International Journal of Mathematical Archive-3(3), 2012, Page: 1069-1072

 MMAAvailable online through www.ijma.info ISSN 2229-5046
LEFT JORDAN AND LEFT DERIVATIONS ON PRIME RINGS

Dr. D. BHARATHI*, M. MUNI RATHNAM ${ }^{\# 1}$, P. RAVI ${ }^{\# 2}$ AND M. HEMA PRASAD ${ }^{\# 3}$
*Associate Professor, Department of Mathematics, Sri Venkateswara University, Tirupathi, Andhra Pradesh, INDIA
E-mail: bharathikavali@yahoo.co.in
${ }^{\# 1,2,3}$ Research Scholars, Department of Mathematics, Sri Venkateswara University, Tirupathi, Andhra Pradesh, INDIA
E-mail: munirathnam1986@gmail.com

(Received on: 09-02-12; Accepted on: 29-02-12)

Abstract

In this paper first we studied some results of Jordan left derivation. Using these first we prove that for $D: R \rightarrow R$ be a left Jordan derivation $2 r[a, b] a^{b}=0$ for all $a, b, r \in R$. And also we prove that in a prime ring R with characteristic $\neq 2$, if $D: R \rightarrow R$ is a left Jordan derivation then D is a left derivation.

Key words: Derivation of a Ring, Left Derivation of A Ring, Jordan Derivation of a ring, Left Jordan Derivation of a ring, Characteristic of a ring, Center.

INTRODUCTION:

Throughout this paper $\mathrm{R}(\neq 0)$ will represent an associative ring with centre Z and X a non zero left R -module. An additive mapping $D: R \rightarrow R$ will be called a derivation if $D(a b)=D(a) b+a D(b)$ holds for all pairs $x, y \in R$. An additive mapping $\mathrm{D}: \mathrm{R} \rightarrow \mathrm{R}$ will be called a left derivation if $\mathrm{D}(\mathrm{ab})=a \mathrm{D}(\mathrm{b})+\mathrm{bD}(\mathrm{a})$ holds for all pairs $\mathrm{x}, \mathrm{y} \boldsymbol{\mathrm { C }}$. Following [1], X is called prime if $a R x=0$ for $a \in R$ and $x \in$ implies that either $x=0$ or $a X=0$.

As is well known, R is prime ring if and only if there exists a non zero faithful prime left R-module. Following (2), an additive mapping $D: R \rightarrow R$ is called a Jordan left derivation if $D\left(a^{2}\right)=2 a D(a)$ for all a $\in R$.
I. N. Hersein [1] was shows that for a rather wide class of rings, namely prime rings of characteristic different from 2 a Jordan derivation of A is automatically an ordinary derivation of A. M. Bresar and J. Vukman [2] was present a brief proof of the well known result of Herstein which states that any Jordan derivation on a prime ring with characteristic not two is a derivation. We shall extend the results of M. Bresar and J. Vukman[2] results for left Joran and left derivations on prime rings.

MAIN RESULTS:

Theorem 1: Let R be a prime ring with characteristic not two and let $D: R \rightarrow R$ be a left Jordan derivation. Then D is a left derivation. For the proof of the theorem1 we need several steps. First we have

Lemma 1: Let R be a ring of characteristic 2.If $\mathrm{D}: \mathrm{R} \rightarrow \mathrm{R}$ is a Jordan left derivation, then for all $\mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathrm{R}$, there holds the following:
(1) $D(a b+b a)=2 a D(b)+2 b D(a)$.
(2) $\mathrm{D}(\mathrm{aba})=\mathrm{a}^{2} \mathrm{D}(\mathrm{b})+3 \mathrm{abD}(\mathrm{a})-\mathrm{baD}(\mathrm{a})$.
(3) $\mathrm{D}(\mathrm{abc}+\mathrm{cba})=(\mathrm{ab}+c a) \mathrm{D}(\mathrm{b})+3 a b D(c)+3 c b D(a)-b a D(c)-b c D(a)$.
(4) (ab-ba)aD(a)=a(ab-ba)D(a)
(5) (ab-ba)(D(ba)-bD(b)-bD(d))=0.

[^0]Proof: From the Jordan derivation
$D\left(a^{2}\right)=2 a D(a)$
Substituting $a+b$ for a in (1) we get
$D\left((a+b)^{2}\right)=2(a+b) D\left((a+b)^{2}\right)$
$D\left(a^{2}+b^{2}+a b+b a\right)=2(a+b) D(a+b)$
$D\left(a^{2}+b^{2}+a b+b a\right)=(2 a+2 b) D(a+b)$
$D\left(\mathrm{a}^{2}\right)+\mathrm{D}\left(\mathrm{b}^{2}\right)+\mathrm{D}(\mathrm{ab}+\mathrm{ba})=2 \mathrm{aD}(\mathrm{a})+2 \mathrm{aD}(\mathrm{b})+2 \mathrm{bD}(\mathrm{a})+2 \mathrm{bD}(\mathrm{b})$
Which implies
$D(a b+b a)=2 a D(b)+2 b D(a)$
Hence (1) is proved.
Let us prove (2) from (1) it follows that
$\mathrm{D}(\mathrm{a}(\mathrm{ab}+\mathrm{ba})+(\mathrm{ab}+\mathrm{ba}) \mathrm{a})=2 \mathrm{aD}(\mathrm{ab}+\mathrm{ba})+2(\mathrm{ab}+\mathrm{ba}) \mathrm{D}(\mathrm{a})$

$$
\begin{aligned}
& =2 a(2 a D(b)+2 b D(a))+2(a b+b a) D(a) \\
& =4 a^{2} D(b)+6 a b D(a)+2 b a D(a)
\end{aligned}
$$

On the other hand we have
$D(a(a b+b a)+(a b+b a) a)=D\left(a^{2} b+b a^{2}\right)+2 D(a b a)$

$$
\begin{aligned}
& =2 a^{2} D(b)+2 b D\left(a^{2}\right)+2 D(a b a) \\
& =2 a^{2} D(b)+4 b a D(a)+2 D(a b a) .
\end{aligned}
$$

In comparison we obtain
$2 \mathrm{D}(\mathrm{aba})=2(\mathrm{a} 2 \mathrm{D}(\mathrm{b})+3 \mathrm{abD}(\mathrm{a})-\mathrm{baD}(\mathrm{a})$
Which proves (2).
Since X is2-torsion free by the assumption.
The linearization of (2) gives (3).
Now we are able to prove (4).
Let us denote $\mathrm{D}(\mathrm{ab}(\mathrm{ab})+(\mathrm{ab}) \mathrm{ba})$ by A
Then using (3) we obtain
$A=(a(a b)+(a b) a)+3 a b D(a b)+3 a b^{2} D(a)-b a D(a b)-b a b D(a)$.
On the other hand, since $\mathrm{A}=\mathrm{D}\left((\mathrm{ab})^{2}+a b^{2} a\right)$ and using (1) and (2) we obtain
$A=2 a b D(a b)+a^{2} D\left(b^{2}\right)+3 a b^{2} D(a)-$
$b^{2} a D(a)=2 a b D(a b) 2 a 2 b D(b)+3 a b^{2} D(a)-b^{2} a D(a)$.
By comparing the two expressions obtained from A we have
(ab-ba)D (ab) =a (ab-ba) D (b) +b (ab-ba) D (a).
© 2012, IJMA. All Rights Reserved

Replacing $a+b$ for b in (2), we have
$(a b-b a) D(a b)+(a b-b a) D\left(a^{2}\right)=a(a b-b a) D(a)+a(a b-b a) D(b)+b(a b-b a) D(a)+a(a b-b a) D(a)$
And according to (1) and (2) we obtain (4).
Let us write $\mathrm{a}+\mathrm{b}$ for a in (4), using (4) we obtain
(ab-ba)aD(b) (ab-ba)bD(a) = a(ab-ba)D(b)+b(ab-ba)D(a).
Combining this relation with (2) we prove (5).
The proof of the lemma is complete.
For any Jordan left derivation D we shall write a^{b} for $\mathrm{D}(\mathrm{ab})-\mathrm{bD}(\mathrm{a})-\mathrm{aD}(\mathrm{b})$.
Now from (1) in lemma1 we see that
$D(a b+b a)=2 a D(b)+2 b D(a)$
$\mathrm{D}(\mathrm{ab})+\mathrm{D}(\mathrm{ba})=\mathrm{aD}(\mathrm{b})+\mathrm{aD}(\mathrm{b})+\mathrm{bD}(\mathrm{a})+\mathrm{bD}(\mathrm{a})$
Which implies $\mathrm{a}^{\mathrm{b}}=-\mathrm{b}^{\mathrm{a}}$
holds for all $a, b \in R$.

$$
\begin{align*}
\text { And } a^{b+c} & =D(a(b+c))-(b+c) D(a)-a D(b+c) \\
& =D(a b+a c)-b D(a)-c D(a)-a D(b)-a D(c) \\
a^{b+c} & =a^{b}+b^{a} \tag{3}
\end{align*}
$$

holds for all $\mathrm{a}, \mathrm{b} \in \mathrm{R}$.
Theorem 2: Let R be a ring of characteristic not two, and let $D: R \rightarrow R$ be a left Jordan derivation .In for all $a, b, r \in R$ we have

$$
2 \mathrm{r}[\mathrm{a}, \mathrm{~b}] \mathrm{a}^{\mathrm{b}}=0
$$

Proof: Let us write W for abrba+barba. Then by (2) of lemma (1) we obtain

$$
\begin{align*}
D(W) & =D(a(b r b) a)+b(a r a) b) \\
& \left.=a^{2} D(b r b)+3 a b r b D(a) b r b a D(a)+b^{2} D(a r a)+3 b a r a D 9 b\right)-\operatorname{arabD}(b) \\
& =a^{2}\left[b^{2} D(r)+3 b r D(b)-r b D(b)\right]+3 a b r b D(a)-b r b a D(a)+b^{2}\left[a^{2} D(r)+3 a r D(a)-r a D(a)\right]+3 b a r a D(b)-\operatorname{arabD}(b) \\
& =a^{2} b^{2} D(r)+3 a^{2} b r D(b)-a^{2} r b D(b)+3 a b r b D(a)-b r b a D(a)+b^{2} a^{2} D(r)+3 b^{2} a r D(a)-b^{2} r a D(a)+3 b a r a D(b)-r a b D(b) \tag{4}
\end{align*}
$$

On the other hand we obtain using (3) of lemma1.
$\mathrm{D}(\mathrm{W})=\mathrm{D}((\mathrm{ab}) \mathrm{r}(\mathrm{ba})+(\mathrm{ba}) \mathrm{rD}(\mathrm{ab}))$
$=((\mathrm{ab})(\mathrm{ba})+(\mathrm{ba})(\mathrm{ab}) \mathrm{D}(\mathrm{r})+3 \mathrm{abrD}(\mathrm{ba})+3 \mathrm{barD}(\mathrm{ab})-\mathrm{rabD}(\mathrm{ba})-\mathrm{rbaD}(\mathrm{ab})$
$=((a b) b a)+(b a)(a b)) D(r)+3 a b r[b D(a)+a D(b)]+3 b a r[b D(a)+a D(b]-r b a[b D(a)+a D(b)]$
Comparing (4) and (5) we have
$3 a b r b^{a}+3 b a r a^{b}-r a b b^{a}-r b a a^{b}=0$
Which implies
$-3 a b a^{b}+3 b a a^{b}+r a b a^{b}-$ rba $a^{b}=0$
© 2012, IJMA. All Rights Reserved

Dr. D. BHARATHI* M. MUNI RATHNAM ${ }^{* 1}$, P. RAVI $I^{* 2}$ AND M. HEMA PRASAD*3 / Left Jordan and Left Derivations on Prime Rings / IJMA- 3(3), Mar.-2012, Page: 1069-1072
$-3[a, b] r a^{b}+[a, b] r a^{b}=0$
Which gives
$2[a, b] r a^{b}=0$.
Hence theorem is proved.
The proof theorem1: Let a and b be fixed elements from R. If $a b \neq b a$ then from above theorem obtains immediately that $\mathrm{a}^{\mathrm{b}}=0$.

If a and b are both in $Z(R)$ then by (1) of lemma 1 implies
$D(2 a b)=2 a D(a)+2 b D(b)$
$2 \mathrm{D}(\mathrm{ab})=2(\mathrm{aD}(\mathrm{a})+\mathrm{bD}(\mathrm{b}))$
Which implies
$\mathrm{D}(\mathrm{ab})=\mathrm{aD}(\mathrm{b})+\mathrm{bD}(\mathrm{a})$
Which gives $\mathrm{a}^{\mathrm{b}}=0$.
It remains to prove that $a^{b}=0$ also in the case when a does not lie in $Z(R)$ and $b \in Z(R)$ there exists $c \in R$ such that $a c \neq c a$.
Since $a c \neq c a$ and $a(b+c) \neq(b+c)$ a we have $a^{c}=0$ and $a^{b+c}=0$. Then we obtain using (B)
$0=a^{b+c}=a^{b}+a^{c}=a^{b}$.
Therefore the proof of the theorem.

REFERENCES:

[1] Herstein, I.N, "Jordan derivations of prime rings", proc. amer. math. soc. 8 (1957), 1104-1110.
[2] Bresar. M and Vukman. J, "Jordan derivations on Prime rings" Bull.Aust.Math.Soc.Vol. 37 (1988), 321-322.

[^0]: * Corresponding author: M. MUNI RATHNAM ${ }^{* 1}$,* E-mail: munirathnam1986@gmail.com

