IMA Available online through www.ijma.info ISSN 2229-5046

AN INTRODUCTION TO STEINER POLYNOMIALS OF GRAPHS

A. VIJAYAN*
Associate Professor, Department of Mathematics, Nesamony Memorial Christian College, Marthandam - 629165, Affliated to Manonmaniam Sundaranar University, Abishekapatty, Tirunelveli - 627 012, Tamil nadu, India.
E-mail: naacnmccm@gmail.in
G. D. SURESH
Assistant Professor, Department of Mathematics, Nesamony Memorial Christian College, Marthandam - 629165, Affliated to Manonmaniam Sundaranar University, Abishekapatty,Tirunelveli - 627 012, Tamil nadu, India.
E-mail: gd2suresh@yahoo.co.in

(Received on: 20-02-12; Accepted on: 15-03-12)

Abstract

In this paper, we introduce a new concept of Steiner polynomial of a connected graph G. The Steiner polynomial of G is the polynomial $S(G, x)=\sum_{i=s(G)}^{|V(G)|} s(G, i) x^{i}$, where $s(G, i)$ is the number of Steiner sets of G of size i and $s(G)$ is the

 Steiner number of G. We obtain some properties of $S(G, x)$ and its coefficients. Also, we compute the polynomials for paths.Key words: Steiner set, Steiner polynomial, Steiner number.

1. INTRODUCTION

For a connected graph G and a set $W \subseteq V(G)$, a tree contained in G is a Steiner tree with respect to W if T is a tree of minimum order with $\mathrm{W} \subseteq \mathrm{V}(\mathrm{G})$. The set $\mathrm{S}(\mathrm{W})$ contains, of all vertices in G that lie on some Steiner tree with respect to W. The minimum cardinality among the Steiner sets of G is the Steiner number, s (G). We denote the family of Steiner sets of a connected graph G with cardinality i by S (G, i).

Each extreme vertex of a graph G belongs to every Steiner set of G. In particular, each end-vertex of G belongs to every Steiner set of G.

Every non trivial tree with exactly k end- vertices has Steiner number k .
A graph in which any two distinct vertices are adjacent is called a complete graph. The complete graph with n vertices is denoted by K_{n}.

A graph G is called a bipartite graph if $V(G)$ of G can be partitioned into two disjoint subsets V_{1} and V_{2} such that every edge G joins a vertex of V_{1} to a vertex of V_{2}. If V_{1} contains m vertices and V_{2} contains n vertices then the complete bigraph G is denoted by $\mathrm{K}_{\mathrm{m}, \mathrm{n}} . \mathrm{K}_{1, \mathrm{~m}}$ is called a star for $\mathrm{m} \geq 2$.

The complement of a complete graph K_{n} is denoted by $\overline{\mathrm{K}}_{\mathrm{n}}$ and it is a null graph.

If K_{m} and K_{n} are two complete graphs of order m and n respectively, then the graph $K_{m} \bigcup_{V_{o}} K_{n}$ is a graph of order $\mathrm{m}+\mathrm{n}-1$ with a common cut vertex v_{0}.

Let $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ be two graphs with $V_{1} \cap V_{2}=\phi$. Then, the Sum $G_{1}+G_{2}$ is the graph $G_{1} \cup G_{2}$ together with all the edges joining the vertices of V_{1} to the vertices of V_{2}.

A. VIJAYAN* \& G. D. SURESH/ AN INTRODUCTION TO STEINER POLYNOMIALS OF GRAPHS/ IJMA- 3(3), Mar.-2012, Page: 1141-1153

ie., If G_{1} is a $\left(p_{1}, q_{1}\right)$ graph and G_{2} is $\left(p_{2}, q_{2}\right)$ graph, then $G_{1}+G_{2}$ is a $\left(p_{1}+p_{2}, q_{1}+q_{2}+p_{1} p_{2}\right)$ graph.
A walk is called a path if all its points are distinct. A path of order n is denoted by P_{n}.
A wheel, W_{n}, is a graph with n vertices $v_{1}, v_{2} \cdot v_{n}$ with v_{1} having degree $n-1$ and all the remaining ($n-1$) vertices having degree $3, \mathrm{v}_{\mathrm{i}}$ is adjacent to $\mathrm{v}_{\mathrm{i}+1}$ and v_{n} is adjacent to v_{2}.

The corona of two graphs G_{1} and G_{2}, as defined by Frucht and Harary in [3] is the graph $G=G_{1}$ o G_{2} formed from one copy of G_{1} and $\left|V\left(G_{1}\right)\right|$ copies of G_{2}, where the $i^{\text {th }}$ vertex of G_{1} is adjacent to every vertex in the $i^{\text {th }}$ copy of G_{2}. The corona G_{1} o K_{1}, in particular, is the graph constructed from a copy of G, where for each vertex $\mathrm{u} \in \mathrm{V}(\mathrm{G})$, a new vertex v^{\prime} and a pendent edge vv ' are added.

2. STEINER POLYNOMIAL OF A GRAPH

Definition 2.1: Let $S(G, i)$ be the family of Steiner sets of a graph G with cardinality i and let $s(G, i)=|S(G, i)|$. Then the Steiner Polynomial, $\mathrm{S}(\mathrm{G}, x)$ of G is defined as

$$
S(G, x)=\sum_{i=s(G)}^{|V(G)|} s(G, i) x^{i} \text {, where } s(G) \text { is the Steiner number of } G \text {. }
$$

Example 2.2: For the graph G, in Figure 1,
let $W_{1}=\left\{v_{1}, v_{4}, v_{6}\right\}$. Then the trees $T_{1}, T_{2}, T_{3}, T_{4}$ given in Figure 2 are four distinct Steiner $W_{1^{-}}$trees of order 5 such that every vertex of G lies on some Steiner W_{1} - trees and so W_{1} is a Steiner set of G.

T_{1}

T_{2}

T_{3}

T_{5}

Figure: 2
Since there is no 2-element Steiner set of G, W_{1} is a minimum Steiner set of G so that $s(G)=3$.
The other Steiner sets with cardinality 3 are $\mathrm{W}_{2}=\left\{\mathrm{v}_{2}, \mathrm{v}_{4}, \mathrm{v}_{7}\right\}$ and $\mathrm{W}_{3}=\left\{\mathrm{v}_{3}, \mathrm{v}_{6}, \mathrm{v}_{7}\right\}$.
$S(G, i)$ is the family of Steiner sets with cardinality i.
$S(G, 3)=\left\{\left\{\mathrm{v}_{1}, \mathrm{v}_{4}, \mathrm{v}_{6}\right\},\left\{\mathrm{v}_{2}, \mathrm{v}_{4}, \mathrm{v}_{7}\right\},\left\{\mathrm{v}_{3}, \mathrm{v}_{6}, \mathrm{v}_{7}\right\}\right\}$
Hence, s (G, 3) $=|\mathrm{S}(\mathrm{G}, 3)|=3$
A Steiner set with cardinality 4 is $W_{4}=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v}_{5}\right\}$. The Steiner W_{4} trees are as follows:

T_{5}

T_{6}

T_{7}

Figure: 3

A. VIJAYAN* \& G. D. SURESH/ AN INTRODUCTION TO STEINER POLYNOMIALS OF GRAPHS/ IJMA- 3(3), Mar.-2012, Page: 1141-1153

The other Steiner sets with cardinality 4 are $\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{4}, \mathrm{v}_{5}\right\},\left\{\mathrm{v}_{1}, \mathrm{v}_{3}, \mathrm{v}_{5}, \mathrm{v}_{6}\right\}$ and $\left\{\mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v}_{5}, \mathrm{v}_{7}\right\}$
$\therefore \mathrm{S}(\mathrm{G}, 4)=\left\{\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v}_{5}\right\},\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v}_{5}\right\},\left\{\mathrm{v}_{1}, \mathrm{v}_{3}, \mathrm{v}_{4}, \mathrm{v}_{5}\right\},\left\{\mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v}_{5}, \mathrm{v}_{7}\right\}\right.$
Hence, $S(G, 4)=4$.
Also, $\quad s(G, 5)=\left\{\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{4}, \mathrm{v}_{6}, \mathrm{v}_{7}\right\},\left\{\mathrm{v}_{1}, \mathrm{v}_{3}, \mathrm{v}_{4}, \mathrm{v}_{6}, \mathrm{v}_{7}\right\},\left\{\mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v}_{4}, \mathrm{v}_{6}, \mathrm{v}_{7}\right\}\right\}$
Therefore, $s(G, 5)=3$
There is no Steiner set with cardinality 6 , because, if we take any six vertices out of 7 vertices, there is a tree of order 6 . To include the 7th vertex a tree should have order 7 including the other 6 vertices

$$
\therefore S(G, 6)=\{ \}
$$

Therefore, $s(G, 6)=0$.
The whole set $\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots \mathrm{v}_{7}\right\}$ is also a Steiner set.
ie,

$$
S(G, 7)=\left\{\left\{v_{1}, v_{2}, \ldots V_{7}\right\}\right\}
$$

Therefore, $\quad s(G, 7)=1$

Hence, $\quad \mathrm{S}(\mathrm{G}, x)=\sum_{\mathrm{i}=\mathrm{s}(\mathrm{G})}^{|\mathrm{V}(\mathrm{G})|} \mathrm{s}(\mathrm{G}, \mathrm{i}) x^{\mathrm{i}}$

$$
=3 x^{3}+4 x^{4}+3 x^{5}+x^{7}
$$

Theorem 2.3: If $\mathrm{G}_{1} \cong \mathrm{G}_{2}$, then $\mathrm{S}\left(\mathrm{G}_{1}, x\right)=\mathrm{S}\left(\mathrm{G}_{2}, x\right)$.
Proof: Let $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ be the given isomorphic graphs.
Since $G_{1} \cong G_{2}$, there exists a bijection $f: V_{1} \rightarrow V_{2}$ such that v_{i} and v_{j} are end vertices/ extreme vertices in G_{1} iff f $\left(v_{i}\right)$ and $f\left(v_{j}\right)$ are end vertices/ extreme vertices in G_{2}.

Hence, there is a one to one correspondence between the Steiner sets of G_{1} and the Steiner sets of G_{2}.
Therefore, s $\left(\mathrm{G}_{1}, \mathrm{i}\right)=\mathrm{s}\left(\mathrm{G}_{2}, \mathrm{i}\right), \forall \mathrm{i}$.
If $S\left(\mathrm{G}_{1}, x\right)$ and $S\left(\mathrm{G}_{2}, x\right)$ are the Steiner polynomials of G_{1} and G_{2} respectively, then $\mathrm{S}\left(\mathrm{G}_{1}, x\right)=S\left(\mathrm{G}_{2}, x\right)$.
Remark: 2.4 Converse is not true.
Example: 2.5 Consider the following two graphs G_{1} and G_{2}.

Figure: 4
Steiner sets of G_{1} are

$$
\begin{align*}
& \left\{\mathrm{u}_{1}, \mathrm{u}_{4}, \mathrm{u}_{5}\right\} \\
& \left\{\mathrm{u}_{1}, \mathrm{u}_{2}, \mathrm{u}_{4}, \mathrm{u}_{5},\right\},\left\{\mathrm{u}_{1}, \mathrm{u}_{3}, \mathrm{u}_{4}, \mathrm{u}_{5}\right\} \\
& \left\{\mathrm{u}_{1}, \mathrm{u}_{2}, \mathrm{u}_{3}, \mathrm{u}_{4}, \mathrm{u}_{5}\right\} \tag{1}
\end{align*}
$$

$\therefore \mathrm{S}\left(\mathrm{G}_{1}, x\right)=x^{3}+2 x^{4}+x^{5}$
© 2012, IJMA. All Rights Reserved

A. VIJAYAN* \& G. D. SURESH/ AN INTRODUCTION TO STEINER POLYNOMIALS OF GRAPHS/ IJMA- 3(3), Mar.-2012,

Steiner sets of G_{2} are
$\left\{\mathrm{v}_{1}, \mathrm{v}_{4}, \mathrm{v}_{5}\right\}$
$\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{4}, \mathrm{v}_{5}\right\},\left\{\mathrm{v}_{1}, \mathrm{v}_{3}, \mathrm{v}_{4}, \mathrm{v}_{5}\right\}$
$\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v}_{4}, \mathrm{v}_{5}\right\}$
$\therefore \quad \mathrm{S}\left(\mathrm{G}_{2}, x\right)=x^{3}+2 x^{4}+x^{5}$
From (1) and (2)
$\mathrm{S}\left(\mathrm{G}_{1}, x\right)=\mathrm{S}\left(\mathrm{G}_{2}, x\right)$
But, G_{1} and G_{2} are not isomorphic graphs.
Theorem 2.6: The Steiner polynomial of a complete bipartite graph $\mathrm{K}_{\mathrm{m}, \mathrm{n}}$ is
$\mathrm{s}\left(\mathrm{K}_{\mathrm{m}, \mathrm{n}}, x\right)=x^{\mathrm{n}}+x^{\mathrm{m}}+x^{\mathrm{m}+\mathrm{n}} ; \mathrm{m}, \mathrm{n}>1$
Proof: Let $K_{m, n}$ be a complete bipartite graph with two partite sets X and Y so that $|X|=m$ and $|Y|=n$.
Let $X=\left\{\mathrm{u}_{1}, \mathrm{u}_{2}, \ldots \mathrm{u}_{\mathrm{m}}\right\}$ and $\mathrm{Y}=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots \mathrm{v}_{\mathrm{n}}\right\}$.
Without loss of generality, we assume $\mathrm{m}>\mathrm{n}$.

Figure 5
There are only three Steiner sets. Since $\mathrm{n}<\mathrm{m}$, the unique Steiner set with minimum cardinality n is Y .
$\therefore \mathrm{s}\left(\mathrm{K}_{\mathrm{m}, \mathrm{n}}, \mathrm{n}\right)=1$
The unique Steiner set with cardinality m is X .
$\therefore \mathrm{s}\left(\mathrm{K}_{\mathrm{m}, \mathrm{n}}, \mathrm{m}\right)=1$
The Steiner set with cardinality $m+n$ is $X \cup Y$.
$\therefore \mathrm{s}\left(\mathrm{K}_{\mathrm{m}, \mathrm{n}} \mathrm{m}+1\right)=1$
There is no other Steiner sets for $K_{m, n}$. For, if $W=X \cup\left\{u_{1}\right\}$, then there is only one tree of order $m+1$ containing the elements of W. In this tree, only the elements of W are involved, but no other vertex of $K_{m, n}$ is involved. The other tree which contains the elements of W and the remaining vertices of $K_{m, n}$ is of minimum order $m+2$.
$\therefore \mathrm{W}$ is not a Steiner set.

$$
\mathrm{W}_{1}=\mathrm{X} \cup\left\{\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}\right\}, \quad \mathrm{i} \neq \mathrm{j}, \quad 1 \leq \mathrm{i}, \quad \mathrm{j} \leq \mathrm{n} \quad \text { is not a Steiner set. }
$$

Also, $\quad \mathrm{W}_{2}=\mathrm{Y} \cup\left\{\mathrm{u}_{\mathrm{j}}\right\}, \mathrm{i}=1,2, \ldots . . \mathrm{n}$ is not a Steiner set.
Hence,

$$
\begin{aligned}
\mathrm{S}\left(\mathrm{~K}_{\mathrm{m}, \mathrm{n}}, x\right) & =\sum_{\mathrm{i}=\mathrm{s}\left(\mathrm{~K}_{\mathrm{m}, \mathrm{n}}\right)}^{\left|\mathrm{V}\left(\mathrm{~K}_{\mathrm{m}, \mathrm{n}}\right)\right|} \mathrm{S}\left(\mathrm{~K}_{\mathrm{m}, \mathrm{n}, \mathrm{i}}\right) x^{\mathrm{i}} \\
& =x^{\mathrm{n}}+x^{\mathrm{m}}+x^{\mathrm{m}}+\mathrm{n}
\end{aligned}
$$

A. VIJAYAN* \& G. D. SURESH/ AN INTRODUCTION TO STEINER POLYNOMIALS OF GRAPHS/ IJMA- 3(3), Mar.-2012, Page: 1141-1153

Corollary 2.7: $\mathrm{S}\left(\mathrm{K}_{\mathrm{n}, \mathrm{n}}, x\right)=x^{\mathrm{n}}\left(2+x^{\mathrm{n}}\right)$
Proof: Replace m by n in Theorem 2.6, we have

$$
\begin{aligned}
\mathrm{S}\left(\mathrm{~K}_{\mathrm{m}, \mathrm{n}}, x\right) & =x^{\mathrm{n}}+x^{\mathrm{n}}+x^{\mathrm{n}+\mathrm{n}} \\
& =x^{\mathrm{n}}\left(2+x^{\mathrm{n}}\right)
\end{aligned}
$$

Theorem 2.8: $\mathrm{S}\left(\mathrm{K}_{1, \mathrm{n}}, x\right)=x^{\mathrm{n}}(1+x)$
Proof: Let V $\left(\mathrm{K}_{1, \mathrm{n}}\right)$ be $\left\{\mathrm{u}, \mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}}\right\}$
Since $\mathrm{v}_{1}, \mathrm{v}_{2} \ldots, \mathrm{v}_{\mathrm{n}}$ are the end vertices, the minimum Steiner set is $\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}}\right\}$.
It is the unique minimum Steiner set.

Figure 6
$\therefore \quad \mathrm{s}\left(\mathrm{K}_{1, \mathrm{n}}, \mathrm{n}\right)=1$
The other Steiner set is $\left\{u, v_{1}, v_{2}, \ldots, v_{n}\right\}$
$\therefore \mathrm{S}\left(\mathrm{K}_{1, \mathrm{n}}, x\right)=x^{\mathrm{n}}+x^{\mathrm{n}+1}$
$=x^{\mathrm{n}}(1+x)$
Theorem 2.9: Let G_{1} and G_{2} be any two connected graphs of order m and n respectively. Then
$\mathrm{S}\left(\mathrm{G}_{1}+\mathrm{G}_{2}, x\right)=x^{\mathrm{m}+\mathrm{n}}$
Proof: If G_{1} and G_{2} are connected graphs of order m and n respectively, then $G_{1}+G_{2}$ is also a connected graph of order $m+n$.

The unique Steiner set of $G_{1}+G_{2}$ is
$\left\{u_{1}, u_{2}, \ldots u_{m}, v_{1}, v_{2}, \ldots . v_{n}\right\}$ of cardinality $m+n$.

$$
\therefore \mathrm{S}\left(\mathrm{G}_{1}+\mathrm{G}_{2}, x\right)=x^{\mathrm{m}+\mathrm{n}}
$$

Hence the proof.
Theorem 2.10: Let G be a connected graph of order n. Then

$$
\mathrm{S}\left(\overline{\mathrm{~K}_{\mathrm{m}}}+\mathrm{G}, x\right)=x^{\mathrm{m}}\left(1+x^{\mathrm{n}}\right)
$$

Proof: There are only two Steiner sets for $\overline{\mathrm{K}_{\mathrm{m}}}+\mathrm{G}$.
They are $\left\{u_{1}, u_{2}, . . u_{m}\right\}$ of cardinality m and
$\left\{u_{1}, u_{2}, \ldots u_{m}, v_{1}, v_{2}, \ldots v_{n}\right\}$ of cardinality $m+n$.

$$
\begin{aligned}
\therefore \mathrm{S}\left(\overline{\mathrm{~K}_{\mathrm{m}}}+\mathrm{G}, x\right) & =x^{\mathrm{m}}+x^{\mathrm{m}+\mathrm{n}} \\
& =x^{\mathrm{m}}\left(1+x^{\mathrm{n}}\right)
\end{aligned}
$$

Theorem 2.11: $\mathrm{S}\left(\mathrm{K}_{\mathrm{m}} \bigcup_{\mathrm{V}_{0}} \mathrm{~K}_{\mathrm{n}}, x\right)=x^{\mathrm{m}+\mathrm{n}-2}(1+x)$
Proof: Let $V\left(K_{m}\right)=\left\{\mathrm{v}_{0}, \mathrm{v}_{2}, \mathrm{v}_{3} \ldots \mathrm{v}_{\mathrm{m}}\right\}$
and $V\left(K_{n}\right)=\left\{v_{0}, v_{m+2}, v_{m+3}, \ldots v_{m+n}\right\}$
Since, every vertex of a complete graph is an extreme vertex, $s\left(K_{m}\right)=m$.
Since, v_{0} is the cut vertex of $K_{m} \bigcup_{v_{0}} K_{n}$, the minimum
Steiner set is $\left\{\mathrm{v}_{2}, \mathrm{v}_{3}, \ldots \mathrm{v}_{\mathrm{m}}, \mathrm{v}_{\mathrm{m}}+{ }_{2}, \mathrm{v}_{\mathrm{m}}+3, \ldots \mathrm{v}_{\mathrm{m}}+{ }_{\mathrm{n}}\right\}$ of

Figure 7

Figure 8

Figure 9
cardinality $\mathrm{m}+\mathrm{n}-2$.
The other Steiner set is $\left\{\mathrm{v}_{0}, \mathrm{v}_{2}, \mathrm{v}_{3}, \ldots . . \mathrm{v}_{\mathrm{m}}, \mathrm{v}_{\mathrm{m}}+2\right.$,
$\left.\mathrm{V}_{\mathrm{m}}+3 \cdots \mathrm{~V}_{\mathrm{m}+\mathrm{n}}\right\}$ of cardinality $\mathrm{m}+\mathrm{n}-1$.

$$
\begin{aligned}
\therefore \mathrm{S}\left(\mathrm{~K}_{\mathrm{m}} \bigcup_{\mathrm{V}_{0}} \mathrm{~K}_{\mathrm{n}}, x\right) & =x^{\mathrm{m}+\mathrm{n}-2}+x^{\mathrm{m}+\mathrm{n}-1} \\
& =x^{\mathrm{m}+\mathrm{n}-2}(1+x)
\end{aligned}
$$

3. STEINER POLYNOMIAL OF G o K 1

Let G be any connected graph with vertex set $\left\{v_{1}, v_{2}, \ldots v_{n}\right\}$. Add n new vertices $\left\{u_{1}, u_{2} \ldots u_{n}\right\}$ and join u_{i} to v_{i} for $1 \leq \mathrm{i} \leq \mathrm{n}$, by the definition of corona of two graphs. We shall denote this graph by G o K_{1}. In this section, we calculate the polynomial, $\mathrm{S}\left(\mathrm{GoK}{ }_{1}, x\right)$. Also, we show that $\mathrm{s}\left(\mathrm{Go} \mathrm{K}_{1}, x\right)$ is unimodal.

Lemma 3.1: For any connected graph G of order n, $s\left(G o K_{1}, x\right)=n$.
Proof: Since, every end vertex of the graph Go K_{1} is an element of Steiner sets of it, the minimum Steiner set is the set of all its end vertices.
ie, $W=\left\{u_{1}, u_{2}, \ldots u_{n}\right\}$ is the minimum Steiner set.
$\therefore \mathrm{s}\left(\mathrm{GoK} \mathrm{K}_{1}\right)=\mathrm{n}$.
By Lemma 3.1, $\mathrm{s}\left(\mathrm{G} \circ \mathrm{K}_{1}, \mathrm{~m}\right)=0$ for $\mathrm{m}<\mathrm{n}$, we calculate $\mathrm{s}(\mathrm{Go} \mathrm{K}, \mathrm{m})$ for $\mathrm{n} \leq \mathrm{m} \leq 2 \mathrm{n}$.
Theorem 3.2: For any graph G of order n and for $n \leq m \leq 2 n$, $s\left(G \circ K_{1}, m\right)=\binom{n}{m-n}$.
Hence, $\mathrm{S}\left(\mathrm{G}\right.$ o K $\left.\mathrm{K}_{1}, x\right)=x^{\mathrm{n}}(1+x)^{\mathrm{n}}$.

Proof:

Figure 10
Suppose that W is a Steiner set of G o K_{1} of cardinality m.
When $m=n$, the Steiner set with cardinality n is $W=\left\{u_{1}, u_{3}, \ldots u_{n}\right\}$.
$\therefore \quad s\left(G \circ K_{1}, n\right)=1=\binom{n}{0}=\binom{n}{m-n}$
When $m=n+1$, the Steiner sets with cardinality $n+1$ are
$W_{i}=\left\{u_{1}, u_{2}, \ldots u_{n}\right\} \cup\left\{v_{i}\right\} i=1,2, \ldots n$.
$\therefore \mathrm{s}\left(\mathrm{G} \circ \mathrm{K}_{1}, \mathrm{n}+1\right)=\binom{\mathrm{n}}{1}=\binom{\mathrm{n}}{\mathrm{m}-\mathrm{n}}$
When $m=n+2$, the Steiner sets with cardinality $n+2$ are
$\mathrm{W}_{\mathrm{l}}=\left\{\mathrm{u}_{1}, \mathrm{u}_{2}, \ldots \mathrm{u}_{\mathrm{n}}\right\} \cup\left\{\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}\right\}, 1 \leq \mathrm{i}, \mathrm{j} \leq \mathrm{n}, \mathrm{i} \neq \mathrm{j}$
$\therefore s\left(G \circ K_{1}, n+2\right)=\binom{n}{2}=\binom{n}{m-n}$
Continuing this way, the Steiner set with cardinality $m=2 n$ is the whole set
$\left\{\mathrm{u}_{1}, \mathrm{u}_{2}, \ldots \mathrm{u}_{\mathrm{n}}\right\} \cup\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots \mathrm{v}_{\mathrm{n}}\right\}$
$\therefore \quad \mathrm{s}\left(\mathrm{G} \circ \mathrm{K}_{1}, 2 \mathrm{n}\right)=1=\binom{\mathrm{n}}{\mathrm{n}}=\binom{\mathrm{n}}{\mathrm{m}-\mathrm{n}}$
In general, we conclude that
$\therefore \quad \mathrm{S}\left(\mathrm{GoK} \mathrm{K}_{1}, \mathrm{~m}\right)=\binom{\mathrm{n}}{\mathrm{m}-\mathrm{n}}$
\therefore The Steiner polynomial of $G \cup \mathrm{~K}_{1}$ is

$$
\begin{aligned}
& \mathrm{S}\left(\mathrm{G} \text { o K } \mathrm{K}_{1}, x\right)=\mathrm{nC}_{0} x^{\mathrm{n}}+\mathrm{nC}_{1} x^{\mathrm{n}+1}+\ldots+\mathrm{nC}_{\mathrm{n}} x^{2 \mathrm{n}} \\
& =x^{\mathrm{n}}\left(1+\mathrm{nC}_{1} x+\mathrm{nC}_{2} x^{2}+\ldots+\mathrm{nC}_{\mathrm{n}} x^{\mathrm{n}}\right) \\
& =x^{\mathrm{n}}(1+x)^{\mathrm{n}}
\end{aligned}
$$

Here we discuss about unimodality of the Steiner Polynomial of G_{n} o K_{1}, where G_{n} denotes a graph with n vertices.
Let us denote G_{n} o K_{1} by $\mathrm{G}_{\mathrm{n}}{ }^{*}$.

Theorem 3.3: For every $n \in \mathbb{N}$,
$\mathrm{s}\left(\mathrm{G}_{\mathrm{n}}{ }^{*}, \mathrm{n}\right)=\mathrm{s}\left(\mathrm{G}_{\mathrm{n}}{ }^{*}, 2 \mathrm{n}\right)=1$.
Proof: By theorem 3.2, $\mathrm{s}\left(\mathrm{G}_{\mathrm{n}}{ }^{*}, \mathrm{n}\right)=\mathrm{nC}_{0}=1$ and $\mathrm{s}\left(\mathrm{G}_{\mathrm{n}}{ }^{*}, 2 \mathrm{n}\right)=\mathrm{nC}_{\mathrm{n}}=1$.
Hence the theorem.

Theorem 3.4 (Unimodal theorem for \mathbf{G} o $\mathbf{K}_{\mathbf{1}}$): For every $\mathrm{n} \in \mathbb{N}$
(i) $1=\mathrm{s}\left(\mathrm{G}_{3 \mathrm{n}}^{*}, 3 \mathrm{n}\right)<\mathrm{s}\left(\mathrm{G}_{3 \mathrm{n}}^{*}, 3 \mathrm{n}+1\right)<\ldots . \mathrm{s}\left(\mathrm{G}_{3 \mathrm{n}}^{*}, 4 \mathrm{n}-1\right)<\mathrm{s}\left(\mathrm{G}_{3 \mathrm{n}}^{*}, 4 \mathrm{n}\right)>\ldots>$
$s\left(\mathrm{G}_{3 n}^{*}, 6 \mathrm{n}-1\right)>\mathrm{s}\left(\mathrm{G}_{3 \mathrm{n}}^{*}, 6 \mathrm{n}\right)=1$
(ii) $\quad 1=\mathrm{s}\left(\mathrm{G}_{3 \mathrm{n}+1}^{*}, 3 \mathrm{n}+1\right)<\mathrm{s}\left(\mathrm{G}_{3 \mathrm{n}+1}^{*}, 3 \mathrm{n}+2\right)<\ldots<\mathrm{s}\left(\mathrm{G}_{3 \mathrm{n}+1}^{*}, 4 \mathrm{n}\right)$
$<\mathrm{s}\left(\mathrm{G}_{3 \mathrm{n}+1}^{*}, 4 \mathrm{n}+1\right)>\mathrm{s}\left(\mathrm{G}_{3 \mathrm{n}+1}^{*}, 4 \mathrm{n}+2\right)>\ldots>\mathrm{s}\left(\mathrm{G}_{3 \mathrm{n}+1}^{*}, 6 \mathrm{n}+1\right)$
$>s\left(G_{3 n+1}^{*}, 6 n+2\right)=1$
(iii) $1=s\left(\mathrm{G}_{3 \mathrm{n}+2}^{*}, 3 \mathrm{n}+2\right)<\mathrm{s}\left(\mathrm{G}_{3 \mathrm{n}+2}^{*}, 3 \mathrm{n}+3\right)<\ldots<\mathrm{s}\left(\mathrm{G}_{3 \mathrm{n}+2}^{*}, 4 \mathrm{n}+2\right)<\mathrm{s}\left(\mathrm{G}_{3 \mathrm{n}}+2,4 \mathrm{n}+3\right)$
$>s\left(G_{3 n+2}^{*}, 4 n+4\right)>\ldots>s\left(G_{3 n+2}^{*}, 6 n+3\right)$
$>s\left(\mathrm{G}_{3 \mathrm{n}}^{*}+2,6 \mathrm{n}+4\right)=1$
Proof:
(i) Obviously s $\left(\mathrm{G}_{3 \mathrm{n}}^{*}, 3 \mathrm{n}\right)=1$ and $\mathrm{s}\left(\mathrm{G}_{3 \mathrm{n}}^{*}, 6 \mathrm{n}\right)=1$.

We shall prove that $\mathrm{s}\left(\mathrm{G}_{3 \mathrm{n}}^{*}, \mathrm{i}\right)<\mathrm{s}\left(\mathrm{G}_{3 \mathrm{n}}^{*}, \mathrm{i}+1\right)$ for $3 \mathrm{n} \leq \mathrm{i} \leq 4 \mathrm{n}-1$ and $\mathrm{s}\left(\mathrm{G}_{3 \mathrm{n}}^{*}, \mathrm{i}\right)>\mathrm{s}\left(\mathrm{G}_{3 \mathrm{n}}^{*} \mathrm{i}+1\right)$ for $4 \mathrm{n} \leq \mathrm{i} \leq 6 \mathrm{n}-1$.

A. VIJAYAN* \& G. D. SURESH/ AN INTRODUCTION TO STEINER POLYNOMIALS OF GRAPHS/ IJMA- 3(3), Mar.-2012,

Page: 1141-1153
Suppose that $\mathrm{s}\left(\left(\mathrm{G}_{3 \mathrm{n}}^{*}, \mathrm{i}\right)<\mathrm{s}\left(\mathrm{G}_{3 \mathrm{n}}^{*}, \mathrm{i}+1\right)\right.$, by theorem 3.2, we have

$$
\binom{3 n}{i-3 n}<\binom{3 n}{i-3 n+1}
$$

$\Rightarrow \mathrm{i}<4 \mathrm{n}-1$. But $\mathrm{i} \geq 3 \mathrm{n}$
Hence $3 \mathrm{n} \leq \mathrm{i}<4 \mathrm{n}-1$.
Similarly, we have s $\left(\mathrm{G}_{3 n}^{*}, \mathrm{i}\right)>\mathrm{s}\left(\mathrm{G}_{3 n}^{*}\right.$, $\left.\mathrm{i}+1\right)$ for $4 \mathrm{n} \leq \mathrm{i} \leq 6 n-1$
Proof of parts (ii) and (iii) are similar as part (i).

4. STEINER SETS OF PATHS

Let $\mathrm{P}_{\mathrm{n}}, \mathrm{n} \exists 2$ be a path with n vertices $\mathrm{V}\left(\mathrm{P}_{\mathrm{n}}\right)=\{1,2, \ldots \mathrm{n}\}$ and $\mathrm{E}\left(\mathrm{P}_{\mathrm{n}}\right)=\{\{1,2\},\{2,3\}, \ldots\{\mathrm{n}-1, \mathrm{n}\}\}$.
Let $S\left(P_{n}, i\right)$ be the family of Steiner sets of P_{n} with cardinality i. We investigate the Steiner sets of the path P_{n}.
Lemma 4.1: The following properties hold for paths:
(i) $s\left(P_{n}\right)=2, \quad n \geq 2$
(ii) $\mathrm{S}\left(\mathrm{P}_{\mathrm{m}}, \mathrm{i}\right)=\phi$ iff $\mathrm{i}>\mathrm{m}$ or $\mathrm{i}<2$

Proof:

(i) In a path P_{n}, there are two end vertices. The path P_{n} is the unique Steiner tree. Hence the minimum Steiner set has 2 elements.
$\therefore \mathrm{s}\left(\mathrm{P}_{\mathrm{n}}\right)=2$
(ii) If follows from part (i) and the definition of Steiner set.

5. STEINER POLYNOMIALS OF PATHS

In this section, we introduce and investigate the Steiner polynomials of paths.
Let $S\left(P_{n}, i\right)$ be the family of Steiner sets of a path P_{n} with cardinality i and let $s\left(P_{n}, i\right)=\left|S\left(P_{n}, i\right)\right|$. Then the Steiner polynomial, $\mathrm{S}\left(\mathrm{P}_{\mathrm{n}}, x\right)$ of P_{n} is

$$
\mathrm{S}\left(\mathrm{P}_{\mathrm{n}}, x\right)=\sum_{\mathrm{i}=2}^{\mathrm{n}} \mathrm{~s}\left(\mathrm{P}_{\mathrm{n}}, \mathrm{i}\right) x^{\mathrm{i}}
$$

Theorem 5.1: Let $S\left(P_{n}, i\right)$ be the family of Steiner sets of P_{n} with cardinality i.
Then
(i) $\left|S\left(P_{n}, i\right)\right|=\left|S\left(P_{n-1}, i-1\right)\right|+\left|S\left(P_{n-1}, i\right)\right|$
(ii) $\quad \mathrm{S}\left(\mathrm{P}_{\mathrm{n}}, x\right)=x \mathrm{~S}\left(\mathrm{P}_{\mathrm{n}-1}, x\right)+\mathrm{S}\left(\mathrm{P}_{\mathrm{n}-1}, x\right)$
(iii) For every $\mathrm{n} \geq 2, \mathrm{~S}\left(\mathrm{P}_{\mathrm{n}}, x\right)=x^{2}(1+x)^{\mathrm{n}-2}$

Proof: Let $V\left(\mathrm{P}_{\mathrm{n}}\right)=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots \mathrm{v}_{\mathrm{n}}\right\}$
Every Steiner set of P_{n} contains the end vertices v_{1} and v_{n}.
In this case the entire path is the Steiner tree.
If we fix v_{1} and v_{n}, we have to choose any $i-2$ vertices from the remaining $n-2$ vertices of P_{n}, in order to get the Steiner sets of cardinality i.
\therefore Here, we have $(\mathrm{n}-2) \mathrm{C}_{\mathrm{i}-2}$ Steiner sets of cardinality i.
$\therefore\left|\mathrm{S}\left(\mathrm{P}_{\mathrm{n}}, \mathrm{i}\right)\right|=(\mathrm{n}-2) \mathrm{C}_{\mathrm{i}}-2$
$\left|\mathrm{S}\left(\mathrm{P}_{\mathrm{n}-1 .}, \mathrm{i}-1\right)\right|=(\mathrm{n}-3) \mathrm{C}_{\mathrm{i}-3}$ and $\left|\mathrm{S}\left(\mathrm{P}_{\mathrm{n}-1}, \mathrm{i}\right)\right|=(\mathrm{n}-3) \mathrm{C}_{\mathrm{i}-2}$

A. VIJAYAN* \& G. D. SURESH/ AN INTRODUCTION TO STEINER POLYNOMIALS OF GRAPHS/ IJMA- 3(3), Mar.-2012,

But, $\quad(\mathrm{n}-2) \mathrm{C}_{\mathrm{i}-2}=(\mathrm{n}-3) \mathrm{C}_{\mathrm{i}-3}+(\mathrm{n}-3) \mathrm{C}_{\mathrm{i}-2}$
Therefore, $\left|\mathrm{S}\left(\mathrm{P}_{\mathrm{n},} \mathrm{i}\right)\right|=\left|\mathrm{S}\left(\mathrm{P}_{\mathrm{n}-1, \mathrm{i}}, \mathrm{i}\right)\right|+\left|\mathrm{S}\left(\mathrm{P}_{\mathrm{n}-1}, \mathrm{i}\right)\right|$
(ii) By (i), we have

$$
\left|\mathrm{S}\left(\mathrm{P}_{\mathrm{n}}, \mathrm{i}\right)\right|=\left|\mathrm{S}\left(\mathrm{P}_{\mathrm{n}-1}, \mathrm{i}-1\right)\right|+\left|\mathrm{S}\left(\mathrm{P}_{\mathrm{n}-1}, \mathrm{i}\right)\right|
$$

When $\mathrm{i}=2$,

$$
\begin{aligned}
\left|\mathrm{S}\left(\mathrm{P}_{\mathrm{n}}, 2\right)\right| & =\left|\mathrm{S}\left(\mathrm{P}_{\mathrm{n}-1}, 1\right)\right|+\left|\mathrm{S}\left(\mathrm{P}_{\mathrm{n}-1}, 2\right)\right| \\
\Rightarrow \quad x^{2}\left|\mathrm{~S}\left(\mathrm{P}_{\mathrm{n}}, 2\right)\right| & =x^{2}\left|\mathrm{~S}\left(\mathrm{P}_{\mathrm{n}-1}, 1\right)\right|+x^{2}\left|\mathrm{~S}\left(\mathrm{P}_{\mathrm{n}-1}, 2\right)\right|
\end{aligned}
$$

when $\mathrm{i}=3$,

$$
\begin{aligned}
\left|\mathrm{S}\left(\mathrm{P}_{\mathrm{n}}, 3\right)\right| & =\left|\mathrm{S}\left(\mathrm{P}_{\mathrm{n}-1}, 2\right)\right|+\left|\mathrm{S}\left(\mathrm{P}_{\mathrm{n}-1}, 3\right)\right| \\
\Rightarrow x^{3}\left|\mathrm{~S}\left(\mathrm{P}_{\mathrm{n}}, 3\right)\right| & =x^{3}\left|\mathrm{~S}\left(\mathrm{P}_{\mathrm{n}-1}, 2\right)\right|+x^{3}\left|\mathrm{~S}\left(\mathrm{P}_{\mathrm{n}-1}, 3\right)\right|
\end{aligned}
$$

When $\mathrm{i}=4$,

$$
\begin{aligned}
\left|\mathrm{S}\left(\mathrm{P}_{\mathrm{n}}, 4\right)\right| & =\left|\mathrm{S}\left(\mathrm{P}_{\mathrm{n}-1}, 3\right)\right|+\left|\mathrm{S}\left(\mathrm{P}_{\mathrm{n}-1}, 4\right)\right| \\
\Rightarrow \quad x^{4}\left|\mathrm{~S}\left(\mathrm{P}_{\mathrm{n}}, 4\right)\right| & =x^{4}\left|\mathrm{~S}\left(\mathrm{P}_{\mathrm{n}-1}, 3\right)\right|+x^{4}\left|\mathrm{~S}\left(\mathrm{P}_{\mathrm{n}-1}, 4\right)\right|
\end{aligned}
$$

When $\mathrm{i}=\mathrm{n}-1$,

$$
\begin{aligned}
&\left|\mathrm{S}\left(\mathrm{P}_{\mathrm{n}, \mathrm{n}-1)}\right)\right|=\left|\mathrm{S}\left(\mathrm{P}_{\mathrm{n}-1}, \mathrm{n}-2\right)\right|+\left|\mathrm{S}\left(\mathrm{P}_{\mathrm{n}-1}, \mathrm{n}-1\right)\right| \\
& \Rightarrow x^{\mathrm{n}-1}\left|\mathrm{~S}\left(\mathrm{P}_{\mathrm{n}-1}, \mathrm{n}-1\right)\right|=x^{\mathrm{n}-1}\left|\mathrm{~S}\left(\mathrm{P}_{\mathrm{n}-1}, \mathrm{n}-2\right)\right|+x^{\mathrm{n}-1}\left|\mathrm{~S}\left(\mathrm{P}_{\mathrm{n}-1}, \mathrm{n}-1\right)\right|
\end{aligned}
$$

When $\mathrm{i}=\mathrm{n}$

$$
\begin{aligned}
\left|\mathrm{S}\left(\mathrm{P}_{\mathrm{n}}, \mathrm{n}\right)\right| & =\left|\mathrm{S}\left(\mathrm{P}_{\mathrm{n}-1}, \mathrm{n}-1\right)\right|+\left|\mathrm{S}\left(\mathrm{P}_{\mathrm{n}-1}, \mathrm{n}\right)\right| \\
\Rightarrow \quad x^{\mathrm{n}} \mid \mathrm{S}\left(\mathrm{P}_{\mathrm{n}}, \mathrm{n}\right) & =x^{\mathrm{n}}\left|\mathrm{~S}\left(\mathrm{P}_{\mathrm{n}-1,}, \mathrm{n}-1\right)\right|+x^{\mathrm{n}}\left|\mathrm{~S}\left(\mathrm{P}_{\mathrm{n}-1}, \mathrm{n}\right)\right|
\end{aligned}
$$

Hence,

$$
\begin{aligned}
& x^{2}\left|\mathrm{~S}\left(\mathrm{P}_{\mathrm{n}}, 2\right)\right|+x^{3}\left|\mathrm{~S}\left(\mathrm{P}_{\mathrm{n}}, 3\right)\right|+x^{4}\left|\mathrm{~S}\left(\mathrm{P}_{\mathrm{n}}, 4\right)\right|+\ldots+x^{\mathrm{n}-1}\left|\mathrm{~S}\left(\mathrm{P}_{\mathrm{n}}, \mathrm{n}-1\right)\right|+x^{\mathrm{n}}\left|\mathrm{~S}\left(\mathrm{P}_{\mathrm{n}}, \mathrm{n}\right)\right| \\
& =\left[x^{2}\left|\mathrm{~S}\left(\mathrm{P}_{\mathrm{n}-1}, 1\right)\right|+x^{2}\left|\mathrm{~S}\left(\mathrm{P}_{\mathrm{n}-1}, 2\right)\right|+x^{4}\left|\mathrm{~S}\left(\mathrm{P}_{\mathrm{n}-1}, 3\right)\right|+\ldots\right. \\
& \left.+x^{\mathrm{n}-1}\left|\mathrm{~S}\left(\mathrm{P}_{\mathrm{n}-1}, \mathrm{n}-2\right)\right|+x^{\mathrm{n}}\left|\mathrm{~S}\left(\mathrm{P}_{\mathrm{n}-1}, \mathrm{n}-1\right)\right|\right]+\left[x^{2}\left|\mathrm{~S}\left(\mathrm{P}_{\mathrm{n}-1}, 2\right)\right|\right. \\
& \left.+x^{3}\left|\mathrm{~S}\left(\mathrm{P}_{\mathrm{n}-1}, 3\right)\right|+\ldots+x^{\mathrm{n}-1}\left|\mathrm{~S}\left(\mathrm{P}_{\mathrm{n}-1}, \mathrm{n}-1\right)\right|+x^{\mathrm{n}}\left|\mathrm{~S}\left(\mathrm{P}_{\mathrm{n}-1}, \mathrm{n}\right)\right|\right] \\
& =x\left[x^{2}\left|\mathrm{~S}\left(\mathrm{P}_{\mathrm{n}-1}, 2\right)\right|+x^{3}\left|\mathrm{~S}\left(\mathrm{P}_{\mathrm{n}-1}, 3\right)\right|+\ldots+x^{\mathrm{n}-2}\left|\mathrm{~S}\left(\mathrm{P}_{\mathrm{n}-1}, \mathrm{n}-2\right)\right|+x^{\mathrm{n}-1}\left|\mathrm{~S}\left(\mathrm{P}_{\mathrm{n}-1}, \mathrm{n}-1\right)\right|\right] \\
& +\left[x^{2}\left|\mathrm{~S}\left(\mathrm{P}_{\mathrm{n}-1}, 2\right)\right|+x^{3}\left|\mathrm{~S}\left(\mathrm{P}_{\mathrm{n}-1}, 3\right)\right|+\ldots+x^{\mathrm{n}-1}\left|\mathrm{~S}\left(\mathrm{P}_{\mathrm{n}-1}, \mathrm{n}-1\right)\right|\right] \\
& {\left[\left|\mathrm{S}\left(\mathrm{P}_{\mathrm{n}-1}, 1\right)\right|=\left|\mathrm{S}\left(\mathrm{P}_{\mathrm{n}-1}, \mathrm{n}\right)\right|=0\right]} \\
& \sum_{i=2}^{n}\left|S\left(P_{n}, i\right)\right| x^{i}=x \sum_{i=2}^{n-1}\left|S\left(P_{n-1}, i\right)\right| x^{i}+\sum_{i=2}^{n-1}\left|S\left(P_{n-1}, i\right)\right| x^{i} \\
& \text { ie, } \quad \sum_{i=2}^{n} s\left(P_{n}, i\right) x^{i}=x \sum_{i=2}^{n-1} s\left(P_{n-1}, i\right) x^{i}+\sum_{i=2}^{n-1} s\left(P_{n-1}, i\right) x^{i} \\
& \text { ie, } \quad \mathrm{S}\left(\mathrm{P}_{\mathrm{n}}, x\right)=x \mathrm{~S}\left(\mathrm{P}_{\mathrm{n}-1}, x\right)+\mathrm{S}\left(\mathrm{P}_{\mathrm{n}-1}, x\right) \\
& \text { (iii) We prove this by induction on } n \text {. }
\end{aligned}
$$

When $\mathrm{n}=2$
$\mathrm{S}\left(\mathrm{P}_{2}, x\right)=x^{2}$
\therefore The result is true for $\mathrm{n}=2$
Assume that the result is true for all natural numbers less than n.
ie, $\mathrm{S}\left(\mathrm{P}_{\mathrm{n}-1}, x\right)=x^{2}(1+x)^{\mathrm{n}-3}$
Now we prove the result for n

$$
\begin{aligned}
\mathrm{S}\left(\mathrm{P}_{\mathrm{n}}, x\right) & =x \mathrm{~S}\left(\mathrm{P}_{\mathrm{n}-1}, x\right)+\mathrm{S}\left(\mathrm{P}_{\mathrm{n}-1}, x\right) \\
= & \left.x\left[x^{2}(1+x)^{\mathrm{n}-3}\right]+x^{2}(1+x)^{\mathrm{n}-3}\right] \\
= & x^{2}(1+x)^{\mathrm{n}-3}(x+1) \\
& =x^{2}(1+x)^{\mathrm{n}-2}
\end{aligned}
$$

\therefore The result is true for all n .

Using theorem 5.1, we get $\mathrm{s}\left(\mathrm{P}_{\mathrm{n}}, \mathrm{i}\right)$ for $2 \leq \mathrm{n} \leq 15$ as shown in the Table 2 .
Table 2: $s\left(P_{n}, i\right)$ is the number of Steiner sets of P_{n} with cardinality i.

i	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
2	0	1													
3	0	1	1												
4	0	1	2	1											
5	0	1	3	3	1										
6	0	1	4	6	4	1									
7	0	1	5	10	10	5	1								
8	0	1	6	15	20	15	6	1							
9	0	1	7	21	35	35	21	7	1						
10	0	1	8	28	56	70	56	28	8	1					
11	0	1	9	36	84	126	126	84	36	9	1				
12	0	1	10	45	120	210	252	210	120	45	10	1			
13	0	1	11	55	165	330	462	462	330	165	55	11	1		
14	0	1	12	66	220	495	702	924	792	495	220	66	12	1	
15	0	1	13	78	286	715	1287	1716	1716	1287	715	286	78	13	1

Theorem 5.2: The following properties for the coefficients of $S\left(\mathrm{P}_{\mathrm{n}}, x\right)$ hold:
(i) $\quad \mathrm{s}\left(\mathrm{P}_{\mathrm{n}}, 2\right)=1, \quad \forall \mathrm{n} \geq 2$
(ii) $\quad \mathrm{s}\left(\mathrm{P}_{\mathrm{n}}, \mathrm{n}\right)=1, \quad \forall \mathrm{n} \geq 2$
(iii) $\mathrm{s}\left(\mathrm{P}_{\mathrm{n}}, \mathrm{n}-1\right)=\mathrm{n}-2, \forall \mathrm{n} \geq 3$
(iv) $\quad \mathrm{s}\left(\mathrm{P}_{\mathrm{n}}, \mathrm{n}-2\right)=\frac{(\mathrm{n}-2)(\mathrm{n}-3)}{2}, \forall \mathrm{n} \geq 4$

9v) $\quad \mathrm{s}\left(\mathrm{P}_{\mathrm{n}}, \mathrm{n}-3\right)=\frac{(\mathrm{n}-2)(\mathrm{n}-3)(\mathrm{n}-4)}{6}, \forall \mathrm{n} \geq 5$
(vi) $\quad \mathrm{s}\left(\mathrm{P}_{\mathrm{n}}, \mathrm{n}-4\right)=\frac{(\mathrm{n}-2)(\mathrm{n}-3)(\mathrm{n}-4)(\mathrm{n}-5)}{24}, \forall \mathrm{n} \geq 6$
(vii) $\mathrm{s}\left(\mathrm{P}_{\mathrm{n}}, \mathrm{i}\right)=\mathrm{s}\left(\mathrm{P}_{\mathrm{n}}, \mathrm{n}-\mathrm{i}+2\right), \quad \forall \mathrm{n} \geq 2$
(viii) If $S_{n}=\sum_{i=2}^{n} s\left(P_{n}, i\right)$, then, for every $n \geq 3$,
$\mathrm{S}_{\mathrm{n}}=2\left(\mathrm{~S}_{\mathrm{n}-1}\right)$ with initial value $\mathrm{S}_{2}=1$.
(ix) $\quad \mathrm{S}_{\mathrm{n}}=$ Total number of Steiner sets in $\mathrm{P}_{\mathrm{n}}=2^{\mathrm{n}-2}$.

Proof:
(i) There is a unique Steiner set contains the end vertices of cardinality two in P_{n}.
$\therefore \quad \mathrm{s}\left(\mathrm{P}_{\mathrm{n}}, 2\right)=1$, for all $\mathrm{n} \geq 2$
(ii) The whole vertex set $\{[\mathrm{n}]\}$ is also a Steiner set.
$\therefore \mathrm{s}\left(\mathrm{P}_{\mathrm{n}}, \mathrm{n}\right)=1$, for all $\mathrm{n} \geq 2$

A. VIJAYAN* \& G. D. SURESH/ AN INTRODUCTION TO STEINER POLYNOMIALS OF GRAPHS/ IJMA- 3(3), Mar.-2012, Page: 1141-1153

(iii) We prove by induction on n.

The result is true for $n=3$, since $s\left(P_{3}, 2\right)=1$
Assume that the result is true for all natural numbers less than n.
Now, we prove it for n .
By theorem 5.1 (i) and part (ii), we have,

$$
\begin{aligned}
\mathrm{s}\left(\mathrm{P}_{\mathrm{n}}, \mathrm{n}-1\right) & =\mathrm{s}\left(\mathrm{P}_{\mathrm{n}-1}, \mathrm{n}-2\right)+\mathrm{s}\left(\mathrm{P}_{\mathrm{n}-1}, \mathrm{n}-1\right) \\
& =\mathrm{n}-3+1 \\
& =\mathrm{n}-2 .
\end{aligned}
$$

\therefore The result is true for all n.
(iv)We prove by induction on n.

The result is true for $n=4$, since $s\left(P_{4}, 2\right) .=1$.
Assume that the result is true for all natural numbers less than n. Now, we prove it for n. By theorem 5.1 (i) and part (iii), we have

$$
\begin{aligned}
\mathrm{s}\left(\mathrm{P}_{\mathrm{n}}, \mathrm{n}-2\right) & =\mathrm{s}\left(\mathrm{P}_{\mathrm{n}-1}, \mathrm{n}-3\right)+\mathrm{s}\left(\mathrm{P}_{\mathrm{n}-1}, \mathrm{n}-2\right) \\
& =\frac{(\mathrm{n}-3)(\mathrm{n}-4)}{2}+(\mathrm{n}-3) \\
& =\frac{(\mathrm{n}-3)(\mathrm{n}-4)+2(\mathrm{n}-3)}{2} \\
& =\frac{(\mathrm{n}-3)(\mathrm{n}-4+2)}{2} \\
& =\frac{(\mathrm{n}-2)(\mathrm{n}-3)}{2}
\end{aligned}
$$

\therefore The result is true for all n.
(v) By induction on n.

The result is true for $n=5$, since $s\left(P_{5}, 2\right)=1$.
Assume that the result is true for all natural numbers less than n.
Now we prove it for n .
By theorem 5.1 (i) and part (iv), we have

$$
\begin{aligned}
\mathrm{s}\left(\mathrm{P}_{\mathrm{n}}, \mathrm{n}-3\right) & =\mathrm{s}\left(\mathrm{P}_{\mathrm{n}-1}, \mathrm{n}-4\right)+\mathrm{s}\left(\mathrm{P}_{\mathrm{n}-1}, \mathrm{n}-3\right) \\
& =\frac{(\mathrm{n}-3)(\mathrm{n}-4)(\mathrm{n}-5)}{6}+\frac{(\mathrm{n}-3)(\mathrm{n}-4)}{2} \\
& =\frac{(\mathrm{n}-3)(\mathrm{n}-4)(\mathrm{n}-5+3)}{6} \\
& =\frac{(\mathrm{n}-2)(\mathrm{n}-3)(\mathrm{n}-4)}{6}
\end{aligned}
$$

\therefore The result is true for all n.
(vi) By induction on n.

The result is true for $n=6$, since $s\left(P_{6}, 2\right)=1$

Assume that the result is true for all natural numberless than n.
Now, we prove it for n .
By theorem 5.1 (i) and part (v), we have

$$
\begin{aligned}
\mathrm{s}\left(\mathrm{P}_{\mathrm{n}}, \mathrm{n}-4\right) \quad & =\mathrm{s}\left(\mathrm{P}_{\mathrm{n}-1}, \mathrm{n}-5\right)+\mathrm{s}\left(\mathrm{P}_{\mathrm{n}-1}, \mathrm{n}-4\right) \\
& =\frac{(\mathrm{n}-3)(\mathrm{n}-4)(\mathrm{n}-5)(\mathrm{n}-6)}{24}+\frac{(\mathrm{n}-3)(\mathrm{n}-4)(\mathrm{n}-5)}{6} \\
& =\frac{(\mathrm{n}-3)(\mathrm{n}-4)(\mathrm{n}-5)(\mathrm{n}-6+4)}{24} \\
& =\frac{(\mathrm{n}-2)(\mathrm{n}-3)(\mathrm{n}-4)(\mathrm{n}-5)}{24}
\end{aligned}
$$

\therefore The result is true for all n .
(vii) By induction on n

The result is true for $n=3$, since $s\left(P_{3}, 2\right)=s\left(P_{3}, 3\right)=1$
Assume that the result is true for all natural number less than n.
We now prove it for n.
By theorem 5.1 (i), we have

$$
\begin{aligned}
\mathrm{s}\left(\mathrm{P}_{\mathrm{n}}, \mathrm{i}\right) & =\mathrm{s}\left(\mathrm{P}_{\mathrm{n}-1}, \mathrm{i}-1\right)+\mathrm{s}\left(\mathrm{P}_{\mathrm{n}-1}, \mathrm{i}\right) \\
& =\mathrm{s}\left(\mathrm{P}_{\mathrm{n}-1},(\mathrm{n}-1)-(\mathrm{i}-1)+2\right)+\mathrm{s}\left(\mathrm{P}_{\mathrm{n}-1},(\mathrm{n}-1)-\mathrm{i}+2\right) \\
& \left.=\mathrm{s}\left(\mathrm{P}_{\mathrm{n}-1}, \mathrm{n}-\mathrm{i}+2\right)+\mathrm{s}\left(\mathrm{P}_{\mathrm{n}-1}\right) \mathrm{n}-\mathrm{i}+1\right) \\
& =\mathrm{s}\left(\mathrm{P}_{\mathrm{n}}, \mathrm{n}-\mathrm{i}+2\right)
\end{aligned}
$$

\therefore The result is true for all n .
(viii) $S_{n}=\sum_{i=2}^{n} s\left(P_{n}, i\right)$

By theorem 5.1 (i), we have

$$
\begin{aligned}
S_{n} & =\sum_{i=2}^{n}\left[s\left(P_{n-1}, i-1\right)+S\left(P_{n-1}, i\right)\right. \\
& =\sum_{i=2}^{n-1} s\left(P_{n-1}, i\right)+\sum_{i=2}^{n-1} s\left(P_{n-1}, i\right) \\
& =S_{n-1}+S_{n-1} \\
S_{n} & =2 S_{n-1} .
\end{aligned}
$$

(ix) By induction on n

When $\mathrm{n}=3$,

$$
S_{3}=2=2^{1}=2^{3-2}
$$

\therefore The result is true for $\mathrm{n}=3$
Assume that the result is true for all natural numbers less than n.
$\therefore \mathrm{S}_{\mathrm{n}-1}=2^{\mathrm{n}-3}$

$$
\text { Now, } \quad \begin{aligned}
S_{n} & =2 S_{n-1} \\
& =2 \times 2^{n-3} \\
& =2^{n-2}
\end{aligned}
$$

A. VIJAYAN* \& G. D. SURESH/ AN INTRODUCTION TO STEINER POLYNOMIALS OF GRAPHS/ IJMA- 3(3), Mar.-2012, Page: 1141-1153
\therefore The result is true for all n
Hence the theorem.

REFERENCES

[1] Carmen Hernandom Tao Jiang, Merce Mora, Ignacio M. Pelayo, Carlos Seara, On the Steiner, geodetic and hull number of graphs, Preprint to Elsevier Science.
[2]. Chartrand G., Ping Zhang, The Steiner number of a graph, Discrete Mathematics 242 (2002) 41 - 54.
[3]. Frunch R. and F. Harary, On the Corona of two graphs, Aequationes Math 4 (1970) 322 - 324.
[4] Saeid Alikhani and Yee - hock Peng, Introduction to Domination Polynomial of a graph, ar Xiv: 0905, 225 [v] [Math. Co].

