COMMON FIXED POINT THEOREMS FOR FOUR MAPPINGS
IN \mathcal{M} - FUZZY METRIC SPACE

T. Veerapandi
Associate Professor of Mathematics, P.M.T. College, Melaneelithanallur – 627953, India
E-mail: tveerapandi@ymail.com

G. Uthaya Sankar*
Department of Mathematics, Mano College (An Institution of M.S.Univerity, Tirunelveli),
Sankarankovil – 627756, India
E-mail: uthayaganapathy@yahoo.com

A. Subramanian
Department of Mathematics, The M.D.T. Hindu College, Tirunelveli – 627010, India
E-mail: asmani1963@gmail.com

(Received on: 16-03-12; Accepted on: 31-03-12)

ABSTRACT

In this paper we prove a common fixed point theorem for four mappings in \mathcal{M} – fuzzy metric space using the notion of semi compatibility. Also, we prove a common fixed point theorem for four weakly compatible mappings in \mathcal{M} – fuzzy metric space.

Mathematics Subject Classification: 47H10, 54H25.

Keywords: Complete \mathcal{M} – Fuzzy metric space, Semi compatible mappings, weakly compatible mappings, Common fixed point.

INTRODUCTION AND PRELIMINARIES

Zadeh [16] introduced the concept of fuzzy sets in 1965. George and Veeramani [2] modified the concept of fuzzy metric space introduced by Kramosil and Michalek [7] and defined the Hausdorff topology of fuzzy metric spaces. Many authors [4, 8] have proved fixed point theorems in fuzzy metric space. Recently Sedghi and Shobe [13] introduced D^* - metric space as a probable modification of the definition of D - metric introduced by Dhage [1], and prove some basic properties in D^* - metric spaces. Using D^* - metric concepts, Sedghi and Shobe define \mathcal{M} – fuzzy metric space and proved a common fixed point theorem in it. Jong Seo Park [5] introduced the concept of semi compatible and weak compatible in \mathcal{M} – fuzzy metric space and prove some fixed point theorems satisfying some conditions in \mathcal{M} – fuzzy metric space. In this paper we prove a common fixed point theorem for four mappings in \mathcal{M} – fuzzy metric space using the notion of semi compatibility. Also, we prove a common fixed point theorem for four weakly compatible mappings in \mathcal{M} – fuzzy metric space.

Definition: 1.1 Let X be a nonempty set. A generalized metric (or D^* - metric) on X is a function: $D^* : X^3 \rightarrow [0, \infty)$, that satisfies the following conditions for each $x, y, z, a \in X$

(i) $D^*(x, y, z) \geq 0$,
(ii) $D^*(x, y, z) = 0$ if and only if $x = y = z$,
(iii) $D^*(x, y, z) = D^*(p(x, y, z))$ (symmetry) where p is a permutation function,
(iv) $D^*(x, y, z) \leq D^*(x, y, a) + D^*(a, z)$. The pair (X, D^*), is called a generalized metric (or D^* - metric) space.

Example: 1.2 Examples of D^* - metric are
(a) $D^*(x, y, z) = \max \{d(x, y), d(y, z), d(z, x) \}$,
(b) $D^*(x, y, z) = d(x, y) + d(y, z) + d(z, x)$.
Here, d is the ordinary metric on X.

Corresponding author: G. Uthaya Sankar, E-mail: uthayaganapathy@yahoo.com

International Journal of Mathematical Archive- 3 (3), Mar. – 2012
Definition: 1.3 A fuzzy set \(M \) in an arbitrary set \(X \) is a function with domain \(X \) and values in \([0, 1]\).

Definition: 1.4 A binary operation \(* \): \([0, 1] \times [0, 1] \rightarrow [0, 1]\) is a continuous \(t \)-norm if it satisfies the following conditions

(i) \(* \) is associative and commutative,
(ii) \(* \) is continuous,
(iii) \(a * 1 = a \) for all \(a \in [0, 1] \),
(iv) \(a * b \leq c * d \) whenever \(a \leq c \) and \(b \leq d \), for each \(a, b, c, d \in [0, 1] \).

Examples for continuous \(t \)-norm are \(a * b = ab \) and \(a * b = \min \{a, b \} \).

Definition: 1.5 A 3-tuple \((X, M, *)\) is called \(M \)-fuzzy metric space if \(X \) is an arbitrary non-empty set, \(* \) is a continuous \(t \)-norm, and \(M \) is a fuzzy set on \(X^2 \times (0, \infty) \), satisfying the following conditions for each \(x, y, z, a \in X \) and \(t > 0 \)

\[
\begin{align*}
(FM-1) & \quad M(x, y, z, t) > 0 \\
(FM-2) & \quad M(x, y, z, t) = 1 \iff x = y = z \\
(FM-3) & \quad M(x, y, z, t) = M(p \{x, y, z\}, t), \text{ where } p \text{ is a permutation function} \\
(FM-4) & \quad M(x, y, a, t) * M(a, z, s) \leq M(x, y, z, t+s) \\
(FM-5) & \quad M(x, y, z, \cdot) : (0, \infty) \rightarrow [0, 1] \text{ is continuous} \\
(FM-6) & \quad \lim_{n \to \infty} M(x, y, z, t) = 1.
\end{align*}
\]

Example: 1.6 Let \(X \) be a nonempty set and \(D^* \) is the \(D^* \) - metric on \(X \). Denote \(a*b = ab \) for all \(a, b \in [0, 1] \). For each \(t \in (0, \infty) \), define

\[
M(x, y, z, t) = \frac{t}{t + D^*(x, y, z)}
\]

for all \(x, y, z \in X \), then \((X, M, *)\) is a \(M \)-fuzzy metric space. We call this \(M \)-fuzzy metric induced by \(D^* \) - metric.

Thus every \(D^* \) - metric induces a \(M \)-fuzzy metric.

Lemma: 1.7 ([13]) Let \((X, M, *)\) be a \(M \)-fuzzy metric space. Then for every \(t > 0 \) and for every \(x, y \in X \), we have

\[
M(x, y, t) = M(x, y, t).
\]

Lemma: 1.8 ([13]) Let \((X, M, *)\) be a \(M \)-fuzzy metric space. Then \(M(x, y, z, t) \) is non-decreasing with respect to \(t \), for all \(x, y, z \in X \).

Definition: 1.9 Let \((X, M, *)\) be a \(M \)-fuzzy metric space and \(\{x_n\} \) be a sequence in \(X \)

(a) \(\{x_n\} \) is said to be converges to a point \(x \in X \) if \(\lim_{n \to \infty} M(x, x, x_n, t) = 1 \) for all \(t > 0 \)

(b) \(\{x_n\} \) is called Cauchy sequence if \(\lim_{n \to \infty} M(x_{n+p}, x_{n+p}, t) = 1 \) for all \(t > 0 \) and \(p > 0 \)

(c) A \(M \)-fuzzy metric space in which every Cauchy sequence is convergent is said to be complete.

Remark: 1.10 Since \(* \) is continuous, it follows from \((FM-4)\) that the limit of the sequence is uniquely determined.

Definition: 1.11 Let \(S \) and \(T \) be two self mappings of a \(M \)-fuzzy metric space \((X, M, *)\). Then the mappings are said to be compatible if \(\lim_{n \to \infty} M(STx_n, TStx_n, TStx_n, t) = 1 \), for all \(t > 0 \), whenever \(\{x_n\} \) be a sequence in \(X \) such that \(\lim_{n \to \infty} x_n = \lim_{n \to \infty} Sx_n = z \) for some \(z \in X \).

Definition: 1.12 Let \(S \) and \(T \) be two self mappings of a \(M \)-fuzzy metric space \((X, M, *)\). Then the mappings are called semi compatible if \(\lim_{n \to \infty} M(STx_n, Tz, Tz, t) = 1 \), \(\lim_{n \to \infty} M(TSx_n, Sx, Sz, t) = 1 \) for all \(t > 0 \), whenever \(\{x_n\} \) be a sequence in \(X \) such that \(\lim_{n \to \infty} x_n = \lim_{n \to \infty} Sx_n = \lim_{n \to \infty} Tz_n = z \) for some \(z \in X \).

Definition: 1.13 Let \(S \) and \(T \) be two self mappings of a \(M \)-fuzzy metric space \((X, M, *)\). Then the mappings \(S \) and \(T \) are said to be weakly compatible if they commute at their coincidence points; that is, if \(Sx = Tx \) for some \(x \in X \), then \(STx = TSx \).

Lemma: 1.14 ([11]) Let \(\{x_n\} \) be a sequence in a \(M \)-fuzzy metric space \((X, M, *)\) with the condition \((FM-6)\). If there exists a number \(k \in (0, 1) \) such that

\[
M(x_n, x_{n+1}, x_{n+1}, kt) \geq M(x_{n+1}, x_{n+1}, x_{n+1}, t)
\]

for all \(t > 0 \) and \(n = 1, 2, 3 \ldots \), then \(\{x_n\} \) is a Cauchy sequence.

Lemma 1.15 ([11]) Let \((X, M, *)\) be a \(M \)-fuzzy metric space with condition \((FM-6)\). If there exists a number \(k \in (0, 1) \) such that \(M(x, y, z, kt) \geq M(x, y, z, t) \), for all \(x, y, z \in X \) and \(t > 0 \), then \(x = y = z \).
MAIN RESULTS:

Theorem 2.1 Let S and T be two continuous self mappings of a complete \mathcal{M}–fuzzy metric space $(X, \mathcal{M}, *)$. Let A and B be two mappings of X satisfying

1. $A(X) \subseteq T(X)$, $B(X) \subseteq S(X)$.
2. (A, S) and (B, T) are semi compatible.
3. there exists $k \in (0, 1)$ such that for all $x, y \in X$ and $t > 0$,
\[\mathcal{M}(Ax, By, By, kt) \geq \min \{ \mathcal{M}(By, Ty, Ty, t), \mathcal{M}(Sx, Tx, Ty, t), \mathcal{M}(Ax, By, By, t) \}. \]

Then A, B, S and T have a unique common fixed point.

Proof: Let $x_0 \in X$ be any arbitrary element.

Since $A(X) \subseteq T(X)$, then there exists a point $x_1 \in X$ such that $Ax_0 = Tx_1$.

Also, since $B(X) \subseteq S(X)$, then there exists another point $x_2 \in X$ such that $Bx_1 = Sx_2$.

Then by induction, we can define a sequence $\{y_n\}$ in X such that $y_{2n+1} = Ax_{2n}$ and $y_{2n+2} = Bx_{2n+1} = Sx_{2n+2}$ for $n = 0, 1, 2, \ldots$

Now using condition (3) we get
\[\mathcal{M}(y_{2n+1}, y_{2n+2}, y_{2n+2}, kt) = \mathcal{M}(Ax_{2n}, Bx_{2n+1}, Bx_{2n+1}, kt) \]
\[\geq \min \{ \mathcal{M}(Bx_{2n+1}, Tx_{2n+1}, Tx_{2n+1}, t), \mathcal{M}(Sx_{2n}, Tx_{2n+1}, Tx_{2n+1}, t), \mathcal{M}(Ax_{2n}, Sx_{2n}, Sx_{2n}, t), \mathcal{M}(Ax_{2n}, Bx_{2n+1}, Bx_{2n+1}, t) \} \]
\[= \min \{ \mathcal{M}(y_{2n+1}, y_{2n+1}, y_{2n+1}, 1), \mathcal{M}(y_{2n+2}, y_{2n+2}, y_{2n+2}, t), \mathcal{M}(y_{2n+2}, y_{2n+2}, y_{2n+2}, 1), \mathcal{M}(y_{2n+2}, y_{2n+2}, y_{2n+2}, 1) \} \]
\[= \min \{ \mathcal{M}(y_{2n+1}, y_{2n+2}, y_{2n+2}, y_{2n+2}, 1), \mathcal{M}(y_{2n+2}, y_{2n+2}, y_{2n+2}, 1) \} \]
\[= \mathcal{M}(y_{2n+1}, y_{2n+1}, y_{2n+1}, 1). \]

Therefore $\mathcal{M}(y_{2n+1}, y_{2n+2}, y_{2n+2}, kt) \geq \mathcal{M}(y_{2n+1}, y_{2n+1}, 1)$.

Also, $\mathcal{M}(y_{2n+2}, y_{2n+2}, y_{2n+1}, y_{2n+1}, kt) = \mathcal{M}(y_{2n+2}, y_{2n+2}, y_{2n+2}, 1)$
\[= \mathcal{M}(y_{2n+1}, y_{2n+2}, y_{2n+2}, 1) = \mathcal{M}(Ax_{2n+1}, Bx_{2n+1}, Bx_{2n+1}, kt) \]
\[\geq \min \{ \mathcal{M}(Bx_{2n+1}, Tx_{2n+1}, Tx_{2n+1}, t), \mathcal{M}(Sx_{2n}, Tx_{2n+1}, Tx_{2n+1}, t), \mathcal{M}(Ax_{2n+2}, Sx_{2n+2}, Sx_{2n+2}, t), \mathcal{M}(Ax_{2n+2}, Bx_{2n+1}, Bx_{2n+1}, t) \} \]
\[= \min \{ \mathcal{M}(y_{2n+2}, y_{2n+2}, y_{2n+1}, 1), \mathcal{M}(y_{2n+2}, y_{2n+2}, y_{2n+2}, 1), \mathcal{M}(y_{2n+2}, y_{2n+2}, y_{2n+2}, 1), \mathcal{M}(y_{2n+2}, y_{2n+2}, y_{2n+2}, 1) \} \]
\[= \mathcal{M}(y_{2n+1}, y_{2n+2}, y_{2n+2}, y_{2n+2}, 1) \]
\[= \mathcal{M}(y_{2n+1}, y_{2n+2}, y_{2n+2}, y_{2n+2}, 1) \]
\[= \mathcal{M}(y_{2n+1}, y_{2n+2}, y_{2n+2}, y_{2n+2}, 1) \]
\[= \mathcal{M}(y_{2n+1}, y_{2n+2}, y_{2n+2}, y_{2n+2}, 1). \]

Therefore $\mathcal{M}(y_{2n+1}, y_{2n+2}, y_{2n+2}, kt) \geq \mathcal{M}(y_{2n+2}, y_{2n+2}, y_{2n+2}, 1)$.

Hence $\mathcal{M}(y_{2n+1}, y_{2n+2}, y_{2n+2}, kt) \geq \mathcal{M}(y_{2n}, y_{2n}, 1)$, for all n.

By lemma 1.14, $\{y_n\}$ is a Cauchy sequence in \mathcal{M}–fuzzy metric space X.

Since X is \mathcal{M}–fuzzy complete, sequence $\{y_n\}$ converges to the point $z \in X$.

Also, since $\{Ax_{2n}\}$, $\{Bx_{2n}\}$, $\{Sx_{2n}\}$ and $\{Tx_{2n+1}\}$ are subsequences of $\{y_n\}$, they also converge to the point z.

Case I: Since S is continuous, we have $SAx_{2n} \rightarrow Sz$, $SSx_{2n} \rightarrow Sz$.

Also (A, S) is semi compatible, we have $ASx_{2n} \rightarrow Sz$.
Let \(x = Sx_{2n}, y = x_{2n+1} \) in condition (3) we get
\[
\mathcal{M}(ASx_{2n}, Bx_{2n+1}, Bx_{2n+1}, kt) \geq \min \left\{ \mathcal{M}(Bx_{2n+1}, Tx_{2n+1}, Tx_{2n+1}, t), \mathcal{M}(SSx_{2n}, Tx_{2n+1}, Tx_{2n+1}, t), \mathcal{M}(ASx_{2n}, SSx_{2n}, SSx_{2n}, t), \mathcal{M}(ASx_{2n}, Bx_{2n+1}, Bx_{2n+1}, t) \right\}
\]
Taking limit as \(n \to \infty \) we get
\[
\mathcal{M}(Sz, z, z, kt) \geq \min \left\{ \mathcal{M}(z, z, z, t), \mathcal{M}(Sz, z, z, t), \mathcal{M}(Sz, Sz, Sz, t), \mathcal{M}(Sz, z, z, t) \right\}
\]
\[
= \mathcal{M}(Sz, z, z, t)
\]
Therefore by lemma 1.15, \(Sz = z \).

Now let \(x = z, y = x_{2n+1} \) in condition (3) we get
\[
\mathcal{M}(Az, Bx_{2n+1}, Bx_{2n+1}, kt) \geq \min \left\{ \mathcal{M}(Bx_{2n+1}, Tx_{2n+1}, Tx_{2n+1}, t), \mathcal{M}(Sz, Tx_{2n+1}, Tx_{2n+1}, t), \mathcal{M}(Az, Sz, Sz, t), \mathcal{M}(Az, Bx_{2n+1}, Bx_{2n+1}, t) \right\}
\]
Taking limit as \(n \to \infty \) we get
\[
\mathcal{M}(Az, z, z, t) \geq \min \left\{ \mathcal{M}(z, z, z, t), \mathcal{M}(Sz, z, z, t), \mathcal{M}(Az, Sz, Sz, t), \mathcal{M}(Az, z, z, t) \right\}
\]
\[
= \min \left\{ \mathcal{M}(z, z, z, t), \mathcal{M}(z, z, z, t), \mathcal{M}(Az, z, z, t), \mathcal{M}(Az, z, z, t) \right\}
\]
\[
= \mathcal{M}(Az, z, z, t)
\]
Therefore by lemma 1.15, \(Az = z \).

\textbf{Case II:} Since \(T \) is continuous, we have \(TTx_{2n+1} \to Tz, TTX_{2n+1} \to Tz \).

Also \((B, T) \) is semi compatible; we have \(BTx_{2n+1} \to Tz \).

Let \(x = x_{2n}, y = Tx_{2n+1} \) in condition (3) we get
\[
\mathcal{M}(Ax_{2n}, BTx_{2n+1}, BTx_{2n+1}, kt) \geq \min \left\{ \mathcal{M}(BTx_{2n+1}, TTX_{2n+1}, TTX_{2n+1}, t), \mathcal{M}(Sx_{2n}, TTX_{2n+1}, TTX_{2n+1}, t), \mathcal{M}(Ax_{2n}, Sx_{2n}, Sx_{2n}, t), \mathcal{M}(Ax_{2n}, BTx_{2n+1}, BTx_{2n+1}, t) \right\}
\]
Taking limit as \(n \to \infty \) we get
\[
\mathcal{M}(z, Tz, Tz, kt) \geq \min \left\{ \mathcal{M}(Tz, Tz, Tz, t), \mathcal{M}(z, Tz, Tz, t), \mathcal{M}(z, z, z, t), \mathcal{M}(z, Tz, Tz, t) \right\}
\]
\[
= \mathcal{M}(z, Tz, Tz, t)
\]
Therefore by lemma 1.15, \(Tz = z \).

Now let \(x = x_{2n}, y = z \) in condition (3) we get
\[
\mathcal{M}(Ax_{2n}, Bz, Bz, kt) \geq \min \left\{ \mathcal{M}(Bz, Tz, Tz, t), \mathcal{M}(Sx_{2n}, Tz, Tz, t), \mathcal{M}(Ax_{2n}, Sx_{2n}, Sx_{2n}, t), \mathcal{M}(Ax_{2n}, Bz, Bz, t) \right\}
\]
Taking limit as \(n \to \infty \) we get
\[
\mathcal{M}(z, Bz, Bz, kt) \geq \min \left\{ \mathcal{M}(Bz, Tz, Tz, t), \mathcal{M}(z, Tz, Tz, t), \mathcal{M}(z, z, z, t), \mathcal{M}(z, Bz, Bz, t) \right\}
\]
\[
= \min \left\{ \mathcal{M}(z, Bz, Bz, t), \mathcal{M}(z, z, z, t), \mathcal{M}(z, z, z, t), \mathcal{M}(z, z, z, t) \right\}
\]
\[
= \mathcal{M}(z, Bz, Bz, t)
\]
Therefore by lemma 1.15, \(Bz = z \).

Therefore \(Bz = z = Tz \).

Thus we have \(Az = Sz = Bz = Tz = z \).

Hence \(z \) is a common fixed point of \(A, B, S, \) and \(T \).
Uniqueness: Suppose \(z' \) \((\neq z) \) is another common fixed point of \(A, B, S, \) and \(T. \)

Now \(\mathcal{M}(z', z'; z', k) = \mathcal{M}(Az, Bz', Bz', kt) \)
\[\geq \min \{ \mathcal{M}(Bz', Tz', Tz', t), \mathcal{M}(Sz, Tz', Tz', t), \mathcal{M}(Az, Sz, Sz, t), \mathcal{M}(Az, Bz', Bz', t) \} \]
\[= \min \{ \mathcal{M}(z', z', z', t), \mathcal{M}(z, z', z', t), \mathcal{M}(z, z, t), \mathcal{M}(z, z', z', t) \} \]
\[= \mathcal{M}(z, z', z', t) \]

Therefore by lemma 1.15, \(z = z'. \)

This completes the proof.

Remark: 2.2 Putting \(B = A \) in theorem 2.1, we get the following result.

Corollary: 2.3 Let \(S \) and \(T \) be two continuous self mappings of a complete \(\mathcal{M} - \) fuzzy metric space \((X, \mathcal{M}, *)\). Let \(A \) be a self mapping of \(X \) satisfying

1. \(A(X) \subset T(X), A(X) \subset S(X) \).
2. \((A, S)\) and \((A, T)\) are semi compatible.
3. there exists \(k \in (0, 1) \) such that for all \(x, y \in X \) and \(t > 0 \),
\[\mathcal{M}(Ax, Ay, Ay, kt) \geq \min \{ \mathcal{M}(Ay, Ty, Ty, t), \mathcal{M}(Sx, Ty, Ty, t), \mathcal{M}(Ax, Sx, Sx, t), \mathcal{M}(Ax, Ay, Ay, t) \}.\]

Then \(A, S \) and \(T \) have a unique common fixed point.

Remark: 2.4 Putting \(B = A, T = S \) in theorem 2.1, we get the following result.

Corollary: 2.5 Let \(S \) be continuous self mapping of a complete \(\mathcal{M} - \) fuzzy metric space \((X, \mathcal{M}, *)\). Let \(A \) be a self mapping of \(X \) satisfying

1. \(A(X) \subset S(X) \)
2. \((A, S)\) semi compatible pair of mappings
3. there exists \(k \in (0, 1) \) such that for all \(x, y \in X \) and \(t > 0 \),
\[\mathcal{M}(Ax, Ay, Ay, kt) \geq \min \{ \mathcal{M}(Ay, Sy, Sy, t), \mathcal{M}(Sx, Sy, Sy, t), \mathcal{M}(Ax, Sx, Sx, t), \mathcal{M}(Ax, Ay, Ay, t) \}.\]

Then \(A \) and \(S \) have a unique common fixed point.

Remark: 2.6 Putting \(B = A, T = S = I \) in theorem 2.1, we get the following result.

Corollary: 2.7 Let \(A \) be a self mapping of a complete \(\mathcal{M} - \) fuzzy metric space \((X, \mathcal{M}, *)\) satisfying
\[\mathcal{M}(Ax, Ay, Ay, kt) \geq \min \{ \mathcal{M}(Ay, y, y, t), \mathcal{M}(x, y, y, t), \mathcal{M}(Ax, x, x, t), \mathcal{M}(Ax, Ay, Ay, t) \} \]
for all \(x, y \in X, t > 0 \) and \(0 < k < 1 \). Then \(A \) has a unique fixed point.

Theorem: 2.8 Let \(A, B, S \) and \(T \) be self mappings of a complete \(\mathcal{M} - \) fuzzy metric space \((X, \mathcal{M}, *)\) satisfying the following conditions

1. \(A(X) \subset T(X), B(X) \subset S(X). \)
2. \((A, S)\) and \((B, T)\) are weakly compatible.
3. there exists \(k \in (0, 1) \) such that for all \(x, y \in X \) and \(t > 0 \),
\[\mathcal{M}(Ax, By, By, kt) \geq \min \{ \mathcal{M}(By, Ty, Ty, t), \mathcal{M}(Sx, Ty, Ty, t), \mathcal{M}(Ax, Sx, Sx, t), \mathcal{M}(Ax, By, By, t) \}.\]

Then \(A, B, S \) and \(T \) have a unique common fixed point.

Proof: Let \(x_0 \in X \) be any arbitrary element.

Since \(A(X) \subset T(X), \) then there exists a point \(x_1 \in X \) such that \(Ax_0 = Tx_1. \)

Also, since \(B(X) \subset S(X) \), then there exists another point \(x_2 \in X \) such that \(Bx_1 = Sx_2. \)
Therefore by lemma l.15, Similarly, since
\[y_{2n+1} = Ax_{2n} = Tx_{2n+1} \] and
\[y_{2n+2} = Bx_{2n+1} = Sx_{2n+2} \] for \(n = 0, 1, 2, \ldots \)

Now using condition (3) we get
\[
\mathcal{M}(y_{2n+1}, y_{2n+2}, y_{2n+3}, k) = \mathcal{M}(Ax_{2n}, Bx_{2n+1}, Bx_{2n+1}, kt) \\
\geq \min \{ \mathcal{M}(Bx_{2n+1}, Tx_{2n+1}, Tx_{2n+1}, t), \mathcal{M}(Sx_{2n}, Tx_{2n+1}, Tx_{2n+1}, t), \mathcal{M}(Ax_{2n}, Sx_{2n}, Tx_{2n+1}, t), \\
\mathcal{M}(Ax_{2n}, Bx_{2n+1}, Bx_{2n+1}, t) \}
\]
\[
= \min \{ \mathcal{M}(y_{2n+1}, y_{2n+1}, y_{2n+1}, t), \mathcal{M}(y_{2n+1}, y_{2n+1}, y_{2n+1}, t), \mathcal{M}(y_{2n+1}, y_{2n+1}, y_{2n+1}, t), \mathcal{M}(y_{2n+2}, y_{2n+2}, y_{2n+2}, t) \}
\]
\[
= \min \{ \mathcal{M}(y_{2n+1}, y_{2n+1}, y_{2n+1}, t), \mathcal{M}(y_{2n+1}, y_{2n+1}, y_{2n+1}, t), \mathcal{M}(y_{2n+1}, y_{2n+1}, y_{2n+1}, t), \mathcal{M}(y_{2n+2}, y_{2n+2}, y_{2n+2}, t) \}
\]
\[
= \min \{ \mathcal{M}(y_{2n+1}, y_{2n+1}, y_{2n+1}, t), \mathcal{M}(y_{2n+1}, y_{2n+1}, y_{2n+1}, t), \mathcal{M}(y_{2n+1}, y_{2n+1}, y_{2n+1}, t), \mathcal{M}(y_{2n+2}, y_{2n+2}, y_{2n+2}, t) \}
\]
\[
= \mathcal{M}(y_{2n+1}, y_{2n+1}, y_{2n+1}, t)
\]

Therefore \(\mathcal{M}(y_{2n+1}, y_{2n+2}, y_{2n+3}, k) \geq \mathcal{M}(y_{2n+1}, y_{2n+2}, y_{2n+1}, t) \).

Also, \(\mathcal{M}(y_{2n+2}, y_{2n+3}, y_{2n+4}, k) = \mathcal{M}(y_{2n+2}, y_{2n+2}, y_{2n+3}, k) \\
= \mathcal{M}(Bx_{2n+1}, Bx_{2n+1}, Bx_{2n+1}, kt) \\
\geq \min \{ \mathcal{M}(Bx_{2n+1}, Tx_{2n+1}, Tx_{2n+1}, t), \mathcal{M}(Bx_{2n+1}, Sx_{2n+2}, Tx_{2n+1}, t), \mathcal{M}(Ax_{2n+2}, Ax_{2n+2}, Bx_{2n+1}, t) \}
\]
\[
= \min \{ \mathcal{M}(y_{2n+2}, y_{2n+2}, y_{2n+2}, t), \mathcal{M}(y_{2n+2}, y_{2n+2}, y_{2n+2}, t), \mathcal{M}(y_{2n+2}, y_{2n+2}, y_{2n+2}, t) \}
\]
\[
= \min \{ \mathcal{M}(y_{2n+2}, y_{2n+2}, y_{2n+2}, t), \mathcal{M}(y_{2n+2}, y_{2n+2}, y_{2n+2}, t), \mathcal{M}(y_{2n+2}, y_{2n+2}, y_{2n+2}, t) \}
\]
\[
= \min \{ \mathcal{M}(y_{2n+2}, y_{2n+2}, y_{2n+2}, t), \mathcal{M}(y_{2n+2}, y_{2n+2}, y_{2n+2}, t), \mathcal{M}(y_{2n+2}, y_{2n+2}, y_{2n+2}, t) \}
\]
\[
= \mathcal{M}(y_{2n+2}, y_{2n+2}, y_{2n+2}, t)
\]

Therefore \(\mathcal{M}(y_{2n+2}, y_{2n+3}, y_{2n+4}, k) \geq \mathcal{M}(y_{2n+2}, y_{2n+3}, y_{2n+2}, t) \).

Hence \(\mathcal{M}(y_{n+1}, y_{n}, y_{n+1}, k) \geq \mathcal{M}(y_{n}, y_{n+1}, y_{n+1}, t) \), for all \(n \).

By lemma 1.14, \(\{y_n\} \) is a Cauchy sequence in \(\mathcal{M} \)-fuzzy metric space \(X \).

Since \(X \) is \(\mathcal{M} \)-fuzzy complete, sequence \(\{y_n\} \) converges to the point \(z \in X \).

Also, since \(\{Ax_n\} \), \(\{Bx_{2n+1}\} \), \(\{Sx_{2n}\} \) and \(\{Tx_{2n+1}\} \) are subsequences of \(\{y_n\} \), they also converge to the point \(z \).

Since \(B(X) \subset S(X) \), there exists a point \(u \in X \) such that \(z = Su \).

Then by condition (3) we have
\[
\mathcal{M}(Au, Bx_{2n+1}, Bx_{2n+1}, kt) \geq \min \{ \mathcal{M}(Bx_{2n+1}, Tx_{2n+1}, Tx_{2n+1}, t), \mathcal{M}(Su, Tx_{2n+1}, Tx_{2n+1}, t), \\
\mathcal{M}(Au, Su, t), \mathcal{M}(Au, Bx_{2n+1}, Bx_{2n+1}, t) \}
\]

Taking limit as \(n \to \infty \) we get
\[
\mathcal{M}(Au, z, z, kt) \geq \min \{ \mathcal{M}(z, z, t), \mathcal{M}(Su, z, t), \mathcal{M}(Au, Su, t), \mathcal{M}(Au, z, z, t), \mathcal{M}(Au, z, z, t) \}
\]
\[
= \mathcal{M}(Au, z, z, t)
\]

Therefore by lemma 1.15, \(Au = z \).

Therefore \(Au = z = Su \).

Similarly, since \(A(X) \subset T(X) \), there exists a point \(v \in X \) such that \(z = Tv \).

Then by condition (3) we have
\[
\mathcal{M}(z, Bv, Bv, kt) = \mathcal{M}(Au, Bv, Bv, kt) \\
\geq \min \{ \mathcal{M}(Bv, Tv, Bv, t), \mathcal{M}(Su, Tv, Bv, t), \mathcal{M}(Au, Su, Su, t), \mathcal{M}(Au, Bv, Bv, t) \}
\]
\[
= \min \{ \mathcal{M}(Bv, z, z, t), \mathcal{M}(z, z, t), \mathcal{M}(z, z, t) \}
\]
\[
= \mathcal{M}(z, Bv, Bv, t).
\]
Therefore by lemma 1.15, $Bv = z$.

Therefore $Bv = z = T v$.

Hence $Au = z = Su = Bv = T v$.

Since the pair of mappings (A, S) is weakly compatible, so $ASu = SAu$ gives $Az = Sz$.

Now we prove z is a fixed point of A.

$$M(Az, z, z, kt) = M(Az, Bv, Bv, kt) \geq \min \{ M(Bv, Tv, Tv, t), M(Sz, Tv, Tv, t), M(Az, Sz, Sz, t), M(Az, Bv, Bv, t) \}$$

$$= \min \{ M(z, z, z, t), M(Az, Az, z, t), M(Az, Az, Az, t), M(Az, z, z, t) \}$$

$$= M(Az, z, z, t).$$

Therefore by lemma 1.15, $Az = z$.

Hence $Az = z = Sz$.

Since the pair of mappings (B, T) is weakly compatible, so $BTv = T Bv$ gives $Bz = T z$.

Now we prove z is a fixed point of B.

$$M(z, Bz, Bz, kt) = M(Az, Bz, Bz, kt) \geq \min \{ M(Bz, Tz, Tz, t), M(Sz, Tz, Tz, t), M(Az, Sz, Sz, t), M(Az, Bz, Bz, t) \}$$

$$= \min \{ M(z, Bz, Bz, t), M(z, Bz, Bz, t), M(z, z, z, t), M(z, Bz, Bz, t) \}$$

$$= M(z, Bz, Bz, t).$$

Therefore by lemma 1.15, $Bz = z$.

Hence $Bz = z = T z$.

Thus we have $Az = Bz = Sz = T z = z$.

Hence z is a common fixed point of A, B, S and T.

Uniqueness: Suppose z^\prime $(\neq z)$ is another common fixed point of A, B, S, and T.

Now $M(z, z^\prime, z^\prime, kt) = M(Az, Bz^\prime, Bz^\prime, kt)$

$$\geq \min \{ M(Bz^\prime, Tz^\prime, Tz^\prime, t), M(Sz, Tz^\prime, Tz^\prime, t), M(Az, Sz, Sz, t), M(Az, Bz^\prime, Bz^\prime, t) \}$$

$$= \min \{ M(z, z^\prime, z^\prime, t), M(z, z^\prime, z^\prime, t), M(z, z, z, t), M(z, z^\prime, z^\prime, t) \}$$

$$= M(z, z^\prime, z^\prime, t).$$

Therefore by lemma 1.15, $z = z^\prime$.

This completes the proof.

Remark: Putting $B = A$ in theorem 2.8, we get the following result.

Corollary: Let A, S and T be self mappings of a complete M – fuzzy metric space $(X, \mathcal{M}, *)$ satisfying the following conditions

1. $A(X) \subset T(X)$, $A(X) \subset S(X)$.
2. (A, S) and (A, T) are weakly compatible.
3. there exists $k \in (0, 1)$ such that for all $x, y \in X$ and $t > 0$,

$$M(Ax, Ay, Ay, kt) \geq \min \{ M(Ay, Ty, Ty, t), M(Sx, Ty, Ty, t), M(Ax, Sx, Sx, t), M(Ax, Ay, Ay, t) \}.$$

Then A, S and T have a unique common fixed point.

Remark: Putting $B = A$, $T = S$ in theorem 2.8, we get the following result.
Corollary: 2.12 Let A and S be self mappings of a complete \mathcal{M}– fuzzy metric space $(X, \mathcal{M}, *)$ satisfying the following conditions

1. $A(X) \subseteq S(X)$.
2. (A, S) weakly compatible pair of mappings.
3. There exists $k \in (0, 1)$ such that for all $x, y \in X$ and $t > 0$,

$$\mathcal{M}(Ax, Ay, Ay, kt) \geq \min \{ \mathcal{M}(Ay, Sy, Sy, t), \mathcal{M}(Sx, Sy, Sy, t), \mathcal{M}(Ax, Sx, Sx, t), \mathcal{M}(Ax, Ay, Ay, t) \}.$$

Then A and S have a unique common fixed point.

Remark: 2.13 Putting $B = A$, $T = S = I$ in theorem 2.8, we get the following result.

Corollary: 2.14 Let A be a self mapping of a complete \mathcal{M}– fuzzy metric space $(X, \mathcal{M}, *)$ satisfying

$$\mathcal{M}(Ax, Ay, Ay, kt) \geq \min \{ \mathcal{M}(Ay, y, y, t), \mathcal{M}(x, y, y, t), \mathcal{M}(Ax, x, x, t), \mathcal{M}(Ax, Ay, Ay, t) \}$$

for all $x, y \in X$, $t > 0$ and $0 < k < 1$. Then A has a unique fixed point.

REFERENCES: