# International Journal of Mathematical Archive-3(3), 2012, Page: 1017-1028

## SOME RESULTS ON ELEGANT GRAPHS

# V. Lakshmi Alias Gomathi<sup>1\*</sup>, A. Nellai Murugan<sup>2</sup> and A. Nagarajan<sup>3</sup>

Research Scholar, V.O.C. College, Tuticorin, India Assistant Professor, V.O.C. College, Tuticorin, India Associate Professor, V.O.C. College, Tuticorin, India

E-mail: lakshmi10674@gmail.com

(Received on: 11-02-12; Accepted on: 06-03-12)

#### ABSTRACT

In 1981, Chang, Hsu and Rogers [1] defined an elegant labeling f of a graph G with q edges as an injective function from the vertices of G to the set  $\{0, 1, 2, ..., q\}$  such that when each edge xy is assigned the label (f(x) + f(y)) (mod (q+1)), the resulting edge labels are distinct and non – zero. In this paper, certain families of graphs are shown to be elegant.

AMS Classification Number: AMS\_05C78.

*Keywords and phrases:* Graph labeling, cycles, paths, total graph, jelly fish,  $K_2 + mK_1$ ,  $(P_2 \cup mK_1) + N_2$ ,  $(C_3, K_{1,m})$ ,  $(K_4 - \{e\})_b$ , etc., and elegant labeling.

#### 1. INTRODUCTION

In this paper, by a graph we mean an undirected graph without loops or multiple edges. For notations and terminology, we follow Bondy and Murthy [2].

Throughout this paper, we denote the cycle on n vertices by  $C_n$  and the path on n vertices by  $P_n$ . Also, f stands for a 1-1 function from V (G) to a subset of the set of non – negative integers and for any edge  $e = xy \in E$  (G), f \*(xy) = f(x) + f(y). We call f \* the induced edge labeling of G (induced by f).

Chang, Hsu and Rogers [1] defined an elegant labeling f of a graph G with q edges as an injective function from the vertices of G to the set  $\{0, 1, 2, ..., q\}$  such that when each edge xy is assigned the label  $(f(x) + f(y)) \pmod{(q+1)}$ , the resulting edge labels are distinct and non – zero. In this paper, certain families of graphs are shown to be elegant.

Balakrishnan, Selvam and Yegnanarayanan [3] have shown that the bistar  $B_{n,n}$  is elegant if and only if n is even. For example, an elegant labeling of  $B_{2,2}$  is shown in Figure 1.1.



Fig. 1.1

**Theorem 1.1:** The total possibilities of the edge labeling in an elegant graph is  $\frac{q^2}{2}$  when q is even and  $\frac{q^2+1}{2}$  when q is odd.

Proof: case (i) when q is even.

#### Sub case (i): Let the edge label be k.

The possible edge labels are  $\{(i, q-i+k+1): k+1 \le i \le \frac{q}{2} + \lceil \frac{k-1}{2} \rceil\} \cup \{(i, k-i): 0 \le i \le \lceil \frac{k}{2} \rceil - 1\}$  and its total is  $\frac{q}{2}$ .

\*Corresponding author: V. Lakshmi Alias Gomathi<sup>1\*</sup>, \*E-mail:.lakshmi10674@gmail.com International Journal of Mathematical Archive- 3 (3), Mar. – 2012

Hence, the total possible edge labels is  $q(\frac{q}{2}) = \frac{q^2}{2}$ 

Case (ii) when q is odd.

#### Sub case (i): Let the edge label be k and let k be odd with $1 \le k \le q$ .

The possible edge labels are 
$$\{(i, q-i+k+1) : k+1 \le i \le \frac{q+1}{2} + \frac{k-1}{2}\} \cup \{(i, k-i) : 0 \le i \le \frac{k-1}{2}\}$$
 and its total is  $\frac{q+1}{2}$ 

Hence, the total possible odd edge label is  $(\frac{q+1}{2})(\frac{q+1}{2})$ 

### Sub case (ii): Let the edge label be k and let k be even with $2 \le k \le q - 1$ .

The possible edge labels are  $\{(i, q-i+k+1) : k+1 \le i \le \frac{q+1}{2} + \frac{k-2}{2}\} \cup \{(i, k-i) : 0 \le i \le \frac{k}{2} - 1\}$  and its total is

$$\frac{q-1}{2}$$

Hence, the total possible even edge labels is  $(\frac{q-1}{2})(\frac{q-1}{2})$ 

Therefore, the total possible edge label is,

$$(\frac{q+1}{2})(\frac{q+1}{2}) + (\frac{q-1}{2})(\frac{q-1}{2}) = \frac{q^2+1}{2}$$
, when q is odd  
 $a^2$   $a^2 + 1$ 

Hence, the total possibilities of the edge labeling in an elegant graph is  $\frac{q^2}{2}$  when q is even and  $\frac{q^2+1}{2}$  when q is odd.

#### 2. DEFINITIONS:

**Definition 2.1:** Consider the graph  $C_n \ge P_m$ . Let  $C_n^{i}$ ,  $1 \le i \le m$  denote the m cycles in the graph  $C_n \ge P_m$ , corresponding to each vertex of  $v_i$  of  $P_m$ . Add a new vertex v and join it to all the vertices of  $C_n^{-1}$ ,  $C_n^{-2}$ ,  $C_n^{-3}$ , ...,  $C_n^{-m}$ . The resulting graph be called as  $C_{n,m}$ .

**Definition 2.2:** [4] Let  $C_{n,m}^{\dagger}$  denotes the graph obtained from  $C_n \times P_m$  by taking two new distinct vertices, say u and v and joining u to all the vertices of  $C_n^{-1}$  and v to all the vertices of  $C_n^{-m}$ .

**Definition 2.3:** The total graph T (G) of G has the vertex set  $V(G) \cup E(G)$  in which two vertices are adjacent whenever they are either adjacent or incident in G. The vertex set of  $T(P_n)$  is  $\{u_i, v_j : 1 \le i \le n, 1 \le j \le n-1\}$  and the edge set of  $T(P_n)$  is  $\{u_i, u_{i+1}, v_j, v_{j+1}, u_iv_i, u_{i+1}, v_i : 1 \le i \le n-1, 1 \le j \le n-2\}$ .

For example,  $T(P_3)$  is shown in Figure 2.1.



Fig. 2.1

**Definition 2.4:** The graph  $P_n^2$  is a graph with vertex set  $V(P_n^2) = \{u_i : 1 \le i \le n\}$  and  $E(P_n^2) = \{u_i \ u_{i+1} : 1 \le i \le n-1\} \cup \{u_i \ u_{i+2} : 1 \le i \le n-2\}.$ 

**Definition 2.5:** The graph  $K_2 + mK_1$  is the join of the graph  $K_2$  and m disjoint copies of  $K_1$ . Some authors call this graph a Book with triangular pages.

(1)

(2)

For example,  $K_2 + 4K_1$  is shown in Figure 2.2.





**Definition 2.6:** The graph  $(P_2 \cup mK_1) + N_2$  is a graph with vertex set  $\{z_1, z_2, x_1, x_2, \ldots x_m\} \cup \{y_1, y_2\}$  and the edge set  $\{z_1z_2, y_1z_1, y_1z_2, y_2z_1, y_2z_2\} \cup \{y_1 x_i, y_2 x_i / 1 \le i \le m\}$ .

For example,  $(P_2 \cup 2K_1) + N_2$  is shown in Figure 2.3.  $z_1$ 





**Definition 2.7:** For integers m,  $n \ge 0$ , we consider the graph Jelly Fish J(m,n) with vertex set V(J(m, n)) = {u, v, x, y}  $\cup$  {x<sub>1</sub>, x<sub>2</sub>, . . . , x<sub>m</sub>}  $\cup$  {y<sub>1</sub>, y<sub>2</sub>, . . . , y<sub>n</sub>} and the edge set E(J(m, n)) = {(u, x), (u, y), (u, v), (v, x), (v, y)}  $\cup$  {(x<sub>i</sub>, x) / 1 ≤ i ≤ m}  $\cup$  {(y<sub>j</sub>, y) / 1 ≤ j ≤ n}.

For example, J(3, 4) is shown in Figure 2.4.



Fig. 2.4

**Definition 2.8:**  $\langle C_3, K_{1,m} \rangle$   $(m \ge 1)$  be the graph obtained by attaching  $K_{1,m}$  to one vertex of the cycle  $C_3$ .

For example,  $\langle C_3, K_{1,4} \rangle$  is shown in Figure 2.5.



**Definition 2.9:**  $(K_4 - \{e\})_t$  is the one edge union of  $K_4 - \{e\}$ .

For example,  $(K_4 - \{e\})_3$  is shown in Figure 2.6.





**Definition 2.10:** Let T be any tree. Denote the tree obtained from T by considering 2 copies of T by adding an edge between them by T (2) and in general, the graph obtained from  $T_{n-1}$  and T by adding an edge between them is denoted by T(n). Note that T(1) is nothing but T.

For example, T and T (2) are shown in Figure 2.7.



Fig. 2.7

**Definition 2.11:** Let G be a graph with a fixed vertex  $v_o$  and let  $v_{10}$ ,  $v_{20}$ , ..., $v_{mo}$  be the vertices in m copies of G respectively corresponding to the vertex  $v_o$ . The graph  $[P_m, G]$  is a graph obtained from m copies of G by joining  $v_{i0}$  and  $v_{(i+1)0}$  by an edge for each i,  $1 \le i \le m-1$ .

For example,  $[P_2, C_3]$  is shown in Figure 2.8



#### **3. MAIN RESULTS:**

Fig. 2.8

**Theorem 3.1:**  $[P_{2m-1}, C_3]$  is an elegant graph for  $m \ge 1$ .

**Proof:** Let  $u_1^{j}$ ,  $u_2^{j}$ ,  $u_3^{j}$  be the vertices of  $j^{\text{th}}$  copy of  $C_3$ .

Define a function f:  $V \rightarrow \{0, 1, 2, \dots, q = 8m - 5\}$  as follows :

$$\begin{split} f(u_1^{j}) &= 4(j-1), \quad 1 \leq j \leq 2m-1 \\ f(u_2^{j}) &= 4j-2, \ 1 \leq j \leq 2m-1 \\ f(u_3^{j}) &= 4j-1, \ 1 \leq j \leq 2m-1 \end{split}$$

The induced edge labels are given as,

$$\begin{split} f & (u_1{}^j \ u_2{}^j) = \\ \begin{cases} 8j-6, & 1 \leq j \leq m \\ 8(j-m)-2, & m+1 \leq j \leq 2m-1 \end{cases} \\ f & (u_2{}^j \ u_3{}^j) = \\ \begin{cases} 8j-3, & 1 \leq j \leq m-1 \\ 8(j-m)+1, & m \leq j \leq 2m-1 \end{cases} \\ \begin{cases} 8j-5, & 1 \leq j \leq m \\ 8(j-m)-1, & m+1 \leq j \leq 2m-1 \end{cases} \\ f & (u_1{}^j \ u_3{}^{j+1}) = \\ \end{cases} \\ \begin{cases} 8j, & 1 \leq j \leq m-1 \\ 8(j-m)+4, & m+1 \leq j \leq 2m-1 \end{cases}$$

Hence,  $[P_{2m-1}, C_3]$  is an elegant graph for  $m \ge 1$ .

For example, an elegant labeling of  $[P_3, C_3]$  is shown in Figure 3.1.



Fig. 3.1

**Theorem 3.2:** Comb  $P_n \odot K_1$  is an elegant graph.

**Proof:** Let  $u_1, u_2, \ldots, u_n$  be the vertices of the path  $P_n$  and  $v_1, v_2, \ldots, v_n$  be the corresponding pendant vertices. Define an one to one function  $f: V \rightarrow \{0, 1, 2, \ldots, q = 2n - 1\}$  as follows:

$$\begin{array}{ll} f \; (u_i) \; = \; 2i-1, \; 1 \leq i \leq n \\ \\ f \; (v_i) \; = \; 2(i-1), \; 1 \leq i \leq n \end{array}$$

The induced edge labels are given as,



It is easy to check that f(E) = (1, 2, 3, ..., q). Hence, comb  $P_n \odot K_1$  is an elegant graph.

For example, an elegant labeling of  $P_5 \odot K_1$  is shown in Figure 3.2.



Fig. 3.2

**Theorem 3.3:** The graph  $K_2 + mK_1$  is an elegant graph for all m.

**Proof :** Let u, v be the vertices of  $K_2$  and  $u_1, u_2, \ldots, u_m$  be the remaining vertices of the graph  $K_2 + mK_1$  with edges  $\{(u \ u_i), (v \ u_i): 1 \le i \le m\}$ .

Define an one to one function  $f: V \rightarrow \{0, 1, 2, 3, \dots, q = 2m + 1\}$  by

$$\begin{split} f(u) &= 0, \, f(v) = 2m+1 \\ f(u_i) &= 2i, \, 1 \leq i \leq m. \end{split}$$

The induced edge labels are given as,

$$\begin{split} f(uu_i) =& 2i, \ 1 \leq i \leq m \\ f(uv) =& 2m+1 \\ f(vu_i) =& 2i-1, \ 1 \leq i \leq m \end{split}$$

Hence, the graph  $K_2 + mK_1$  is an elegant graph for all m.

For example, an elegant labeling of  $K_2 + 4K_1$  is shown in Figure 3.3.



Fig. 3.3

**Lemma 3.4:**  $C_3 \ge P_n$  is an elegant graph.

**Proof:** Let  $V(C_3 \ge P_n) = \{u_{ij} \mid 1 \le i \le 3 \& 1 \le j \le n\}$  and  $E(C_3 \ge P_n) = \{(u_{1j} \ u_{2j}), \{(u_{2j} \ u_{3j}), \{(u_{3j} \ u_{1j}), : 1 \le j \le n\} \cup \{(u_{i,j} \ u_{i,j+1}): 1 \le j \le n-1\}.$ 

Define an one to one function  $f: V \rightarrow \{0, 1, 2, \dots, q = 6n - 3\}$  as follows:

 $f(u_{ij})=i-1,\,1\leq i\leq 3\quad\text{for }j=1$ 

 $f(u_{21}) = 4$ ,  $f(u_{22}) = 5$ ,  $f(u_{23}) = 6$  and

Let a = i + j where the summation is taken modulo 3 with residues 1,2,3.

 $f(u_{aj}) = f(u_{(a+1)\,(j\text{-}1)}) + i, \ 1 \leq i \leq 3 \quad \text{for} \ 3 \leq j \leq n$ 

Clearly, the edge labels 1, 2, 3,  $\ldots$ , q = 6n - 3.

For example, an elegant labeling of  $C_3 \times P_4$  is shown in Figure 3.4.



Fig. 3.4

**Theorem 3.5:**  $C_{3,n}$  is an elegant graph for any n.

**Proof:**  $C_3 \ge P_n$  is an elegant graph by lemma 3.4. Let  $V(C_{3,n}) = \{v, u_{ij} : 1 \le i \le 3, 1 \le j \le n\}$  and  $E(C_{3,n}) = E(C_3 \ge P_n) \cup \{v \ u_{ij} : 1 \le i \le 3, 1 \le j \le n\}$ 

Define  $f(u_{ij})$  as in lemma 3.4 and

$$f(v) = 6n - 2$$

The edge labels of  $u_{ij} v$  is  $6n - 2 + f(u_{ij})$ ,  $1 \le i \le 3$  and  $1 \le j \le n$ .

Clearly, the edge labels of  $C_3 \times P_n$  are distinct and non – zero.

For example, an elegant labeling of  $C_{3,4}$  is shown in Figure 3.5.



Fig. 3.5

**Theorem 3.6:**  $C_{3,n}^{\dagger}$  is an elegant graph for any m.

**Proof:**  $C_3 \ge P_n$  is an elegant graph by lemma 3.4. Let  $V(C_{3,n}^{\dagger}) = V(C_3 \ge P_n) \cup \{u, v\}$  and  $E(C_{3,n}^{\dagger}) = E(C_3 \ge P_n) \cup \{(u = u_{i1}), (v = u_{in}) : 1 \le i \le 3, 1 \le j \le n\}$ 

Define  $f(u_{ii})$  as in lemma 3.4 and f(u) = 6n - 2, f(v) = 3n + 4

The labels of the edges  $u_{11}u$ ,  $u_{12}u$ ,  $u_{13}u$ ,  $u_{n1}v$ ,  $u_{n2}v$ ,  $u_{n3}v$  as 6n - 2, 6n - 1, ..., 6n + 3.

Hence, the edge labels of  $C_{3,n}^{\dagger}$  distinct and non – zero.

For example, an elegant labeling of  $C_{3,4}^{\dagger}$  is shown in Figure 3.6.



Fig. 3.6

**Theorem 3.7:** The total graph  $T(P_n)$  is an elegant for any positive integer n.

**Proof:** Let  $P_n = u_1, u_2, \ldots, u_n$  and let  $V(T(P_n)) = V(P_n) \cup \{v_i : 1 \le i \le n-1\}$  and  $E(T(P_n)) = E(P_n) \cup \{v_i v_{i+1} : 1 \le i \le n-1\} \cup \{(u_i v_i), (v_i u_{i+1}) : 1 \le i \le n-1\}$ . The total number of edges is 3n - 4.

Define an one to one function f:  $V \rightarrow \{0, 1, 2, 3...q = 4n - 5\}$  by

$$f(u_i) = \begin{cases} i, & 1 \le i \le 2\\ 2i - 3, & 3 \le i \le n \end{cases}$$
$$f(v_j) = \begin{cases} 0, & j = 1\\ 2j, & 2 \le j \le n - 1 \end{cases}$$

The labels of the edges are given as:

$$\begin{split} f(u_{i} \, u_{i+1}) &= & \begin{cases} 2i+1, & 1 \leq i \leq 2\\ 4(i-1), & 3 \leq i \leq n-1 \end{cases} \\ f(v_{j} \, v_{j+1}) &= & \begin{cases} 4, & i = 1\\ 4i+2, & 2 \leq i \leq n-2 \end{cases} \\ f(u_{i} \, v_{i}) &= & \begin{cases} 5i-4, & 1 \leq i \leq 2\\ 4i-3, & 3 \leq i \leq n-1 \end{cases} \\ f(u_{i+1} \, v_{i}) &= & \begin{cases} 5i-3, & 1 \leq i \leq 2\\ 4i-1, & 3 \leq i \leq n-1 \end{cases} \end{split}$$

Hence, the total graph  $r(r_n)$  is an elegant for any positive integer n.

For example, an elegant labeling of T  $(P_5)$  is shown in Figure 3.7.



**Theorem 3.8:** The graph  $P_n^2$  is an elegant graph.

**Proof:** Let  $u_1, u_2, \ldots, u_n$  be the vertices of the path  $P_n$ .

Define an one to one function  $f: V \rightarrow \{0, 1, 2, 3, \dots, q\}$  by

 $f(u_i) = i - 1, 1 \le i \le n$ 

The labels of the edges are given as :

 $f(u_i u_{i+1}) = 2i - 1, 1 \le i \le n - 1$ 

 $f(u_i\,u_{i+2})\,=2i,\,1\leq i\leq n-2$ 

Hence, the graph  $P_n^2$  is an almost elegant graph.

For example, the elegant labeling of  $P_5^2$  is given in the Figure 3.8.



Fig. 3.8

**Theorem 3.9:**  $(P_2 \cup mK_1) + N_2$  is an elegant graph.

**Proof:** Let  $z_1$  and  $z_2$  and  $y_1$  and  $y_2$  and  $x_j$ ,  $1 \le j \le m$  be the vertices of  $(P_2 \cup mK_1) + N_2$ .

Define an one to one function f:  $V \rightarrow \{0, 1, 2, 3, \dots, q = 2m + 5\}$  by

$$\begin{split} f(z_i) &= 3(i-1), \ 1 \leq i \leq 2 \\ f(y_i) &= i, \ 1 \leq i \leq 2 \\ f(x_j) &= 2j+3, \ 1 \leq j \leq m \end{split}$$

The labels of the edges are given as:

$$\begin{split} f(y_1\,z_1) &= 1, \\ f(z_1\,y_2) &= 2, \\ f(z_1\,z_2) &= 3, \\ f(y_1\,z_2) &= 4, \\ f(y_2\,z_2) &= 5, \\ f(y_1\,x_j) &= 2j+4, \, 1 \leq j \leq m \\ f(y_2\,x_j) &= 2j+5, \, 1 \leq j \leq m \end{split}$$

Hence,  $(P_2 \cup mK_1) + N_2$  is an elegant graph.

For example, an elegant labeling of  $(P_2 \cup 2K_1) + N_2$  is shown in Figure 3.9.





**Theorem 3.10:** Jelly fish J (m, n) is an elegant graph for any positive integers m,n.

**Proof:** Let u, v, x, y, x<sub>i</sub>,  $1 \le i \le m$  and y<sub>j</sub>,  $1 \le j \le n$  be the vertices of Jelly fish. Let  $V(J(m, n)) = \{u, v, x, y\} \cup \{x_i : 1 \le i \le m\} \cup \{y_j : 1 \le j \le n\}$  and  $E(J(m, n)) = \{(u, x), (u, y), (u, v), (v, x), (v, y)\} \cup \{(x_i, x) : 1 \le i \le m\} \cup \{(y_j, y) : 1 \le j \le n\}$ .

Define an one to one function  $f: V \rightarrow \{0, 1, 2, 3, \dots, q = m + n + 5\}$  by

$$\begin{split} f(u) &= 0, \\ f(v) &= 3, \\ f(x) &= 1, \\ f(y) &= 2, \\ f(y_j) &= 3+j, \ 1 \leq j \leq n \\ f(x_i) &= n+4+i, \ 1 \leq i \leq m \end{split}$$

The labels of the edges are given as follows:

$$\begin{split} f(ux) &= 1, \\ f(uy) &= 2, \\ f(uv) &= 3, \\ f(xv) &= 4, \\ f(yv) &= 5, \\ f(xx_i) &= n + 5 + i, \ 1 \leq i \leq m \\ f(yy_i) &= 5 + j, \ 1 \leq j \leq n \end{split}$$

Clearly, the edge values are distinct and non – zero. Hence, Jelly fish J(m,n) is an elegant graph for any positive integers m,n.

For example, an elegant labeling of J(3, 4) is shown in Figure 3.10.



Fig. 3.10

**Proposition 3.11:** C<sub>3</sub> ô K<sub>1,m</sub>  $(m \ge 1)$  is an elegant graph.

**Proof:** Let V(C<sub>3</sub> ô K<sub>1,m</sub>)={u<sub>1</sub>, u<sub>2</sub>, u<sub>3</sub>, v<sub>1</sub>, v<sub>2</sub>, v<sub>3</sub>, ... v<sub>m</sub>} and E(C<sub>3</sub> ô K<sub>1,m</sub>) = {(u<sub>1</sub> u<sub>2</sub>), (u<sub>2</sub> u<sub>3</sub>), (u<sub>3</sub> u<sub>1</sub>)}  $\cup$  {u<sub>2</sub> v<sub>i</sub> : 1 ≤ i ≤ m}.

Let  $u_2$  be the common vertex (centre vertex) of  $K_{1,m}$ .

Define an one to one function f:  $V \rightarrow \{0, 1, 2, 3, \dots, q = m + 3\}$  by

$$\begin{split} f(u_i) &= i-1, \ 1 \leq i \leq 3 \\ f(v_j) &= 2+j, \ 1 \leq j \leq m \end{split}$$

The labels of the edges are given as :

$$\begin{split} f(u_1u_2) &= 1, \, f(u_2u_3) = 3, \, f(u_3u_1) = 2, \\ f(u_2v_j) &= 3 + \ j, \, 1 \leq j \leq m \end{split}$$

Clearly, the edge labels are distinct and non – zero. Hence,  $C_3 \circ K_{1,m}$  (m  $\geq 1$ ) is an elegant graph.

For example, an elegant labeling of  $C_3$  ô  $K_{1.6}$  is shown in Figure 3.11.



Fig. 3.11

**Theorem 3.12:**  $(K_4 - \{e\})_t$  is an elegant graph for  $t \ge 1$ .

**Proof:** Let  $V((K_4 - \{e\})_t) = \{u_i, v_i: 1 \le i \le n\}$  and  $E((K_4 - \{e\})_t) = \{(u_i u_{i+1}), (v_i v_{i+1}), (u_i v_{i+1}) : 1 \le i \le n-1\} \cup \{u_i v_i: 1 \le i \le n\}.$ 

Define an one to one function f:  $V \rightarrow \{0, 1, 2, 3, \dots, q\}$  by

$$\begin{split} f(u_i) &= 2i-2, \ 1 \leq i \leq n \\ f(v_i) &= 2i-1, \ 1 \leq i \leq n \end{split}$$

The labels of the edges are given as :

$$\begin{split} f(u_i \; u_{i+1}) &= 4i-2, \ 1 \leq i \leq n-1, \\ f(v_i \; v_{i+1}) &= 4i, \ 1 \leq i \leq n-1, \\ f(u_i \; v_i) &= 4i-3, \ 1 \leq i \leq n, \\ f(u_i \; v_{i+1}) &= 4i-1, \ 1 \leq i \leq n-1. \end{split}$$

Clearly, the edge labels are distinct and non – zero. Hence,  $(K_4 - \{e\})_t$  is a near felicitous graph for  $t \ge 1$ . For example, an elegant labeling of  $(K_4 - \{e\})_4$  is shown in Figure 3.12.



**Theorem 3.13:** n – armed crown  $C_3 \odot K_m$ ,  $m \ge 1$  is an elegant graph.

**Proof:** Let  $V(C_3 \odot K_m) = \{u_1, u_2, u_3, :1 \le j \le m\}$  and  $E(C_3 \odot K_m) = \{(u_1 \ u_2), (u_2 \ u_3), (u_3 \ u_1)\} \cup \{(u_1 \ v_j), (u_2 \ v_j), (u_3 \ v_j): 1 \le j \le m\}$ .

Define an one to one function f:  $V \rightarrow \{0, 1, 2, \dots, q = 3m + 3\}$  by

$$f(u_i) = i - 1, 1 \le i \le 3$$

For  $1 \le i \le 2$ ,

$$f(u_{(i+2)i}) = i + 2i, 1 \le i \le m$$

For i = 3,

$$f(u_{(i+2)j}) = f(u_{1j}) + j, \ 1 \le j \le m$$

The label of the edges are given as :

$$\begin{split} f(u_3 \; v_j) &= 2j+1, \; 1 \leq j \leq m \\ f(u_1 \; v_j) &= 2(j+1), \; 1 \leq j \leq m \\ f(u_2 \; v_j) &= 2m+4+(j-1), \; \; 1 \leq j \leq m \end{split}$$

Clearly, the edge labels are distinct and non – zero. Hence, n – armed crown  $C_3 \odot K_m$ ,  $m \ge 1$  is an elegant graph.

For example, an elegant labeling of  $C_3 \odot K_3$  is shown in Figure 3.13.



Fig. 3.13

#### **REFERENCES:**

[1] G.J. Chang, D.F. Hsu and D.G. Rogers, Additive variations on a graceful theme : Some results on harmonious and other related graphs, Congr. Numer, **32** (1981), 181-197.

[2] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications, Macmillan Co., New York (1976).

[3].R. Balakrishnan, A. Selvam and V. Yegnanarayanan, *Some results on elegant graphs*, Indian J. Pure Appl. Math., **28** (1997), 905-916.

[4] R. Balakrishnan, A. Selvam ad V. Yegnanarayanan, *On Felicitous Labelings of Graphs*, Proceedings of the National Workshop on Graph Theory and Its Applications, Manonmaniam Sundaranar University, Tirunelveli, Feb. 21-27, 996, pp.47-61.

\*\*\*\*\*