n}\right)$ וכ an elegant for any positive integer n.
For example, an elegant labeling of $T\left(\mathrm{P}_{5}\right)$ is shown in Figure 3.7.

Fig. 3.7

V. Lakshmi Alias Gomathi ${ }^{1 *}$, A. Nellai Murugan ${ }^{2}$ and A. Nagarajan ${ }^{3}$ / SOME RESULTS ON ELEGANT GRAPHS/IJMA- 3(3), Mar.-2012, Page: 1016-1028

Theorem 3.8: The graph $P_{n}{ }^{2}$ is an elegant graph.
Proof: Let $\mathrm{u}_{1}, \mathrm{u}_{2}, \ldots, \mathrm{u}_{\mathrm{n}}$ be the vertices of the path P_{n}.
Define an one to one function $\mathrm{f}: \mathrm{V} \rightarrow\{0,1,2,3, \ldots, \mathrm{q}\}$ by

$$
\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=\mathrm{i}-1,1 \leq \mathrm{i} \leq \mathrm{n}
$$

The labels of the edges are given as :

$$
\begin{aligned}
& \mathrm{f}\left(\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}+1}\right)=2 \mathrm{i}-1,1 \leq \mathrm{i} \leq \mathrm{n}-1 \\
& \mathrm{f}\left(\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}+2}\right)=2 \mathrm{i}, 1 \leq \mathrm{i} \leq \mathrm{n}-2
\end{aligned}
$$

Hence, the graph $\mathrm{P}_{\mathrm{n}}{ }^{2}$ is an almost elegant graph.
For example, the elegant labeling of $\mathrm{P}_{5}{ }^{2}$ is given in the Figure 3.8.

Fig. 3.8
Theorem 3.9: $\left(\mathrm{P}_{2} \cup \mathrm{mK}_{1}\right)+\mathrm{N}_{2}$ is an elegant graph.
Proof: Let z_{1} and z_{2} and y_{1} and y_{2} and $\mathrm{x}_{\mathrm{j}}, 1 \leq \mathrm{j} \leq \mathrm{m}$ be the vertices of $\left(\mathrm{P}_{2} \cup \mathrm{mK}_{1}\right)+\mathrm{N}_{2}$.
Define an one to one function $\mathrm{f}: \mathrm{V} \rightarrow\{0,1,2,3, \ldots, \mathrm{q}=2 \mathrm{~m}+5\}$ by

$$
\begin{aligned}
& \mathrm{f}\left(\mathrm{z}_{\mathrm{i}}\right)=3(\mathrm{i}-1), 1 \leq \mathrm{i} \leq 2 \\
& \mathrm{f}\left(\mathrm{y}_{\mathrm{i}}\right)=\mathrm{i}, 1 \leq \mathrm{i} \leq 2 \\
& \mathrm{f}\left(\mathrm{x}_{\mathrm{j}}\right)=2 \mathrm{j}+3,1 \leq \mathrm{j} \leq \mathrm{m}
\end{aligned}
$$

The labels of the edges are given as:

$$
\begin{aligned}
& \mathrm{f}\left(\mathrm{y}_{1} \mathrm{z}_{1}\right)=1 \\
& \mathrm{f}\left(\mathrm{z}_{1} \mathrm{y}_{2}\right)=2, \\
& \mathrm{f}\left(\mathrm{z}_{1} \mathrm{z}_{2}\right)=3 \\
& \mathrm{f}\left(\mathrm{y}_{1} \mathrm{z}_{2}\right)=4 \\
& \mathrm{f}\left(\mathrm{y}_{2} \mathrm{z}_{2}\right)=5 \\
& \mathrm{f}\left(\mathrm{y}_{1} \mathrm{x}_{\mathrm{j}}\right)=2 \mathrm{j}+4,1 \leq \mathrm{j} \leq \mathrm{m} \\
& \mathrm{f}\left(\mathrm{y}_{2} \mathrm{x}_{\mathrm{j}}\right)=2 \mathrm{j}+5,1 \leq \mathrm{j} \leq \mathrm{m}
\end{aligned}
$$

Hence, $\left(\mathrm{P}_{2} \cup \mathrm{mK}_{1}\right)+\mathrm{N}_{2}$ is an elegant graph.

V. Lakshmi Alias Gomathi ${ }^{1}$, A. Nellai Murugan ${ }^{2}$ and A. Nagarajan ${ }^{3}$ / SOME RESULTS ON ELEGANT GRAPHS/IJMA- 3(3),
 Mar.-2012, Page: 1016-1028

For example, an elegant labeling of $\left(\mathrm{P}_{2} \cup 2 \mathrm{~K}_{1}\right)+\mathrm{N}_{2}$ is shown in Figure 3.9.

Fig. 3.9
Theorem 3.10: Jelly fish $\mathrm{J}(\mathrm{m}, \mathrm{n})$ is an elegant graph for any positive integers m, n.
Proof: Let $\mathrm{u}, \mathrm{v}, \mathrm{x}, \mathrm{y}, \mathrm{x}_{\mathrm{i}}, 1 \leq \mathrm{i} \leq \mathrm{m}$ and $\mathrm{y}_{\mathrm{j}}, 1 \leq \mathrm{j} \leq \mathrm{n}$ be the vertices of Jelly fish. Let $\mathrm{V}(\mathrm{J}(\mathrm{m}, \mathrm{n}))=\{\mathrm{u}, \mathrm{v}, \mathrm{x}, \mathrm{y}\} \cup\left\{\mathrm{x}_{\mathrm{i}}: 1 \leq \mathrm{i}\right.$ $\leq m\} \cup\left\{y_{j}: 1 \leq j \leq n\right\}$ and $E(J(m, n))=\{(u, x),(u, y),(u, v),(v, x),(v, y)\} \cup\left\{\left(x_{i}, x\right): 1 \leq i \leq m\right\} \cup\left\{\left(y_{j}, y\right): 1 \leq j \leq n\right\}$.

Define an one to one function $\mathrm{f}: \mathrm{V} \rightarrow\{0,1,2,3, \ldots, \mathrm{q}=\mathrm{m}+\mathrm{n}+5\}$ by

$$
\begin{aligned}
& \mathrm{f}(\mathrm{u})=0 \\
& \mathrm{f}(\mathrm{v})=3 \\
& \mathrm{f}(\mathrm{x})=1 \\
& \mathrm{f}(\mathrm{y})=2 \\
& \mathrm{f}\left(\mathrm{y}_{\mathrm{j}}\right)=3+\mathrm{j}, \quad 1 \leq \mathrm{j} \leq \mathrm{n} \\
& \mathrm{f}\left(\mathrm{x}_{\mathrm{i}}\right)=\mathrm{n}+4+\mathrm{i}, \quad 1 \leq \mathrm{i} \leq \mathrm{m}
\end{aligned}
$$

The labels of the edges are given as follows:

$$
\begin{aligned}
& \mathrm{f}(\mathrm{ux})=1, \\
& \mathrm{f}(\mathrm{uy})=2, \\
& \mathrm{f}(\mathrm{uv})=3, \\
& \mathrm{f}(\mathrm{xv})=4, \\
& \mathrm{f}(\mathrm{yv})=5, \\
& \mathrm{f}\left(\mathrm{xx}_{\mathrm{i}}\right)=\mathrm{n}+5+\mathrm{i}, 1 \leq \mathrm{i} \leq \mathrm{m} \\
& \mathrm{f}\left(\mathrm{yy}_{\mathrm{j}}\right)=5+\mathrm{j}, 1 \leq \mathrm{j} \leq \mathrm{n}
\end{aligned}
$$

Clearly, the edge values are distinct and non - zero. Hence, Jelly fish $J(m, n)$ is an elegant graph for any positive integers m,n.

For example, an elegant labeling of $J(3,4)$ is shown in Figure 3.10.

Fig. 3.10

V. Lakshmi Alias Gomathi ${ }^{1^{*}}$, A. Nellai Murugan ${ }^{2}$ and A. Nagarajan ${ }^{3}$ / SOME RESULTS ON ELEGANT GRAPHS/ IJMA- 3(3),
 Mar.-2012, Page: 1016-1028

Proposition 3.11: $C_{3} \hat{o ̂} K_{1, \mathrm{~m}}(m \geq 1)$ is an elegant graph.
Proof: Let $V\left(C_{3} \hat{o} K_{1, m}\right)=\left\{u_{1}, u_{2}, u_{3}, v_{1}, v_{2}, v_{3}, \ldots v_{m}\right\}$ and $E\left(C_{3} \hat{o} K_{1, m}\right)=\left\{\left(u_{1} u_{2}\right),\left(u_{2} u_{3}\right),\left(u_{3} u_{1}\right)\right\} \cup\left\{u_{2} v_{i}: 1 \leq i \leq m\right\}$.
Let u_{2} be the common vertex (centre vertex) of $\mathrm{K}_{1, \mathrm{~m}}$.
Define an one to one function $\mathrm{f}: \mathrm{V} \rightarrow\{0,1,2,3, \ldots, \mathrm{q}=\mathrm{m}+3\}$ by

$$
\begin{aligned}
& \mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=\mathrm{i}-1,1 \leq \mathrm{i} \leq 3 \\
& \mathrm{f}\left(\mathrm{v}_{\mathrm{j}}\right)=2+\mathrm{j}, \quad 1 \leq \mathrm{j} \leq \mathrm{m}
\end{aligned}
$$

The labels of the edges are given as :

$$
\begin{array}{r}
\mathrm{f}\left(\mathrm{u}_{1} \mathrm{u}_{2}\right)=1, \mathrm{f}\left(\mathrm{u}_{2} \mathrm{u}_{3}\right)=3, \mathrm{f}\left(\mathrm{u}_{3} \mathrm{u}_{1}\right)=2, \\
\mathrm{f}\left(\mathrm{u}_{2} \mathrm{v}_{\mathrm{j}}\right)=3+\mathrm{j}, 1 \leq \mathrm{j} \leq \mathrm{m}
\end{array}
$$

Clearly, the edge labels are distinct and non - zero. Hence, $C_{3} \hat{0} K_{1, m}(m \geq 1)$ is an elegant graph.
For example, an elegant labeling of $\mathrm{C}_{3} \hat{0} \mathrm{~K}_{1,6}$ is shown in Figure 3.11.

Fig. 3.11
Theorem 3.12: $\left(\mathrm{K}_{4}-\{\mathrm{e}\}\right)_{\mathrm{t}}$ is an elegant graph for $\mathrm{t} \geq 1$.
Proof: Let $V\left(\left(\mathrm{~K}_{4}-\{\mathrm{e}\}\right)_{\mathrm{t}}\right)=\left\{\mathrm{u}_{\mathrm{i}}, \mathrm{v}_{\mathrm{i}}: 1 \leq \mathrm{i} \leq \mathrm{n}\right\}$ and $\mathrm{E}\left(\left(\mathrm{K}_{4}-\{\mathrm{e}\}\right)_{\mathrm{t}}\right)=\left\{\left(\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}+1}\right),\left(\mathrm{v}_{\mathrm{i}} \mathrm{V}_{\mathrm{i}+1}\right),\left(\mathrm{u}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}+1}\right): 1 \leq \mathrm{i} \leq \mathrm{n}-1\right\} \cup$ $\left\{\mathrm{u}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}}: 1 \leq \mathrm{i} \leq \mathrm{n}\right\}$.

Define an one to one function $\mathrm{f}: \mathrm{V} \rightarrow\{0,1,2,3, \ldots, \mathrm{q}\}$ by

$$
\begin{aligned}
& \mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=2 \mathrm{i}-2,1 \leq \mathrm{i} \leq \mathrm{n} \\
& \mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=2 \mathrm{i}-1,1 \leq \mathrm{i} \leq \mathrm{n}
\end{aligned}
$$

The labels of the edges are given as :

$$
\begin{aligned}
& \mathrm{f}\left(\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}+1}\right)=4 \mathrm{i}-2,1 \leq \mathrm{i} \leq \mathrm{n}-1, \\
& \mathrm{f}\left(\mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}+1}\right)=4 \mathrm{i}, 1 \leq \mathrm{i} \leq \mathrm{n}-1, \\
& \mathrm{f}\left(\mathrm{u}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}}\right)=4 \mathrm{i}-3,1 \leq \mathrm{i} \leq \mathrm{n}, \\
& \mathrm{f}\left(\mathrm{u}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}+1}\right)=4 \mathrm{i}-1,1 \leq \mathrm{i} \leq \mathrm{n}-1 .
\end{aligned}
$$

Clearly, the edge labels are distinct and non - zero. Hence, $\left(\mathrm{K}_{4}-\{\mathrm{e}\}\right)_{\mathrm{t}}$ is a near felicitous graph for $\mathrm{t} \geq 1$.
For example, an elegant labeling of $\left(\mathrm{K}_{4}-\{\mathrm{e}\}\right)_{4}$ is shown in Figure 3.12.

Fig. 3.12

V. Lakshmi Alias Gomathi ${ }^{1 *}$, A. Nellai Murugan ${ }^{2}$ and A. Nagarajan ${ }^{3}$ / SOME RESULTS ON ELEGANT GRAPHS/IJMA- 3(3), Mar.-2012, Page: 1016-1028

Theorem 3.13: $n-$ armed crown $C_{3} \odot K_{m}, m \geq 1$ is an elegant graph.
Proof: Let $V\left(C_{3} \odot K_{m}\right)=\left\{u_{1}, u_{2}, u_{3},: 1 \leq j \leq m\right\}$ and $E\left(C_{3} \odot K_{m}\right)=\left\{\left(u_{1} u_{2}\right),\left(u_{2} u_{3}\right),\left(u_{3} u_{1}\right)\right\} \cup\left\{\left(u_{1} v_{j}\right),\left(u_{2} v_{j}\right),\left(u_{3} v_{j}\right): 1 \leq j\right.$ $\leq \mathrm{m}\}$.

Define an one to one function $\mathrm{f}: \mathrm{V} \rightarrow\{0,1,2, \ldots, \mathrm{q}=3 \mathrm{~m}+3\}$ by

$$
\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=\mathrm{i}-1,1 \leq \mathrm{i} \leq 3
$$

For $1 \leq \mathrm{i} \leq 2$,

$$
f\left(\mathrm{u}_{(\mathrm{i}+2) \mathrm{j}}\right)=\mathrm{i}+2 \mathrm{j}, \quad 1 \leq \mathrm{j} \leq \mathrm{m}
$$

For $\mathrm{i}=3$,

$$
\mathrm{f}\left(\mathrm{u}_{(\mathrm{i}+2) \mathrm{j}}\right)=\mathrm{f}\left(\mathrm{u}_{1 \mathrm{j}}\right)+\mathrm{j}, 1 \leq \mathrm{j} \leq \mathrm{m}
$$

The label of the edges are given as :

$$
\begin{aligned}
& \mathrm{f}\left(\mathrm{u}_{3} \mathrm{v}_{\mathrm{j}}\right)=2 \mathrm{j}+1,1 \leq \mathrm{j} \leq \mathrm{m} \\
& \mathrm{f}\left(\mathrm{u}_{1} \mathrm{v}_{\mathrm{j}}\right)=2(\mathrm{j}+1), 1 \leq \mathrm{j} \leq \mathrm{m} \\
& \mathrm{f}\left(\mathrm{u}_{2} \mathrm{v}_{\mathrm{j}}\right)=2 \mathrm{~m}+4+(\mathrm{j}-1), \quad 1 \leq \mathrm{j} \leq \mathrm{m}
\end{aligned}
$$

Clearly, the edge labels are distinct and non - zero. Hence, n - armed crown $C_{3} \odot K_{m}, m \geq 1$ is an elegant graph.
For example, an elegant labeling of $\mathrm{C}_{3} \odot \mathrm{~K}_{3}$ is shown in Figure 3.13.

Fig. 3.13

REFERENCES:

[1] G.J. Chang, D.F. Hsu and D.G. Rogers, Additive variations on a graceful theme : Some results on harmonious and other related graphs, Congr. Numer, 32 (1981), 181-197.
[2] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications, Macmillan Co., New York (1976).
[3].R. Balakrishnan, A. Selvam and V. Yegnanarayanan, Some results on elegant graphs, Indian J. Pure Appl. Math., 28 (1997), 905-916.
[4] R. Balakrishnan, A. Selvam ad V. Yegnanarayanan, On Felicitous Labelings of Graphs, Proceedings of the National Workshop on Graph Theory and Its Applications, Manonmaniam Sundaranar University, Tirunelveli, Feb. 2127, 996, pp.47-61.

[^0]: * Corresponding author: V. Lakshmi Alias Gomathi ${ }^{\text {* }}$, ${ }^{*}$ E-mail:.Iakshmi10674@gmail.com

