New classes of sets called β^*-closed sets are introduced and studied some of their properties.

Keywords: *g-closed, *g-open, \tilde{g}-open, p-closed, *-η^*-closed, β^*-closed

Mathematics subject classification: 54A05, 54A10, 54D10.

1. INTRODUCTION

The study of generalized closed sets in topological space was initiated by Levin [4]. In 1986 Andrijevic [2] defined semi pre open sets and it is also known under the name β-closed sets. In 1996, Julian Dontchev [3] introduced the notion of generalized semi-pre closed (briefly gsp-closed sets) via the concept of semi pre open sets. Generalised closed sets namely g-closed sets, gs closed sets, r-g closed sets, s-g closed sets, α-closed sets, α-g closed sets were introduced and studied by various authors. The class of gsp- closed sets contains properly the classes of all the above mentioned generalised closed sets except r-g closed sets. The class of ω-closed set was introduced by M. Shiek John[11] in 2002. In this paper we introduce a new classes of sets called β^*-Closed sets. This class lies between the class of open and semi pre closed sets and the class of *-η^*-closed sets [9].

2. PRELIMINARIES

Throught this paper (X, τ), (Y, σ) and (Z, η) will always denote topological spaces, on which no separation axioms are assumed unless otherwise mentioned. When A is a subset of (X, τ), $\text{Cl}(A)$, $\text{Int}(A)$ and $D[A]$ denote the closure, the interior and the derived set of A, respectively.

We recall some known definitions needed.

Definitions 2.1: Let (X, τ) be topological space. A subset A of X is said to be
1. Preopen [7] if $A \subseteq \text{Int}(\text{cl}(A))$ and preclosed if $\text{cl}(\text{Int}(A)) \subseteq A$.
2. Semi open[6] if $A \subseteq \text{Cl}(\text{Int}(A))$ and semi closed if $\text{Int}(\text{Cl}(A)) \subseteq A$.
3. Semi pre open[1] if $A \subseteq \text{Cl}(\text{Int}(\text{Cl}(A)))$ and semi pre closed if $\text{Int}(\text{Cl}(\text{Int}(A))) \subseteq A$.

Definition 2.2: Let (X, τ) be a topological space. A subset A of X is said to be
1. generalised closed (briefly g-closed) [5] if $\text{Cl}(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X.
2. generalized pre closed (briefly gp-closed) [8] if $\text{Pcl}(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X.
3. generalized semi pre closed (briefly gsp closed) [3] if $\text{Spcl}(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X.
4. ω-closed if $[11]$ if $\text{Cl}(A) \subseteq U$ whenever $A \subseteq U$ and U is semi open in X.
5. *g-closed if $[12]$ if $\text{cl}(A) \subseteq U$ whenever $A \subseteq U$ and U is ω-open in X.
6. *gs-closed [13] if $\text{Sc}(A) \subseteq U$ whenever $A \subseteq U$ and U is *g-open in X.
7. \tilde{g}-closed [4] if $\text{cl}(A) \subseteq U$ whenever $A \subseteq U$ and U is \tilde{g}-open.
8. p-closed [10] if $\text{Pcl}(A) \subseteq \text{Int}(U)$ whenever $A \subseteq U$ and U is p-open in X.
9. *-η^* -closed [9] if $\text{Spcl}(A) \subseteq \text{Int}(\text{Cl}(U))$ whenever $A \subseteq U$ and U is ω-open in X.

Corresponding author: Wellington Daniel, E-mail: lwellingtondaniel7@yahoo.in
The compliments of above mentioned sets are called their respective closed sets.

Basic Properties Of β*Closed Sets

We introduce the following **Definition**

Definition 3.1: A subset A of a space \((X, \tau)\) is said to be \(\beta^*\)-closed in \((X, \tau)\) if \(\text{spcl}(A) \subseteq \text{Int}(U)\) whenever \(A \subseteq U\) and \(U\) is \(\omega\)-open in \((X, \tau)\).

Theorem 3.2: Every open and semi preclosed subset of \((X, \tau)\) is \(\beta^*\)-closed but not conversely.

Proof: Let \(A\) be an open and semi preclosed subset of \((X, \tau)\)

Let \(A \subseteq U\) and \(U\) be \(\omega\)-open in \(X\)

Then \(\text{spcl}(A) = A = \text{Int}(A) \subseteq \text{Int}(U)\)

Hence \(A\) is \(\beta^*\)-closed

The converse of the above **Theorem** need not be true as seen from the following example.

Example 3.3: Let \(X = \{a, b, c, d\}\) and \(\tau = \{\emptyset, \{a\}, X\}\)

Then the set \(A = \{a, c\}\) is \(\beta^*\) closed but neither open nor preclosed

Theorem 3.4: Every \(\beta^*\)-closed set is gsp – closed but not conversely.

Proof: Let \(A\) be any \(\beta^*\)-closed set in \(X\)

Let \(A \subseteq U\) and \(U\) be open in \(X\)

Since every open set is \(\omega\)-open and \(A\) is \(\beta^*\)-closed, \(\text{Spcl}(A) \subseteq \text{Int}(U) = U\)

Hence \(A\) is gsp – closed

Converse of the above **Theorem** need not be true as seen from the following example.

Example 3.5: Let \(X = \{a, b, c\}\) and \(\tau = \{\emptyset, \{a\}, \{b, c\}, X\}\)

Then the set \(A = \{a, b\}\) is gsp closed but not \(\beta^*\)-closed in \(X\)

Theorem 3.7: Every open and preclosed subset of \((X, \tau)\) is \(\beta^*\)-closed

Proof: Let \(A\) be an open and preclosed subset of \((X, \tau)\)

Let \(A \subseteq U\) and \(U\) be \(\omega\)-open in \(X\)

Then \(\text{spcl}(A) \subseteq \text{pcl}(A) = A = \text{Int}(A) \subseteq \text{Int}(U)\)

Hence \(A\) is \(\beta^*\)-closed

The converse of the above **Theorem** need not be true. It is seen from the following example.

Example 3.8: Let \(X = \{a, b, c, d\}\) and \(\tau = \{\emptyset, \{a\}, X\}\)

Then the set \(\{a, b\}\) is \(\beta^*\)-closed but neither open are preclosed.

Remark 3.9: \(\beta^*\)-closedness and preclosedness are independent. It is shown by the following examples.

Example 3.10: Let \(X = \{a, b, c\}\) and \(\tau = \{\emptyset, \{a\}, \{b\}, \{a, b\}, X\}\)

Then the set \(A = \{a\}\) is \(\beta^*\)-closed but not preclosed.
Example 3.11: Let $X = \{a, b, c\}$ and $\tau = \{\emptyset, \{a\}, \{b, c\}\}$

Then the set $A = \{a, b\}$ is preclosed but not β^*-closed

Remark 3.12: β^*-closedness and α-closedness are independent. It is shown by the following examples.

Example 3.13: Let $X = \{a, b, c\}$ and $\tau = \{\emptyset, \{a\}, \{b, c\}, X\}$

Then the set $A = \{a\}$ is α-closed but not β^*-closed

Example 3.14: Let $X = \{a, b, c, d\}$ and $\tau = \{\emptyset, \{a\}, X\}$

Then the set $\{a, b\}$ is β^*-closed but not α-closed.

Remark 3.15: β^*-closed sets are independent of semi closed sets and semi preclosed sets. It is shown by the following examples.

Example 3.16: Let $X = \{a, b, c\}$ and $\tau = \{\emptyset, \{a\}, \{b, c\}, X\}$

Then the set $A = \{a, b\}$ is both semi preclosed and semi closed but not β^*-closed.

Example 3.17: Let $X = \{a, b, c\}$ and $\tau = \{\emptyset, \{a\}, \{a, c\}, X\}$

Then the set $A = \{a, b\}$ is β^*-closed but neither semi preclosed nor semi closed.

Remark 3.18: β^*-closedness and pre semi closedness are independent. It is shown by the following examples.

Example 3.19: Let $X = \{a, b, c\}$ and $\tau = \{\emptyset, \{a, b\}, X\}$

Then the set $A = \{a\}$ is pre semi closed but not β^*-closed.

Example 3.20: Let $X = \{a, b, c, d\}$ and $\tau = \{\emptyset, \{a\}, X\}$

Then the set $A = \{a, b\}$ is β^*-closed but not pre semi closed.

Remark 3.21: β^*-closedness and g closedness are independent. It is shown by the following examples.

Example 3.22: Let $X = \{a, b, c\}$ and $\tau = \{\emptyset, \{a\}, \{b, c\}, X\}$

Then the set $A = \{a, c\}$ is g closed but not β^*-closed.

Example 3.23: Let $X = \{a, b, c\}$ and $\tau = \{\emptyset, \{a\}, \{b\}, \{a, b\}, X\}$

Then the set $A = \{b\}$ is β^*-closed but not g closed.

Theorem 3.24: β^*-closed set is η^\ast closed set but not conversely.

Proof: Let A be any β^*-closed set in X.

Let $A \subseteq U$ and U be ω-open in X.

Then $spcl(A) \subseteq Int(U) \subseteq U$

Hence A is η^\ast closed

Converse of the above Theorem need not be true. It is seen from the following example

Example 3.25: Let $X = \{a, b, c, d, e\}$ and $\tau = \{\emptyset, \{a, b\}, \{a, b, d\}, \{a, b, c, d\}, \{a, b, d, e\}, X\}$

Then the set $A = \{a\}$ is η^\ast closed but not β^*-closed

Example 3.26: β^*-closedness and ρ closedness are independent. It is shown by the following examples.
Example 3.27: Let $X = \{a, b, c, d, e\}$ and $\tau = \{\emptyset, \{a, b\}, \{a, b, d\}, \{a, b, c, d\}, \{a, b, d, e\}, X\}$

Then the set $A = \{c\}$ is β^* closed but not ρ - closed

Then the set $B = \{b, d\}$ is ρ closed but not β^* - closed.

Definition 3.28: A subset A of a space (X, τ) is said to be β^*- closed in (X, τ) if $\text{spcl} \ (A) \subseteq \text{Int} \ (\text{cl}(U))$ whenever $A \subseteq U$ and U is ω -open in (X, τ).

Theorem 3.29: Every β^*- closed set is βs^*- closed but not conversely.

Proof: Let A be any β^*- closed set.

Let $A \subseteq U$ and U be ω -open

A is β^*- closed, $\text{spcl} \ (A) \subseteq \text{Int} \ (U) \subseteq \text{Int} \ (\text{cl}(U))$

Hence A is βs^*- closed.

The converse of the above Theorem need not be true. It is seen from the following example.

Example 3.30: Let $X = \{a, b, c, d, e\}$ and $\tau = \{\emptyset, \{a, b\}, \{a, b, d\},\{a, b, c, d\},\{a, b, d, e\},X\}$

Then the set $A = \{b, d\}$ is βs^*- closed but not β^* - closed

Remark 3.31: From the above discussion and known results we have the following implications. $A \rightarrow B$ represents A implies B but not conversely and $A \leftrightarrow B$ represents A and B are independent of each other.

Closed $\rightarrow \alpha closed \rightarrow$ semi closed \rightarrow semi pre closed \rightarrow pre semi closed \rightarrow η^* closed

Open and \rightarrow open and \rightarrow open and \rightarrow β^*- closed \rightarrow gsp closed

Closed \rightarrow β^*s- closed \rightarrow g closed \rightarrow ρ closed
Properties Of β*-Closed Sets

Remark 3.32: The union and intersection of two β*-closed sets need not be β*-closed. It is shown in the following examples.

Example 3.33: Let X = \{a, b, c, d\} and \(\tau = \{\emptyset, \{a\}, X\}\)

Then set A = \{a, b\} and B = \{a, c\} are β*-closed but \(A \cap B = \{a\}\) is not β*-closed

2. Let X = \{a, b, c\} and \(\tau = \{\emptyset, \{a\}, \{b\}, \{a, b\}, X\}\)

Then set A = \{a\} and B = \{b\} are β*-closed but \(A \cup B = \{a, b\}\) is not β*-closed

Theorem 3.34: A set A is β*-closed then \(\text{spcl}(A) - A\) contains no nonempty closed set.

Proof: Suppose \(H \subseteq \text{spcl}(A) - A\) is a nonempty closed set

Then \(H \subseteq \text{spcl}(A)\) and \(A \subseteq X-H\). Since \(X-H\) is \(\omega\)-open and A is β*-closed, we have \(\text{spcl}(A) \subseteq \text{Int}(X-H) = X - \text{cl}(A)\).

Hence \(\text{cl}(H) \subseteq X - \text{spcl}(A)\), which is a contradiction.

Hence \(\text{spcl}(A) - (A)\) contains no nonempty closed set. Converse of the above

Theorem need not be true as seen from the following example.

Example 3.35: Let X = \{a, b, c\} and \(\tau = \{\emptyset, \{a\}, \{b, c\}, X\}\)

Let A = \{a, c\} Then \(\text{spcl}(A) - (A) = \{a, c\} - \{a, c\} = \emptyset\) contains no nonempty closed set but A is not β*-closed

Theorem 3.36: A set A is β*-closed then \(\text{spcl}(A) - (A)\) contains no nonempty \(\omega\)-closed sets.

Proof: Let F be a nonempty \(\omega\)-closed set of \(F \subseteq \text{spcl}(A) - (A)\). Then \(F \subseteq \text{spcl}(A)\) and \(A \subseteq X-F\). Since A is β*-closed and \(X-F\) is \(\omega\)-open. We have \(\text{spcl}(A) \subseteq \text{Int}(X-F) = X - \text{cl}(F)\).

Hence \(\text{cl}(F) \subseteq X - \text{spcl}(A)\) and so \(F \subseteq X - \text{spcl}(A)\).

Already \(F \subseteq \text{spcl}(A)\) hence we get a contradiction. Hence \(\text{spcl}(A) - (A)\) contains no nonempty \(\omega\)-closed set.

Theorem 3.37: If A is β*-closed and \(A \subseteq B \subseteq \text{spcl}(A)\) then B is β*-closed

Proof: Let U be a \(\omega\)-open set of X such that \(B \subseteq U\). Since A is open and gsp closed by the lemma 3.39; A is semi pre closed. Hence \(\text{spcl}(A) \subseteq \text{Int}(U)\).

Theorem 3.38: If a subset A of (X, \(\tau\)) is \(\omega\)-open and β*-closed then A is semipreclosed in (X, \(\tau\)).

Proof: If A is \(\omega\)-open and β*-closed, since A \(\subseteq A\), we have \(\text{spcl}(A) \subseteq \text{Int}(A) \subseteq A\) but A \(\subseteq \text{spcl}(A)\). Hence A = \(\text{spcl}(A)\). So A is semipreclosed.

Lemma 3.39: If A is open and gsp closed. Then A is semi pre closed.

Proof: Let A \(\subseteq U\) and U be open in (X, \(\tau\)), since A is open and A \(\subseteq A\), we have \(\text{spcl}(A) \subseteq A \subseteq U\), hence \(\text{spcl}(A) \subseteq U\) and so A is semi pre closed.

Theorem 3.40: A open set of (X, \(\tau\)) is gsp closed if and only if A is β*-closed.

Proof: Let A be a open set of (X, \(\tau\)) and A is gsp closed.

Let A \(\subseteq U\) and U be \(\omega\)-open in (X, \(\tau\)), since A is open and gsp closed by the lemma 3.39; A is semi pre closed. Hence \(\text{spcl}(A) = A = \text{Int}(A) \subseteq \text{Int}(U)\), therefore \(\text{spcl}(A) \subseteq \text{Int}(U)\) and so A is β*-closed. Conversely let A be a β*-closed set. Then by Theorem 3.4, A is gsp closed.

Theorem 3.41: Let A be β*-closed in (X, \(\tau\)) Then A is semi pre closed if and only if \(\text{spcl}(A) - (A)\) is \(\omega\)-closed.
Proof: Let A be semi pre closed. Then $spcl(A) = (A)$ and so $spcl(A) - (A) = \emptyset$ which is ω closed. Conversely Let $spcl(A) - (A)$ is ω closed, Since A is β^*- closed by Theorem 3.36 $spcl(A) - A$ contains no non empty ω – closed set.

Hence $spcl(A) - (A) = \emptyset$ which implies $spcl(A) = (A)$ and so A is semi pre closed

Definition 3.42: Let (X, τ) be a topological space and $A \subseteq X$ and $x \in X$, Then x is said to be a semi pre limit point of A if every semi pre open set containing x contains a point of A different from x.

Definition 3.43: Let (X,τ) be a topological space and $A \subseteq X$, the set of all semi pre limit point of A is said to be semi pre derived set of A and is denoted by $D_{sp}[A]

Theorem 3.44: If $D[A] \subseteq D_{sp}[A]$ for each subset A of a space (X, τ), Then the union of two β^*- closed set is β^*-closed.

Proof: Let A and B be β^*- closed subsets of X and U be ω – open set with $A \cup B \subseteq U$. Then $spcl(A) \subseteq Int(U)$ and $spcl(B) \subseteq Int(U)$. Since for each subset A of X, we have $D_{sp}[A] \subseteq D[A]$, we get $cl(A) = spcl(A)$ and $cl(B) = spcl(B)$, therefore $cl(A \cup B) = cl(A) \cup cl(B) = spcl(A) \cup spcl(B) \subseteq Int(U)$, but $spcl(A \cup B) \subseteq cl(A \cup B) \subseteq Int(U)$, hence $A \cup B$ is β^*- closed

REFERENCE:

[10] S.Pious miser and C. Devamanohar, On ρ-closed sets, ON Contra ρ continuous functions and strongly ρ closed spaces, Demonstratio Mathematica vol.XLV NO 12012
