Some Results on Elegant Graphs

V. Lakshmi Alias Gomathi1*, A. Nellai Murugan2 and A. Nagarajan3

Research Scholar, V.O.C. College, Tuticorin, India
Assistant Professor, V.O.C. College, Tuticorin, India
Associate Professor, V.O.C. College, Tuticorin, India

E-mail: lakshmi10674@gmail.com

(Received on: 11-02-12; Accepted on: 06-03-12)

Abstract

In 1981, Chang, Hsu and Rogers [1] defined an elegant labeling \(f \) of a graph \(G \) with \(q \) edges as an injective function from the vertices of \(G \) to the set \{0, 1, 2, \ldots, q\} such that when each edge \(xy \) is assigned the label \((f(x) + f(y)) \pmod{(q+1)}\), the resulting edge labels are distinct and non-zero. In this paper, certain families of graphs are shown to be elegant.

AMS Classification Number: AMS_05C78.

Keywords and phrases: Graph labeling, cycles, paths, total graph, jelly fish, \(K_2 + mK_1 \), \((P_2 \cup mK_1) + N_2 \), \(\langle C_3, K_{1,m} \rangle \), \((K_4 - \{e\})_t \), etc., and elegant labeling.

1. INTRODUCTION

In this paper, by a graph we mean an undirected graph without loops or multiple edges. For notations and terminology, we follow Bondy and Murthy [2].

Throughout this paper, we denote the cycle on \(n \) vertices by \(C_n \) and the path on \(n \) vertices by \(P_n \). Also, \(f \) stands for a 1 – 1 function from \(V(G) \) to a subset of the set of non-negative integers and for any edge \(e = xy \in E(G) \), \(f^*(xy) = f(x) + f(y) \). We call \(f^* \) the induced edge labeling of \(G \) (induced by \(f \)).

Chang, Hsu and Rogers [1] defined an elegant labeling \(f \) of a graph \(G \) with \(q \) edges as an injective function from the vertices of \(G \) to the set \{0, 1, 2, \ldots, q\} such that when each edge \(xy \) is assigned the label \((f(x) + f(y)) \pmod{(q+1)}\), the resulting edge labels are distinct and non-zero. In this paper, certain families of graphs are shown to be elegant.

Balakrishnan, Selvam and Yegnanarayanan [3] have shown that the bistar \(B_{n,n} \) is elegant if and only if \(n \) is even. For example, an elegant labeling of \(B_{2,2} \) is shown in Figure 1.1.

Fig. 1.1

Theorem 1.1: The total possibilities of the edge labeling in an elegant graph is \(\frac{q^2}{2} \) when \(q \) is even and \(\frac{q^2 + 1}{2} \) when \(q \) is odd.

Proof: case (i) when \(q \) is even.

Sub case (i): Let the edge label be \(k \).

The possible edge labels are \{(i, q-i+k+1) : k + 1 \leq i \leq \frac{q}{2} + \left\lfloor \frac{k}{2} \right\rfloor \} \cup \{(i, k-i) : 0 \leq i \leq \left\lfloor \frac{k}{2} \right\rfloor - 1\} \) and its total is \(\frac{q}{2} \).

Corresponding author: V. Lakshmi Alias Gomathi1, E-mail: lakshmi10674@gmail.com

International Journal of Mathematical Archive-3 (3), Mar. – 2012 1017
Hence, the total possible edge labels is \(q \left(\frac{q}{2} \right) = \frac{q^2}{2} \).

Case (ii) when \(q \) is odd.

Sub case (i): Let the edge label be \(k \) and let \(k \) be odd with \(1 \leq k \leq q \).

The possible edge labels are \(\{(i, q-i+k+1) : k+1 \leq i \leq \frac{q+1}{2} + \frac{k-1}{2}\} \cup \{(i, k-i) : 0 \leq i \leq \frac{k-1}{2}\} \) and its total is \(\frac{q+1}{2} \).

Hence, the total possible odd edge label is \(\left(\frac{q+1}{2} \right) \left(\frac{q+1}{2} \right) \) \(\text{ (1) } \)

Sub case (ii): Let the edge label be \(k \) and let \(k \) be even with \(2 \leq k \leq q-1 \).

The possible edge labels are \(\{(i, q-i+k+1) : k+1 \leq i \leq \frac{q+1}{2} + \frac{k-2}{2}\} \cup \{(i, k-i) : 0 \leq i \leq \frac{k}{2}-1\} \) and its total is \(\frac{q-1}{2} \).

Hence, the total possible even edge labels is \(\left(\frac{q-1}{2} \right) \left(\frac{q-1}{2} \right) \) \(\text{ (2) } \)

Therefore, the total possible edge label is,

\[\left(\frac{q+1}{2} \right) \left(\frac{q+1}{2} \right) + \left(\frac{q-1}{2} \right) \left(\frac{q-1}{2} \right) = \frac{q^2 + 1}{2} , \text{ when } q \text{ is odd} \]

Hence, the total possibilities of the edge labeling in an elegant graph is \(\frac{q^2 + 1}{2} \) when \(q \) is even and \(\frac{q^2 + 1}{2} \) when \(q \) is odd.

2. DEFINITIONS:

Definition 2.1: Consider the graph \(C_n \times P_m \). Let \(C_n^i, 1 \leq i \leq m \) denote the \(m \) cycles in the graph \(C_n \times P_m \), corresponding to each vertex of \(v_i \) of \(P_m \). Add a new vertex \(v \) and join it to all the vertices of \(C_n^1, C_n^2, C_n^3, \ldots, C_n^m \). The resulting graph be called as \(C_{n,m} \).

Definition 2.2: \([4]\) Let \(C_{n,m}^\dagger \) denotes the graph obtained from \(C_n \times P_m \) by taking two new distinct vertices, say \(u \) and \(v \) and joining \(u \) to all the vertices of \(C_n^1 \) and \(v \) to all the vertices of \(C_n^m \).

Definition 2.3: The total graph \(T(G) \) of \(G \) has the vertex set \(V(G) \cup E(G) \) in which two vertices are adjacent whenever they are either adjacent or incident in \(G \). The vertex set of \(T(P_n) \) is \(\{u_i, v_j : 1 \leq i \leq n, \ 1 \leq j \leq n - 1\} \) and the edge set of \(T(P_n) \) is \(\{u_i u_{i+1}, v_{j-1}, u_i v_i, u_{i+1} v_{j+1} : 1 \leq i \leq n - 1, \ 2 \leq j \leq n - 2\} \).

For example, \(T(P_3) \) is shown in Figure 2.1.

![Fig. 2.1](image)

Definition 2.4: The graph \(P_n^2 \) is a graph with vertex set \(V(P_n^2) = \{u_i : 1 \leq i \leq n\} \) and \(E(P_n^2) = \{u_i u_{i+1} : 1 \leq i \leq n - 1\} \cup \{u_{i+2} : 1 \leq i \leq n - 2\} \).

Definition 2.5: The graph \(K_2 + mK_1 \) is the join of the graph \(K_2 \) and \(m \) disjoint copies of \(K_1 \). Some authors call this graph a Book with triangular pages.
For example, \(K_2 + 4K_1 \) is shown in Figure 2.2.

![Fig. 2.2](image)

Definition 2.6: The graph \((P_2 \cup mK_1) + N_2\) is a graph with vertex set \(\{z_1, z_2, x_1, x_2, \ldots, x_m\} \cup \{y_1, y_2\}\) and the edge set \(\{z_1z_2, y_1z_1, y_1z_2, y_2z_1, y_2z_2\} \cup \{y_1x_i, y_2x_i / 1 \leq i \leq m\}\).

For example, \((P_2 \cup 2K_1) + N_2\) is shown in Figure 2.3.

![Fig. 2.3](image)

Definition 2.7: For integers \(m, n \geq 0\), we consider the graph **Jelly Fish** \(J(m, n)\) with vertex set \(V(J(m, n)) = \{u, v, x, y\} \cup \{x_1, x_2, \ldots, x_m\} \cup \{y_1, y_2, \ldots, y_n\}\) and the edge set \(E(J(m, n)) = \{(u, x), (u, y), (v, x), (v, y)\} \cup \{(x_i, x) / 1 \leq i \leq m\} \cup \{(y_j, y) / 1 \leq j \leq n\}\).

For example, \(J(3, 4)\) is shown in Figure 2.4.

![Fig. 2.4](image)

Definition 2.8: \(\langle C_3, K_{1,m} \rangle (m \geq 1)\) be the graph obtained by attaching \(K_{1,m}\) to one vertex of the cycle \(C_3\).

For example, \(\langle C_3, K_{1,4} \rangle\) is shown in Figure 2.5.

![Fig. 2.5](image)
Definition 2.9: \((K_4 - \{e\})_t\) is the one edge union of \(K_4 - \{e\}\).

For example, \((K_4 - \{e\})_3\) is shown in Figure 2.6.

![Fig. 2.6](image)

Definition 2.10: Let \(T\) be any tree. Denote the tree obtained from \(T\) by considering 2 copies of \(T\) by adding an edge between them by \(T(2)\) and in general, the graph obtained from \(T_{n-1}\) and \(T\) by adding an edge between them is denoted by \(T(n)\). Note that \(T(1)\) is nothing but \(T\).

For example, \(T\) and \(T(2)\) are shown in Figure 2.7.

![Fig. 2.7](image)

Definition 2.11: Let \(G\) be a graph with a fixed vertex \(v_0\) and let \(v_1, v_2, \ldots, v_m\) be the vertices in \(m\) copies of \(G\) respectively corresponding to the vertex \(v_0\). The graph \([P_m, G]\) is a graph obtained from \(m\) copies of \(G\) by joining \(v_i\) and \(v_{i+1}\) by an edge for each \(i, 1 \leq i \leq m-1\).

For example, \([P_2, C_3]\) is shown in Figure 2.8.

![Fig. 2.8](image)

3. MAIN RESULTS:

Theorem 3.1: \([P_{2m-1}, C_3]\) is an elegant graph for \(m \geq 1\).

Proof: Let \(u_1^j, u_2^j, u_3^j\) be the vertices of \(j\)th copy of \(C_3\).

Define a function \(f: V \rightarrow \{0, 1, 2, \ldots, q = 8m - 5\}\) as follows:

\[
f(u_1^j) = 4(j - 1), \quad 1 \leq j \leq 2m - 1
\]

\[
f(u_2^j) = 4j - 2, \quad 1 \leq j \leq 2m - 1
\]

\[
f(u_3^j) = 4j - 1, \quad 1 \leq j \leq 2m - 1
\]
The induced edge labels are given as,

\[
\begin{align*}
 f (u^j_1 u^j_2) &= \begin{cases}
 8j - 6, & 1 \leq j \leq m \\
 8(j - m) - 2, & m + 1 \leq j \leq 2m - 1
 \end{cases} \\
 f (u^j_2 u^j_3) &= \begin{cases}
 8j - 3, & 1 \leq j \leq m - 1 \\
 8(j - m) + 1, & m \leq j \leq 2m - 1
 \end{cases} \\
 f (u^j_1 u^j_3) &= \begin{cases}
 8j - 5, & 1 \leq j \leq m \\
 8(j - m) - 1, & m + 1 \leq j \leq 2m - 1
 \end{cases} \\
 f (u^j_1 u^{j+1}_1) &= \begin{cases}
 8j, & 1 \leq j \leq m - 1 \\
 8(j - m) + 4, & m + 1 \leq j \leq 2m - 1
 \end{cases}
\end{align*}
\]

Hence, \([P_{2m} , C_3] \) is an elegant graph for \(m \geq 1 \).

For example, an elegant labeling of \([P_3 , C_3] \) is shown in Figure 3.1.

![Fig. 3.1](image)

Theorem 3.2: Comb \(P_n \Theta K_1 \) is an elegant graph.

Proof: Let \(u_1, u_2, \ldots, u_n \) be the vertices of the path \(P_n \) and \(v_1, v_2, \ldots, v_n \) be the corresponding pendant vertices.

Define an one to one function \(f : V \to \{0, 1, 2, \ldots, q = 2n - 1\} \) as follows:

\[
\begin{align*}
 f (u_i) &= 2i - 1, \quad 1 \leq i \leq n \\
 f (v_i) &= 2(i - 1), \quad 1 \leq i \leq n
\end{align*}
\]

The induced edge labels are given as,

\[
\begin{align*}
 f (u_i u_{i+1}) &= \begin{cases}
 4i, & 1 \leq i \leq \frac{n - 1}{2} \\
 4i - 2n, & \frac{n - 1}{2} + 1 \leq i \leq n - 1
 \end{cases} \\
 f (u_i v_i) &= \begin{cases}
 4i - 3, & 1 \leq i \leq \frac{n + 1}{2} \\
 4i - 2n - 3, & \frac{n + 1}{2} + 1 \leq i \leq n
 \end{cases}
\end{align*}
\]

It is easy to check that \(f(E) = \{1, 2, 3, \ldots, q\} \). Hence, comb \(P_n \Theta K_1 \) is an elegant graph.

For example, an elegant labeling of \(P_5 \Theta K_1 \) is shown in Figure 3.2.

![Fig. 3.2](image)
Theorem 3.3: The graph $K_2 + mK_1$ is an elegant graph for all m.

Proof: Let u, v be the vertices of K_2 and u_1, u_2, \ldots, u_m be the remaining vertices of the graph $K_2 + mK_1$ with edges $(u_i, v_i), 1 \leq i \leq m$.

Define an one to one function $f: V \rightarrow \{0, 1, 2, 3, \ldots, q = 2m + 1\}$ by

$$f(u) = 0, \quad f(v) = 2m + 1, \quad f(u_i) = 2i, 1 \leq i \leq m.$$

The induced edge labels are given as,

$$f(u_iu_j) = 2i, \quad 1 \leq i \leq m$$
$$f(uvu_i) = 2i - 1, \quad 1 \leq i \leq m$$

Hence, the graph $K_2 + mK_1$ is an elegant graph for all m.

For example, an elegant labeling of $K_2 + 4K_1$ is shown in Figure 3.3.

![Fig. 3.3](image-url)

Lemma 3.4: $C_3 \times P_n$ is an elegant graph.

Proof: Let $V(C_3 \times P_n) = \{u_{ij} / 1 \leq i \leq 3 \text{ and } 1 \leq j \leq n\}$ and $E(C_3 \times P_n) = \{(u_{ij}, u_{i+1,j}), \{(u_{ij}, u_{i+1,j}), \{(u_{ij}, u_{i,j}), 1 \leq j \leq n) \cup \{(u_{ij}, u_{i,j+1}) : 1 \leq j \leq n - 1}\}$.

Define an one to one function $f: V \rightarrow \{0, 1, 2, \ldots, q = 6n - 3\}$ as follows:

$$f(u_{ij}) = i - 1, \quad 1 \leq i \leq 3 \text{ for } j = 1$$
$$f(u_{i1}) = 4, \quad f(u_{i2}) = 5, \quad f(u_{i3}) = 6 \text{ and}$$

Let $a = i + j$ where the summation is taken modulo 3 with residues 1,2,3.

$$f(u_{aj}) = f(u_{a+1,j-1}) + i, \quad 1 \leq i \leq 3 \text{ for } 3 \leq j \leq n$$

Clearly, the edge labels $1, 2, 3, \ldots, q = 6n - 3$.
For example, an elegant labeling of $C_3 \times P_4$ is shown in Figure 3.4.

Theorem 3.5: $C_{3,n}$ is an elegant graph for any n.

Proof: $C_3 \times P_n$ is an elegant graph by lemma 3.4. Let $V(C_{3,n}) = \{v, u_{ij} : 1 \leq i \leq 3, 1 \leq j \leq n\}$ and $E(C_{3,n}) = E(C_3 \times P_n) \cup \{v u_{ij} : 1 \leq i \leq 3, 1 \leq j \leq n\}$

Define $f(u_{ij})$ as in lemma 3.4 and $f(v) = 6n - 2$

The edge labels of $u_{ij} v$ is $6n - 2 + f(u_{ij}), 1 \leq i \leq 3$ and $1 \leq j \leq n$.

Clearly, the edge labels of $C_3 \times P_n$ are distinct and non-zero.

For example, an elegant labeling of $C_{3,4}$ is shown in Figure 3.5.

Theorem 3.6: $C_{3,n}^\dagger$ is an elegant graph for any n.

Proof: $C_3 \times P_n$ is an elegant graph by lemma 3.4. Let $V(C_{3,n}^\dagger) = V(C_3 \times P_n) \cup \{u, v\}$ and $E(C_{3,n}^\dagger) = E(C_3 \times P_n) \cup \{(u u_{i1}), (v u_{in}) : 1 \leq i \leq 3, 1 \leq j \leq n\}$

Define $f(u_{ij})$ as in lemma 3.4 and $f(u) = 6n - 2, f(v) = 3n + 4$

The labels of the edges $u_{11} u, u_{12} u, u_{13} u, u_{n1} v, u_{n2} v, u_{n3} v$ as $6n - 2, 6n - 1, \ldots 6n + 3$.

Hence, the edge labels of $C_{3,n}^\dagger$ distinct and non-zero.
For example, an elegant labeling of $C_{3,4}$ is shown in Figure 3.6.

\[\begin{align*}
\text{Fig. 3.6} \\
\end{align*} \]

Theorem 3.7: The total graph $T(P_n)$ is an elegant for any positive integer n.

Proof: Let $P_n = u_1, u_2, \ldots, u_n$ and let $V(T(P_n)) = V(P_n) \cup \{v_i : 1 \leq i \leq n-1\}$ and $E(T(P_n)) = E(P_n) \cup \{v_i v_{i+1} : 1 \leq i \leq n-1\}$. The total number of edges is $3n - 4$.

Define an one to one function $f : V \rightarrow \{0, 1, 2, 3, \ldots q = 4n - 5\}$ by

\[
\begin{align*}
f(u_i) &= \begin{cases}
 i, & 1 \leq i \leq 2 \\
 2i - 3, & 3 \leq i \leq n
\end{cases} \\
f(v_j) &= \begin{cases}
 0, & j = 1 \\
 2j, & 2 \leq j \leq n - 1
\end{cases}
\end{align*}
\]

The labels of the edges are given as:

\[
\begin{align*}
f(u_i u_{i+1}) &= \begin{cases}
 2i + 1, & 1 \leq i \leq 2 \\
 4(i - 1), & 3 \leq i \leq n - 1
\end{cases} \\
f(v_j v_{j+1}) &= \begin{cases}
 4, & i = 1 \\
 4i + 2, & 2 \leq i \leq n - 2
\end{cases} \\
f(u_i v_j) &= \begin{cases}
 5i - 4, & 1 \leq i \leq 2 \\
 4i - 3, & 3 \leq i \leq n - 1
\end{cases} \\
f(u_{i-1} v_i) &= \begin{cases}
 5i - 3, & 1 \leq i \leq 2 \\
 4i - 1, & 3 \leq i \leq n - 1
\end{cases}
\end{align*}
\]

Hence, the total graph $T(P_n)$ is an elegant for any positive integer n.

For example, an elegant labeling of $T(P_5)$ is shown in Figure 3.7.

\[\begin{align*}
\text{Fig. 3.7} \\
\end{align*} \]
Theorem 3.8: The graph P_n^2 is an elegant graph.

Proof: Let u_1, u_2, \ldots, u_n be the vertices of the path P_n.

Define an one to one function $f: V \to \{0, 1, 2, 3, \ldots, q\}$ by
\[f(u_i) = i - 1, \quad 1 \leq i \leq n \]
The labels of the edges are given as:
\[f(u_i u_{i+1}) = 2i - 1, \quad 1 \leq i \leq n - 1 \]
\[f(u_i u_{i+2}) = 2i, \quad 1 \leq i \leq n - 2 \]
Hence, the graph P_n^2 is an almost elegant graph.

For example, the elegant labeling of P_5^2 is given in the Figure 3.8.

![Fig. 3.8](image)

Theorem 3.9: $(P_2 \cup mK_1) + N_2$ is an elegant graph.

Proof: Let z_1 and z_2 and y_1 and y_2 and $x_j, 1 \leq j \leq m$ be the vertices of $(P_2 \cup mK_1) + N_2$.

Define an one to one function $f: V \to \{0, 1, 2, 3, \ldots, q = 2m + 5\}$ by
\[f(z_i) = 3(i-1), \quad 1 \leq i \leq 2 \]
\[f(y_i) = i, \quad 1 \leq i \leq 2 \]
\[f(x_j) = 2j + 3, \quad 1 \leq j \leq m \]
The labels of the edges are given as:
\[f(y_1 z_1) = 1, \]
\[f(z_1 y_2) = 2, \]
\[f(z_1 z_2) = 3, \]
\[f(y_1 z_2) = 4, \]
\[f(y_2 z_2) = 5, \]
\[f(y_1 x_j) = 2j + 4, \quad 1 \leq j \leq m \]
\[f(y_2 x_j) = 2j + 5, \quad 1 \leq j \leq m \]
Hence, $(P_2 \cup mK_1) + N_2$ is an elegant graph.
For example, an elegant labeling of \((P_2 \cup 2K_1) + N_2\) is shown in Figure 3.9.

Theorem 3.10: Jelly fish \(J(m, n)\) is an elegant graph for any positive integers \(m, n\).

Proof: Let \(u, v, x, y, x_i, 1 \leq i \leq m\) and \(y_j, 1 \leq j \leq n\) be the vertices of Jelly fish. Let \(V(J(m, n)) = \{u, v, x, y\} \cup \{x_i : 1 \leq i \leq m\} \cup \{y_j : 1 \leq j \leq n\}\) and \(E(J(m, n)) = \{(u, x), (u, y), (u, v), (v, x), (v, y)\} \cup \{(x_i, x) : 1 \leq i \leq m\} \cup \{(y_j, y) : 1 \leq j \leq n\}\).

Define an one to one function \(f : V \rightarrow \{0, 1, 2, 3, \ldots, q = m + n + 5\}\) by

- \(f(u) = 0\),
- \(f(v) = 3\),
- \(f(x) = 1\),
- \(f(y) = 2\),
- \(f(y_j) = 3 + j, \ 1 \leq j \leq n\),
- \(f(x_i) = n + 4 + i, \ 1 \leq i \leq m\)

The labels of the edges are given as follows:

- \(f(ux) = 1\),
- \(f(uy) = 2\),
- \(f(uv) = 3\),
- \(f(xv) = 4\),
- \(f(yy_j) = 5 + j, \ 1 \leq j \leq n\)
- \(f(xx_i) = n + 5 + i, \ 1 \leq i \leq m\)
- \(f(yy_j) = 5 + j, \ 1 \leq j \leq n\)

Clearly, the edge values are distinct and non-zero. Hence, Jelly fish \(J(m, n)\) is an elegant graph for any positive integers \(m, n\).

For example, an elegant labeling of \(J(3, 4)\) is shown in Figure 3.10.
Proposition 3.11: $C_3 \circ K_{1,m}$ ($m \geq 1$) is an elegant graph.

Proof: Let $V(C_3 \circ K_{1,m})=\{u_1, u_2, u_3, v_1, v_2, v_3, \ldots, v_m\}$ and $E(C_3 \circ K_{1,m}) = \{(u_1 u_2), (u_2 u_3), (u_3 u_1)\} \cup \{u_2 v_i : 1 \leq i \leq m\}$.

Let u_2 be the common vertex (centre vertex) of $K_{1,m}$.

Define an one to one function $f: V \rightarrow \{0, 1, 2, 3, \ldots, q = m + 3\}$ by

\[
\begin{align*}
 f(u_i) &= i - 1, & & 1 \leq i \leq 3 \\
 f(v_j) &= 2 + j, & & 1 \leq j \leq m
\end{align*}
\]

The labels of the edges are given as:

\[
\begin{align*}
 f(u_1u_2) &= 1, & f(u_2u_3) &= 3, & f(u_3u_1) &= 2, \\
 f(u_2v_i) &= 3 + j, & 1 \leq j \leq m
\end{align*}
\]

Clearly, the edge labels are distinct and non-zero. Hence, $C_3 \circ K_{1,m}$ ($m \geq 1$) is an elegant graph.

For example, an elegant labeling of $C_3 \circ K_{1,6}$ is shown in Figure 3.11.

\[\text{Fig. 3.11}\]

Theorem 3.12: $(K_4 - \{e\})_t$ is an elegant graph for $t \geq 1$.

Proof: Let $V((K_4 - \{e\})_t) = \{u_i, v_i : 1 \leq i \leq n\}$ and $E((K_4 - \{e\})_t) = \{(u_i u_{i+1}), (v_i v_{i+1}), (u_i v_{i+1}) : 1 \leq i \leq n - 1\} \cup \{u_i v_i : 1 \leq i \leq n\}$.

Define an one to one function $f: V \rightarrow \{0, 1, 2, 3, \ldots, q\}$ by

\[
\begin{align*}
 f(u_i) &= 2i - 2, & & 1 \leq i \leq n \\
 f(v_i) &= 2i - 1, & & 1 \leq i \leq n
\end{align*}
\]

The labels of the edges are given as:

\[
\begin{align*}
 f(u_i u_{i+1}) &= 4i - 2, & & 1 \leq i \leq n - 1, \\
 f(v_i v_{i+1}) &= 4i, & & 1 \leq i \leq n - 1, \\
 f(u_i v_i) &= 4i - 3, & & 1 \leq i \leq n, \\
 f(u_i v_{i+1}) &= 4i - 1, & & 1 \leq i \leq n - 1.
\end{align*}
\]

Clearly, the edge labels are distinct and non-zero. Hence, $(K_4 - \{e\})_t$ is a near felicitous graph for $t \geq 1$.

For example, an elegant labeling of $(K_4 - \{e\})_4$ is shown in Figure 3.12.

\[\text{Fig. 3.12}\]
Theorem 3.13: Let \(n \)-armed crown \(C_3 \otimes K_m \), \(m \geq 1 \) is an elegant graph.

Proof: Let \(V(C_3 \otimes K_m) = \{u_1, u_2, u_3, : 1 \leq j \leq m\} \) and \(E(C_3 \otimes K_m) = \{(u_1 u_2), (u_2 u_3), (u_3 u_1)\} \cup \{(u_1 v_j), (u_2 v_j), (u_3 v_j) : 1 \leq j \leq m\} \).

Define an one to one function \(f: V \rightarrow \{0, 1, 2, \ldots, q = 3m + 3\} \) by

\[
f(u_i) = i - 1, \quad 1 \leq i \leq 3
\]

For \(1 \leq i \leq 2 \),

\[
f(u_{i+2j}) = i + 2j, \quad 1 \leq j \leq m
\]

For \(i = 3 \),

\[
f(u_{i+2j}) = f(u_1j) + j, \quad 1 \leq j \leq m
\]

The label of the edges are given as :

\[
f(u_3 v_j) = 2j + 1, \quad 1 \leq j \leq m
\]

\[
f(u_1 v_j) = 2(j + 1), \quad 1 \leq j \leq m
\]

\[
f(u_2 v_j) = 2m + 4 + (j - 1), \quad 1 \leq j \leq m
\]

Clearly, the edge labels are distinct and non-zero. Hence, \(n \)-armed crown \(C_3 \otimes K_m \), \(m \geq 1 \) is an elegant graph.

For example, an elegant labeling of \(C_3 \otimes K_3 \) is shown in Figure 3.13.

Fig. 3.13

REFERENCES:

