ON RARELY gp-CONTINUOUS MULTIFUNCTIONS

M. Rameshkumar*

Department of Mathematics, P. A. College of Engineering and Technology, Pollachi, Tamil Nadu, India
E-mail: rameshngm@gmail.com

(Received on: 24-02-12; Accepted on: 18-03-12)

ABSTRACT

Popa [13] introduced the notion of rare continuity. The authors [5] introduced and investigated a new class of functions called rarely gp-continuous functions. This paper is devoted to the study of upper (and lower) rarely gp-continuous multifunctions.

Keywords and Phrases: Rare set, gp-open, rarely gp-continuous multifunctions.

2000 Mathematics Subject Classification: 54C60, 54C08; Secondary 54D05.

1. INTRODUCTION

In 1979, Popa [13] introduced the notion of rare continuity as a generalization of weak continuity [8] which has been further investigated by Long and Herrington [10] and Jafari [6] and [7]. Levine [9] introduced the concept of generalized closed sets of a topological space. Authors [1] introduce the concept of gp-continuous functions. The authors [5] introduced and investigated rarely gp-continuous in topological spaces. In this paper we study some characterization of rarely gp-continuous multifunctions.

2. PRELIMINARIES

Throughout this paper, X and Y are topological spaces. Recall that a rare set is a set R such that \(\text{Int}(R) = \phi \). Noiri et al[11]. Introduced the notion of gp-closed sets: A set A in X is called gp-closed if \(\text{Cl}(A) \subseteq G \) whenever A \(\subseteq G \) and G is open in X. The complement of a gp-closed set is called gp-open [11]. The family of all gp-open (resp. open) sets will be denoted by GPO(X) (resp. O(X)). We set GPO(X, x) = \{U/ x \in U \in GPO(X)\}, GO(X, x) = \{U/ x \in U \in GO(X)\} and O(X, x) = \{U/ x \in U \in O(X)\}.

Definition 1: A function \(f: X \rightarrow Y \) is called:

i) weakly continuous [7] (resp. weakly-g-continuous [4] and weakly-gp-continuous[5]) if for each \(x \in X \) and each open set \(G \) containing \(f(x) \), there exists \(U \in O(X, x) \) (resp. \(U \in GO(X, x) \) and \(U \in GPO(X, x) \)) such that \(f(U) \subseteq C(f(G)) \),

ii) rarely continuous [13] (resp. rarely-g-continuous [2] and rarely-gp-continuous[5]) if for each \(x \in X \) and each \(G \subseteq O(Y, f(x)) \), there exists a rare set \(R_G \) with \(G \cap C(R_G) = \phi \) and \(U \in O(X, x) \) (resp. \(U \in GO(X, x) \) and \(U \in GPO(X, x) \)) such that \(f(U) \subseteq G \cup R_G \),

iii) gp-continuous [1] if the inverse image of every closed set in Y is gp-closed in X.

3. UPPER (LOWER) RARELY gp-CONTINUOUS MULTIFUNCTIONS

We provide the following definitions which will be used in the sequel. Let \(F: X \rightarrow Y \) be a multifunction. The upper and lower inverses of a set \(V \subseteq Y \) are denoted by \(F^+(V) \) and \(F^-(V) \) respectively, that is,

\[
F^+(V) = \{x \in X / F(x) \subseteq V\} \text{ and } F^-(V) = \{x \in X / F(x) \cap V = \phi\}.
\]

Definition 2: A multifunction \(F: X \rightarrow Y \) is said to be

i) upper rarely gp-continuous (briefly u.r.g.p.c) at \(x \in X \) if for each \(V \subseteq O(Y, F(x)) \), there exist a rare set \(R_V \) with \(V \cap C(R_V) = \phi \) and \(U \in GPO(X, x) \), such that \(F(U) \subseteq V \cup R_V \),
lower rarely g-continuous (briefly l.r.g.p.c) at $x \in X$ if for each $V \in O(Y)$ with $f(x) \cap V = \phi$ there exist a rare set R_V with $V \cap C(R_V) = \phi$ and $U \in GPO(X, x)$ such that $F(U) \subset C(V)$,

(ii) lower weakly gp-continuous at $x \in X$ if for each $V \in O(Y)$ with $f(x) \cap V \neq \phi$ there exists $U \in GPO(X, x)$ such that

$F(U) \cap C(V) \neq \phi$ for every $u \in U$,

(iii) upper/ lower rarely gp-continuous if it is upper/ lower rarely gp-continuous at each point of X.

Definition 3: A multifunction $F : X \to Y$ is said to be

i) upper weakly gp-continuous at $x \in X$ if for each $V \in O(Y)$, there exist $U \in GPO(X, x)$ such that $F(U) \subset C(V)$,

ii) lower weakly gp-continuous at $x \in X$ if for each $V \in O(Y)$ with $f(x) \cap V \neq \phi$ there exists $U \in GPO(X, x)$ such that

$F(U) \cap C(V) \neq \phi$ for every $u \in U$,

iii) upper/ lower weakly gp-continuous if it is upper/ lower weakly gp-continuous at each point of X.

Theorem 1: The following statements are equivalent for a multifunction $F : X \to Y$:

i) F is u.r.g.p.c at $x \in X$,

ii) For each $V \in O(Y, F(x))$, there exists $U \in GPO(X, x)$ such that $\operatorname{Int}[F(U) \cap (Y - V)] = \phi$.

iii) For each $V \in O(Y, F(x))$, there exists $R_V \in GPO(X, x)$ such that $\operatorname{Int}[F(U) \cap (Y - V)] = \phi$.

Proof: (i) \Rightarrow (ii): Let $V \in O(Y, F(x))$. By $f(x) \subset V \subset \operatorname{Int}(C(V))$ and the fact that $\operatorname{Int}(C(V)) \in O(Y)$, there exist a rare set R_V with $\operatorname{Int}(C(V)) \cap C(R_V) = \phi$ and a gp-open set $U \subset X$ containing x such that $F(U) \subset \operatorname{Int}(C(V)) \cup R_V$. We have $\operatorname{Int}[F(U) \cap (Y - V)] = \operatorname{Int}(F(U)) \cap \operatorname{Int}(Y - V) \subset \operatorname{Int}(C(V)) \cup R_V \cap (Y - C(V)) \subset (C(V) \cup \operatorname{Int}(R_V)) \cap (Y - C(V)) = \phi$.

(ii) \Rightarrow (iii): Obvious.

(iii) \Rightarrow (i): Let $V \in O(Y, F(x))$. Then, by (iii) there exists $U \in GPO(X, x)$ such that $\operatorname{Int}[F(U)] \subset C(V)$. Thus $F(U) = [F(U) - \operatorname{Int}(F(U))] \cup \operatorname{Int}[F(U)] \subset [F(U) - \operatorname{Int}(F(U))] \cup \operatorname{Int}(V) = [F(U) - \operatorname{Int}(F(U))] \cup V \cup \operatorname{Int}(C(V) - V)$. Put $P = (F(U) - \operatorname{Int}(F(U))) \cap (Y - V)$ and $G = C(V) - V$, then P and G are rare sets. Moreover, $R_V = P \cup G$ is a rare set such that $C(R_V) \cap V = \phi$ and $F(U) \subset C(V) \cup R_V$. Hence F is u.r.g.p.c.

Theorem 2: The following are equivalent for a multifunction $F : X \to Y$:

i) F is l.r.g.p.c at $x \in X$,

ii) For each $V \in O(Y)$ such that $f(x) \cap V \neq \phi$ there exists a rare set R_V with $V \cap C(R_V) = \phi$ such that $x \in \operatorname{Int}_g(F(V \cup R_V))$,

iii) For each $V \in O(Y)$ such that $f(x) \cap V \neq \phi$ there exists a rare set R_V with $C(V) \cap R_V = \phi$ such that $x \in \operatorname{Int}_g(F(C(V) \cup R_V))$,

iv) For each $V \in RO(Y)$ such that $f(x) \cap V \neq \phi$ there exists a rare set R_V with $V \cap C(R_V) = \phi$ such that $x \in \operatorname{Int}_g(F(V \cup R_V))$.

Proof: (i) \Rightarrow (ii): Let $V \in O(Y)$ such that $f(x) \cap V \neq \phi$. By (i), there exist a rare set R_V with $V \cap C(R_V) = \phi$ and $U \in GPO(X, x)$ such that $f(x) \cap (V \cup R_V) \neq \phi$ for each $u \in U$. Therefore, $u \in F(V \cup R_V)$ for each $u \in U$ and hence $U \subset F(V \cup R_V)$. Since $U \subset GPO(X, x)$, we obtain $x \in U \subset \operatorname{Int}_g(F(V \cup R_V))$.

(ii) \Rightarrow (iii): Let $V \in O(Y)$ such that $f(x) \cap V \neq \phi$. By (ii), there exists a rare set R_V with $V \cap C(R_V) = \phi$ such that $x \in \operatorname{Int}_g(F(V \cup R_V))$. We have $R_V \subset Y - V = (Y - C(V)) \cup (C(V) - V)$ and hence $R_V \subset [R_V \cap (Y - C(V))] \cup (C(V) - V)$. Now, put $P = R_V \cap (Y - C(V))$. Then P is a rare set and $P \cap C(V) = \phi$. Moreover, we have $x \in \operatorname{Int}_g(F(V \cup R_V)) \subset \operatorname{Int}_g(F(P \cup C(V)))$.

(iii) \Rightarrow (iv): Let V be any regular open set of Y such that $f(x) \cap V \neq \phi$. By (iii), there exists a rare set R_V with $C(V) \cap R_V = \phi$ such that $x \in \operatorname{Int}_g(F(C(V) \cup R_V))$. Put $P = R_V \cup (C(V) - V)$, then P is a rare set and $V \cap C(P) = \phi$. Moreover, we have $x \in \operatorname{Int}_g(F(C(V) \cup R_V)) = \operatorname{Int}_g(F(R \cup ((C(V) - V) \cup V)) = \operatorname{Int}_g(F(P \cup V))$.

(iv) \Rightarrow (i): Let $V \in O(Y)$ such that $f(x) \cap V \neq \phi$. Then $F(x) \cap \operatorname{Int}(C(V)) \neq \phi$ and $\operatorname{Int}(C(V))$ is regular open in Y. By (iv), there exists a rare set R_V with $V \cap C(R_V) = \phi$ such that $x \in \operatorname{Int}_g(F(V \cup R_V))$. Therefore, there exists $U \in$
GPO(X, x) such that U ⊂ F(V ∪ R_v); hence F(u) ∩ (V ∪ R_v) ≠ ø; for each u ∈ U. This shows that F is lower rarely g-continuous at x.

Corollary 1: (([2], Theorem 2)) The following statements are equivalent for a function f : X → Y :

i) f is rarely gp-continuous at x ∈ X,

ii) For V ∈ O(Y, f(x)), there exists U ∈ GPO(X, x) such that Int[f(U) ∩ (Y - V)] = ø,

iii) For each V ∈ O(Y, f(x)), there exists U ∈ GPO(X, x) such that Int[f(U)] ⊂ Cl(V).

REFERENCES
