International Journal of Mathematical Archive-3(3), 2012, Page: 1069-1072

LEFT JORDAN AND LEFT DERIVATIONS ON PRIME RINGS

Dr. D. BHARATHI^{*}, M. MUNI RATHNAM^{#1}, P. RAVI^{#2} AND M. HEMA PRASAD^{#3}

*Associate Professor, Department of Mathematics, Sri Venkateswara University, Tirupathi, Andhra Pradesh, INDIA E-mail: bharathikavali@yahoo.co.in

^{#1, 2,3}Research Scholars, Department of Mathematics, Sri Venkateswara University, Tirupathi, Andhra Pradesh, INDIA E-mail: munirathnam1986@gmail.com

(Received on: 09-02-12; Accepted on: 29-02-12)

ABSTRACT

In this paper first we studied some results of Jordan left derivation. Using these first we prove that for $D: \mathbb{R} \to \mathbb{R}$ be a left Jordan derivation $2r [a, b] a^b = 0$ for all $a, b, r \in \mathbb{R}$. And also we prove that in a prime ring \mathbb{R} with characteristic $\neq 2$, if $D: \mathbb{R} \to \mathbb{R}$ is a left Jordan derivation then D is a left derivation.

Key words: Derivation of a Ring, Left Derivation of A Ring, Jordan Derivation of a ring, Left Jordan Derivation of a ring, Characteristic of a ring, Center.

INTRODUCTION:

Throughout this paper R ($\neq 0$) will represent an associative ring with centre Z and X a non zero left R-module. An additive mapping D: R \rightarrow R will be called a derivation if D (ab) =D (a) b+aD (b) holds for all pairs x, y \in R. An additive mapping D: R \rightarrow R will be called a left derivation if D (ab) =aD (b) +bD (a) holds for all pairs x, y \in R. Following [1], X is called prime if aRx=0 for a \in R and x \in implies that either x=0 or aX=0.

As is well known, R is prime ring if and only if there exists a non zero faithful prime left R-module. Following (2), an additive mapping D: $R \rightarrow R$ is called a Jordan left derivation if D (a^2) =2aD (a) for all a $\in R$.

I. N. Hersein [1] was shows that for a rather wide class of rings, namely prime rings of characteristic different from 2 a Jordan derivation of A is automatically an ordinary derivation of A. M. Bresar and J. Vukman [2] was present a brief proof of the well known result of Herstein which states that any Jordan derivation on a prime ring with characteristic not two is a derivation. We shall extend the results of M. Bresar and J. Vukman[2] results for left Joran and left derivations on prime rings.

MAIN RESULTS:

Theorem 1: Let R be a prime ring with characteristic not two and let D: $R \rightarrow R$ be a left Jordan derivation. Then D is a left derivation. For the proof of the theorem1 we need several steps. First we have

Lemma 1: Let R be a ring of characteristic 2.If D: $R \rightarrow R$ is a Jordan left derivation, then for all a, b, c $\in R$, there holds the following:

- (1) D (ab + ba)=2aD(b)+2bD(a).
- (2) D (aba) = $a^{2}D$ (b) +3abD (a)-baD (a).
- (3) D(abc+cba)=(ab+ca)D(b)+3abD(c)+3cbD(a)-baD(c)-bcD(a).
- (4) (ab-ba)aD(a)=a(ab-ba)D(a)
- (5) (ab-ba)(D(ba)-bD(b)-bD(d))=0.

*Corresponding author: M. MUNI RATHNAM^{#1}, *E-mail: munirathnam1986@gmail.com

Dr. D. BHARATHI^{*}, M. MUNI RATHNAM^{#1}, P. RAVI^{#2} AND M. HEMA PRASAD^{#3} / Left Jordan and Left Derivations on Prime Rings / IJMA- 3(3), Mar.-2012, Page: 1069-1072

Proof: From the Jordan derivation

$$D(a^2) = 2aD(a)$$

Substituting a+b for a in (1) we get

 $D((a+b)^2) = 2(a+b) D((a+b)^2)$

 $D(a^2+b^2+ab+ba) = 2(a+b) D(a+b)$

 $D(a^2+b^2+ab+ba) = (2a+2b) D(a+b)$

 $D(a^{2})+D(b^{2})+D(ab+ba) = 2aD(a)+2aD(b)+2bD(a)+2bD(b)$

Which implies

D (ab+ba) =2aD (b) +2bD (a)

Hence (1) is proved.

Let us prove (2) from (1) it follows that

D(a(ab+ba)+(ab+ba)a) = 2aD(ab+ba)+2(ab+ba)D(a)

=2a (2aD (b) + 2bD (a)) + 2(ab+ba) D (a)

 $=4a^{2}D(b)+6abD(a)+2baD(a)$

On the other hand we have

 $D(a(ab+ba)+(ab+ba)a) = D(a^{2}b+ba^{2})+2D(aba)$

 $=2 a^{2}D(b) + 2bD(a^{2}) + 2D(aba)$

 $=2 a^{2}D(b) + 4baD(a) + 2D(aba).$

In comparison we obtain

2D (aba) = 2(a2D (b) + 3abD (a) - baD (a)

Which proves (2).

Since X is2-torsion free by the assumption.

The linearization of (2) gives (3).

Now we are able to prove (4).

Let us denote D (ab(ab) +(ab)ba) by A

Then using (3) we obtain

 $A = (a(ab)+(ab)a)+3abD(ab)+3ab^2D(a)-baD(ab)-babD(a).$

On the other hand, since $A=D((ab)^2+ab^2a)$ and using (1) and (2) we obtain

 $A=2abD(ab) + a^{2}D(b^{2}) + 3ab^{2}D(a)$ -

 $b^{2}aD(a) = 2abD(ab) 2a2bD(b) + 3ab^{2}D(a) - b^{2}aD(a).$

By comparing the two expressions obtained from A we have

(ab-ba)D (ab) =a (ab-ba) D (b) +b (ab-ba) D (a). © 2012, IJMA. All Rights Reserved (1)

Dr. D. BHARATHI^{*}, M. MUNI RATHNAM^{#1}, P. RAVI^{#2} AND M. HEMA PRASAD^{#3} / Left Jordan and Left Derivations on Prime Rings / IJMA- 3(3), Mar.-2012, Page: 1069-1072

Replacing a+b for b in (2), we have	
$(ab-ba)D(ab) + (ab-ba)D(a^2) = a(ab-ba)D(a) + a(ab-ba)D(b) + b(ab-ba)D(a) + a (ab-ba)D(a)$	
And according to (1) and (2) we obtain (4).	
Let us write a+b for a in (4), using (4) we obtain	
(ab-ba)aD(b) $(ab-ba)bD(a) = a(ab-ba)D(b)+b(ab-ba)D(a).$	
Combining this relation with (2) we prove (5).	
The proof of the lemma is complete.	
For any Jordan left derivation D we shall write a^b for D(ab)-bD(a)-aD(b).	
Now from (1) in lemma1 we see that	
D(ab+ba) = 2aD(b) + 2bD(a)	
D(ab) + D(ba) = aD(b) + aD(b) + bD(a) + bD(a)	
Which implies $a^b = -b^a$	(2)
holds for all $a,b\in \mathbb{R}$.	
And $a^{b+c} = D(a(b+c)) - (b+c) D(a) - aD(b+c)$	
=D(ab+ac) - bD(a) - cD(a) - aD(b) - aD(c)	
$a^{b+c} = a^b + b^a$	(3)

holds for all a,bCR.

Theorem 2: Let R be a ring of characteristic not two, and let D: $R \rightarrow R$ be a left Jordan derivation .In for all a, b, r $\in R$ we have

$$2r [a, b] a^0 = 0.$$

Proof: Let us write W for abrba+barba. Then by (2) of lemma (1) we obtain

D(W) = D(a(brb)a) + b(ara)b)

 $=a^{2}D(brb)+3abrbD(a)brbaD(a)+b^{2}D(ara)+3baraD9b)$ - arabD(b)

 $=a^{2}[b^{2}D(r)+3br D(b)-rbD(b)]+3abrbD(a)-brbaD(a)+b^{2}[a^{2}D(r)+3arD(a)-raD(a)]+3baraD(b)-arabD(b)$

$$= a^{2}b^{2}D(r) + 3 a^{2}br D(b) - a^{2}rbD(b) + 3abrbD(a) - brbaD(a) + b^{2}a^{2}D(r) + 3 b^{2}arD(a) - b^{2}raD(a) + 3baraD(b) - rabD(b)$$
(4)

On the other hand we obtain using (3) of lemma1.

D(W) = D((ab) r(ba) + (ba) rD(ab))

= ((ab)(ba)+(ba)(ab)D(r)+3abrD(ba)+3barD(ab)-rabD(ba)-rbaD(ab)

$$= ((ab)ba) + (ba)(ab))D(r) + 3abr[bD(a) + aD(b)] + 3bar[bD(a) + aD(b] - rba[bD(a) + aD(b)]$$
(5)

Comparing (4) and (5) we have

 $3abr b^{a} + 3bar a^{b} - rab b^{a} - rba a^{b} = 0$

Which implies

-3ab a^b +3ba a^b +rab a^b - rba $a^b = 0$ © 2012, IJMA. All Rights Reserved

Dr. D. BHARATHI^{*}, M. MUNI RATHNAM^{#1}, P. RAVI^{#2} AND M. HEMA PRASAD^{#3} / Left Jordan and Left Derivations on Prime Rings / IJMA- 3(3), Mar.-2012, Page: 1069-1072

 $-3[a, b]r a^{b} + [a, b]r a^{b} = 0$

Which gives

 $2[a, b]r a^b = 0.$

Hence theorem is proved.

The proof theorem1: Let a and b be fixed elements from R. If $ab \neq ba$ then from above theorem obtains immediately that $a^b = 0$.

If a and b are both in Z(R) then by (1) of lemma 1 implies

D(2ab) = 2aD(a) + 2bD(b)

2D(ab) = 2(aD(a)+bD(b))

Which implies

D(ab) = aD(b) + bD(a)

Which gives $a^b=0$.

It remains to prove that $a^{b}=0$ also in the case when a does not lie in Z(R) and $b\in Z(R)$ there exists $c\in R$ such that $ac \neq ca$.

Since $ac\neq ca$ and $a(b+c) \neq (b+c)$ a we have $a^{c}=0$ and $a^{b+c}=0$. Then we obtain using (B)

 $0 = a^{b+c} = a^{b} + a^{c} = a^{b}$.

Therefore the proof of the theorem.

REFERENCES:

[1] Herstein, I.N, "Jordan derivations of prime rings", proc. amer. math. soc. 8 (1957), 1104-1110.

[2] Bresar. M and Vukman. J, "Jordan derivations on Prime rings" Bull.Aust.Math.Soc.Vol.37 (1988), 321-322.
