International Journal of Mathematical Archive-3(3), 2012, Page: 1057-1062 MA Available online through <u>www.ijma.info</u> ISSN 2229 - 5046

ON h – CLOSED SETS IN TOPOLOGICAL SPACES

J. Antony Rex Rodrigo, A. Hana Selvi Jansi*, and Jessie Theodore

Department of mathematics, V.O. Chidambaram College, Tuticorin-628 008, Tamil Nadu, INDIA

Department of mathematics, Sarah Tucker College, Tirunelveli-627 007, Tamil Nadu, INDIA

Department of mathematics, Sarah Tucker College, Tirunelveli-627 007, Tamil Nadu, INDIA E-mail: sthabebe@yahoo.co.in

(Received on: 05-03-12; Accepted on: 26-03-12)

ABSTRACT

In this paper, we introduce a new class of sets namely, h - closed sets and their properties, Applying these sets, we introduce new spaces namely $_{\alpha}T_h$, $_{c}T_h$ and sT_h spaces.

Mathematics Subject Classification: 54A05, 54A10, 54D10.

1. INTRODUCTION

N. Levine [6] introduced the class of g-closed sets in 1970. M. K. R. S. Veera Kumar introduced several generalised closed sets namely, g^* -closed sets , *g -closed sets , α^*g -closed sets , *g s - closed sets and ω -closed sets. In this paper, we introduce h-closed sets and applying these sets , we introduce new spaces namely $_{\alpha}T_h$, $_cT_h$ and sT_h spaces.

2. PRELIMINARIES

Throughout this paper (X, τ), (Y, σ) and (Z, η) represent topological spaces on which no separation axioms unless otherwise mentioned. For a subset A of a space (X, τ), cl(A), int(A) and A^{σ} denote the closure of A, the interior of A and the complement of A in X respectively.

2.1 Definition: A subset A of a space (X, τ) is called

1. a semi-open set [7] if A \subseteq cl(int(A)) and a semi closed set if int(cl(A)) \subseteq A

2. a preopen set [8] if A \subseteq int(cl(A)) and a preclosed set if cl(int(A)) \subseteq A

3. a α -open set [9] if A \subseteq *int* (cl(int(A))) and a α - closed set if cl(int(cl(A))) \subseteq A

The intersection of all semi-closed (resp., preclosed, α -closed)-sets containing A of X is called the semi closure (resp., preclosure , α -closure) of A and is denoted by scl(A) (resp, pcl(A) , α cl(A)). The union of all semi - open sets contained in A is called semi interior of A and it is denoted by sint (A).

2.2. Definition:

A subset A of a space (X, τ) is called a

- **1.** a generalized closed (briefly g-closed) set [6] if $cl(A) \sqsubset U$ whenever $A \sqsubset$ U and U is open in (X, τ) ; the compliment of a g- closed set is called a g-open set.
- **2.** a generalized semi-closed (briefly gs-closed) set [3] if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in(X, τ).
- **3.** a generalized semi pre-closed (briefly gsp-closed) set [5] if $spcl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in(X, τ).
- **4.** a semi- generalized closed (briefly sg-closed) set [4] if scl(A) ⊂ U whenever A⊂ Uand U is semi-open in(X, τ); the compliment of a sg- closed set is called a sg-open set.
- **5.** a ψ closed set [10] if scl(A) \subseteq U whenever A \subseteq U and U is sg -open set in (X, τ);
- **6.** a g^{*}-closed set [12] if cl(A) \subseteq U whenever A \subseteq U and U is g -open set in (X, τ).

7. a ω - closed set [11] if cl(A) \square U whenever A \square U and U is semi -open set in (X, τ); the compliment of a ω - closed set is called a ω -open set.

8. a *g -closed set [12] if cl(A) \subseteq U whenever A \subseteq U and U is ω -open set in (X, τ).

9. a *g –semi closed (*g s –closed) set [12] if scl(A) \subseteq U whenever A \subseteq U and U is g -open setIn (X, τ).

10. a $\alpha^* g$ -closed set [12] if $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is ω -open set in (X, τ) .

2.3 Definition:

1. a $T_{1/2}$ space [4] if every g- closed set is closed.

2 a $T_{1/2}^*$ space [13] if every g^* - closed set is closed.

3. a^{*} $T_{1/2}$ space [13] if every g-closed set is g^* - closed.

3. BASIC PROPERTIES OF h - CLOSED SETS

3.1 Definition: A subset A of (X, τ) is called a h- closed set if scl $(A) \subseteq U$ whenever $A \subseteq U$ and U is ω - open in X. The class of all h- closed subsets of (X, τ) is denoted by hC (X, τ) .

3.2 Proposition: Every closed set (resp. α – closed set, semi – closed set) is h-closed. But the converses are not true as can be seen from the following examples.

Proof: Follows from the definition.

3.3 Example: Let X={a, b, c} and $\tau = \{\varphi, X, \{\alpha\}\}$. hC (X, τ) = { $\varphi, X, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{c, a\}\}$. The set {a, b} is h-closed but not closed (resp. not α – closed set, not semi – closed)

3.4 Proposition: Let X be a topological space and $A \subseteq X$. Then the following are true.

1. If A is g^* - closed, then A is h- closed set.

2. If A is * g - closed, then A is h- closed set.

3. If A is α^* g - closed, then A is h- closed set.

4. If A is * g s - closed, then A is h- closed set.

5. If A is ψ - closed, then A is h- closed set.

Proof: (1) Since every ω – open set is g – open and scl (A) \subseteq cl (A) the proof follows.

(2), (3), and (4): Since scl (A) \square acl (A) \square cl (A), the proof is clear.

(5): Since every ω – open set is sg – open, the proof is clear.

3.5 Remarks: The converse of Proposition 3.4 is not true. For,

3.6 Example Let X= {a, b, c, d} and $\tau = \{\varphi, X, \{\alpha\}\}$. The set {a} is h closed but it is not a g^{*}- closed set.

3.7 Example: Let $X = \{a, b, c\}$ and $\tau = \{\varphi, X, \{a\}, \{b\}, \{a, b\}\}\)$. The set $\{a, b\}$ is h - closed but it is not * g - closed also it is not $\alpha^* g$ - closed.

3.8 Example: Let $X = \{a, b, c\}$ and $\tau = \{\varphi, X, \{\alpha\}\}$. The set $\{a, b\}$ is a h - closed but it is not * g s- closed set. Also it is not ψ - closed.

3.9 Proposition: Let X be a topological space and A $\square X$. Then the following are true.

1. If A is h - closed, then A is gs - closed set.

2. If A is h - closed, then A is gsp - closed set.

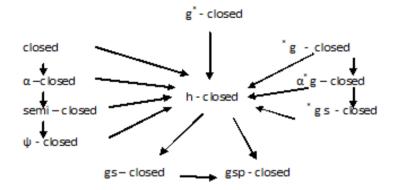
Proof: (1) Since every open set is ω – open, the proof is clear. (2): Since every ω – open set is open and spcl (A) \square scl (A) every h - closed set is gs – closed.

3.10 Remarks: The converse of Proposition 3.4 is not true. For,

3.11 Example: Let X = {a, b, c} and $\tau = \{\varphi_{a} X_{a} \{a\}, \{b, c\}\}$. The set {a, b} is gs- closed but not h-closed.

3.12 Example: Let X= {a, b, c} and $\tau = \{\varphi, X, \{a, b\}\}$. the set {a} is gsp- closed but not h-closed.

The following diagram shows the relationships considerd in this paper. (A \longrightarrow B represents A implies B but B need not imply A.)



3.13 DEFINITION: Let (X, τ) be a topological space and A \subseteq X. The set of all limit points of A is said to be the Semi – derived set of A and is denoted by D_{σ} (A).

3.14 Theorem: Let A and B be two h – closed sets such that D (A) $\subseteq D_{\mathfrak{s}}$ (A) and D (B) $\subseteq D_{\mathfrak{s}}$ (B). Then A U B is h – closed.

Proof: Let U be a ω – open set such that A \bigcup B \subseteq U. A \subseteq U and U being ω – open scl (A) \subseteq U.B \subseteq U and U being ω – open scl (B) \subseteq U. Therefore scl (A) \bigcup scl (B) \subseteq U. Given D (A) $\subseteq D_{\mathfrak{s}}$ (A) but always we have $D_{\mathfrak{s}}$ (A) \subseteq D(A). Therefore D (A) $\equiv D_{\mathfrak{s}}$ (A). Hence cl(A) = scl(A) and cl(B) = scl(B). scl(AUB) $\subseteq U$. Therefore AUB is h – closed.

3.15 Result: Intersection of two h - closed sets need not be a h - closed set.

3.16 Example: $X = \{a, b, c\}$ $\tau = \{\varphi, X, \{\alpha\}\}$ • $\{a, b\}$ and $\{c, a\}$ are h - closed sets but $\{a, b\} \cap \{c, a\} = \{a\}$ is not a h - closed set.

3.17 Proposition: Let A and B be any two subsets of a space X. (1). If A is h - closed then scl (A) – A contains no non empty ω - closed set. (2). If A is h - closed and A \subseteq B \subseteq scl (A) then B is h - closed.

Proof: (1) Let F be a ω - closed subset of scl (A) – A. Then F \square scl (A) that is (scl (A))^c \square F ^c and F ^c \square A. Since F is ω – closed F ^c is ω – open and A \square F ^c. Hence (scl (A)) \square F ^c. Therefore F \square scl (A) \square X – F = F ^c. This is possible only if F = φ .

(2): Let U be a ω – open set such that B \subseteq U. Then A \subseteq U given A is h – closed. Therefore scl (A) \subseteq U. Now scl (B) \subseteq scl(scl(A)) = scl (A) \subseteq U. Hence B is h – closed.

3.18 DEFINITION: A subset A of a topological space (X, τ) is said to be h – open if A^{e} is h – closed. The class of all h – open subsets of X is denoted by hO (τ).

3.19 Theorem: A subset A of a topological space (X, τ) is h – open if and only if F \subseteq sint (A) whenever A \supseteq F and F is ω – closed in X.

Proof: Suppose that is A h – open in X and A \supseteq F, where F is ω – closed in X. $A^{\circ} \subseteq F^{\circ}$ and F° is ω – open in X. Hence $scl(A^{\circ}) \subseteq F^{\circ}$ implies (sint (A))^c $\subseteq F^{\circ}$. Thus we have sint (A) \supseteq F that is F \subseteq sint (A).

Converse

Suppose $A^{c} \subseteq U$ and U is ω – open. A $\supset U^{c}$ and U^{c} is ω – closed. Hence by the given hypothesis sint (A) $\supset U^{c}$. Therefore (sint (A))^c \subseteq U. Hence $scl(A^{c}) \subseteq$ U.

3.20 Theorem: In a topological space (X, τ) for each $x \in X$ either $\{x\}$ is ω – closed or h – open in X.

Proof: Suppose $\{x\}$ is not ω – closed in X then $\{x\}^{c}$ is ω – closed and the only ω – open set containing $\{x\}^{c}$ is the space X itself. Therefore scl $(\{x\}^{c}) \subseteq X$ and so $\{x\}^{c}$ is h – closed – open.

4. APPLICATION OF h - CLOSED SETS

4.1 Definition: A space (X, τ) is called $_{\alpha}T_{h}$ space if every h- closed set is a α closed set.

4.2 Example: Let X = {a, b, c} and $\tau = \{\varphi, X, \{a\}, \{a, b\}, \{a, c\}\}$. hC (X, τ) = $\{\varphi, X, \{b\}, \{c\}, \{b, c\}\}$ = α C (X, τ). Thus (X, τ) is a $_{\alpha}T_{h}$ space. The space in the following example is not a $_{\alpha}T_{h}$ space.

4.3 Example: Let X = {a, b, c} and $\tau = \{\varphi, X, \{a\}, \{b\}, \{a, b\}\}$. hC (X, τ) = { $\varphi, X, \{a\}, \{b\}, \{c\}, \{b, c\}, \{c, a\}\}$. α C (X, τ) = { $\varphi, X, \{c\}, \{b, c\}, \{a, c\}\}$.

Thus (X, τ) is not a $_{\alpha}T_{h}$ space.

4.4 Theorem: If (X, τ) is a $_{\alpha}T_h$ space, then every singleton of X is either ω – closed or α – open.

Proof: Let $x \in X$ and suppose that $\{x\}$ is not ω – closed. Then $X = \{x\}$ is not ω – open. This implies that X is the only ω - open set containing $X = \{x\}$. So $X = \{x\}$ is a h – closed set of (X, τ) . Since (X, τ) is an $_{\alpha}T_{h}$ space, $X = \{x\}$ is α – closed or equivalently $\{x\}$ is α – open.

The converse of the above theorem is not true as it can be seen by the following example.

4.5 Example: Let $X = \{a, b, c\}$ and $\tau = \{\varphi, X, \{a\}, \{b\}, \{a, b\}\}$. $\{a\}$ and $\{b\}$ are α – open sets of (X, τ) and $\{c\}$ is a ω – closed set of (X, τ) . But the space (X, τ) is not an $_{\alpha}T_{h}$ space.

4.6 Definition: A space (X, τ) is called ${}_{c}T_{h}$ space if every h- closed set is a closed set.

4.7 Theorem: If (X, τ) is a ${}_{c}T_{h}$ space, then every singleton of X is either ω – closed or open.

Proof: Proof is similar to theorem 4.4

The converses of the above theorem is not true as it can be seen by the following examples.

4.8 Example: Let X = {a, b, c} and $\tau = \{\varphi, X, \{\alpha\}, \{b\}, \{\alpha, b\}\}$ {a} and {b} are open sets of (X, τ) and {c} is a ω – closed set of (X, τ). But the space (X, τ) is not a _cT_h space.

4.9 Theorem: Every $_{c}T_{h}$ space is an $_{\alpha}T_{h}$ space.

Proof: The Proof follows since every closed set is α – closed.

4.10 Theorem: $_{c}T_{h}$ is independent of $T_{1/2}$ ness and ${}^{*}T_{1/2}$ ness. It is shown by the following examples.

4.11 Example: Let X = {a, b, c} and $\tau = \{\varphi, X, \{a\}, \{b, c\}\}$.

Then (X, τ) is a ${}_{c}T_{h}$ space but not a $T_{1/2}$ space and a ${}^{*}T_{1/2}$ space.

4.12 Example: Let $X = \{a, b, c\}$ and $\tau = \{\varphi, X, \{a\}, \{b\}, \{a, b\}\}$. Then (X, τ) is a $T_{1/2}$ space and a $T_{1/2}$ space but not a_cT_h space.

4.13 Theorem: Every $_{c}T_{h}$ space is a $T_{1/2}^{*}$ space.

Proof: Let (X, τ) be a ${}_{c}T_{h}$ space. Let A be a g^{*} - closed set. Every g^{*} - closed set is h – closed.

Hence A is closed. Therefore (X, τ) is a $T^*_{1/2}$ space.

The converse of the above theorem is not true as it can be seen by the following example.

4.14 Example: Let X = {a, b, c} and $\tau = \{\varphi, X, \{a\}, \{b\}, \{a, b\}\}$. (X, τ) is a $T_{1/2}^*$ space but not $a_c T_h$ space.

4.15 Definition: A space (X, τ) is called a T_b space if every gs - closed set is a closed set.

4.16 Theorem: Every T $_{b}$ space is a $\mathbf{s}T_{h}$ space.

Proof: Since every h – closed set is gs – closed set, the proof is clear.

The converse of the above theorem is not true as it can be seen by the following examples.

4.17 Example: Let X = {a, b, c} and $\tau = \{\varphi, X, \{a\}, \{b, c\}\}$. hC (X, τ) = { $\varphi, X, \{a\}, \{b, c\}$ = C (X, τ). gsC (X, τ) = { $\varphi, X, \{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{c, a\}\}$. The set {b} is gs – closed but not closed.

4.18 Definition: A space (X, τ) is called sT_h space if every h-closed set is a semi closed set.

4.19 Example: Let X = {a, b, c} and $\tau = \{\varphi, X, \{a\}, \{b\}, \{a, b\}\}$. (X, τ) is a sT_h space.

4.20 Example: Let $X = \{a, b, c\}$ and $\tau = \{\varphi_{a} X_{a} \{a\}\}$. (X, τ) is not a sT_{h} space.

4.21 Theorem: If (X, τ) is a sT_h space then every singleton of X is either ω – closed or semi - open.

Proof: Proof is similar to theorem 4.4.

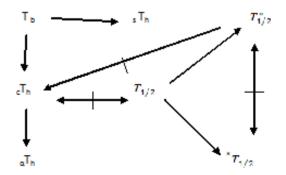
4.22 Theorem: Every T_b **space** is a _sT_h space.

Proof: Since every h – closed set is gs – closed set, the proof is clear.

The converse of the above theorem is not true as it can be seen by the following example.

4.23 Example: Let $X = \{a, b, c\}$ and $\tau = \{\varphi, X, \{a\}, \{b\}, \{a, b\}\}$. hC $(X, \tau) = \{\varphi, X, \{a\}, \{b\}, \{c\}, \{b, c\}, \{c, a\}\}$ = sC $(X, \tau) = gsC (X, \tau)$. The set $\{a\}$ is gs – closed but not closed.

4.27 Remark: The following diagram shows some relationships considerd in this paper. (A $\triangleleft \rightarrow$ B represents A implies B but B need not imply A. A \longrightarrow B means A and B are independent).



REFERENCES:

[1] M.E. Abd El-Monsef, S.N. El-Deeb and R.A. Mahmoud, β – open sets and, B- continuous mappings. Bull. Fac . Sci Univ. (1983), 77 – 90.

[2] D. Andrijevic, semi – preopen sets. Mat. Vesnik. (1986), 24 – 32.

[3] S. P. Arya and T. Nour, characterization of s – normal spaces, Indian J. Pure. Appl, Math., (1990), 717 – 719.

[4] P. Bhattacharya and B. K. Lahiri, Semi – generalized closed sets in topology, Indian J. Pure. Appl, Math., closed sets in topology, Indian J. Math. (1987), 375 – 382.

[5] J. Dontchev, On generalizing semi – preopen sets. Mem. Fac. Sci. Kochi Uni . Ser. A Math., (1995), 35 – 48.

[6] N. Levine. Generalized closed sets in topology, Rend. Circ. Math. Palermo, (1970), 89 - 96.

[7] N. Levine, Semi – open sets and semi – continuity in topological spaces, Amer. Math. Monthly, (1963), 36 – 41.

[8] A.S. Mashhour, M.E.Abd El-Monsef, S.N. El-Deeb, On pre – continuous and weak pre – continuous mappings, Proc. Math. And Phys. Soc. Egypt. (1982) 47 – 53.

[9] O. Njastad, On some classes of nearly open sets, Pacific J. Math., (1965), 961 -970.

[10] M.K.R.S. Veera Kumar, Between semi - closed sets and semi pre - closed sets, Rend. Istit. Mat. Univ. Trieste. XXXII (2000), 25 - 41.

[11] M.K.R.S. Veera Kumar On \hat{g} — closed sets in topological spaces, Bull Allahabad Math. Soc. (2003), 99 – 112.

[12] M.K.R.S. Veera Kumar On µp — closed sets in topological spaces, Antarctica J. Math, 2(1) (2005), 31 – 52.

[13] M.K.R.S. Veera Kumar, Between closed sets and g – closed sets Mem. Fac. Sci. Kochi Uni . Ser. A Math., (2000), 1 - 19.
