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ABSTRACT

In this paper, we introduce a new concept of Steiner polynomial of a connected graph G. The Steiner polynomial of G
IV (G)I .

is the polynomial S (G, x) = 2 s (G, i) x', where s(G, i) is the number of Steiner sets of G of size i and s (G) is the
i = s(G)

Steiner number of G. We obtain some properties of S (G, x) and its coefficients. Also, we compute the polynomials for

paths.

Key words: Steiner set, Steiner polynomial, Steiner number.

1. INTRODUCTION

For a connected graph G and a set W <€ V (G), a tree contained in G is a Steiner tree with respect to W if T is a tree of
minimum order with W < V (G). The set S (W) contains, of all vertices in G that lie on some Steiner tree with respect
to W. The minimum cardinality among the Steiner sets of G is the Steiner number, s (G). We denote the family of
Steiner sets of a connected graph G with cardinality i by S (G, i).

Each extreme vertex of a graph G belongs to every Steiner set of G. In particular, each end-vertex of G belongs to
every Steiner set of G.

Every non trivial tree with exactly k end- vertices has Steiner number k.

A graph in which any two distinct vertices are adjacent is called a complete graph. The complete graph with n vertices
is denoted by K,

A graph G is called a bipartite graph if V (G) of G can be partitioned into two disjoint subsets V; and V; such that
every edge G joins a vertex of V; to a vertex of V,. If V; contains m vertices and V, contains n vertices then the
complete bigraph G is denoted by Ky, . Ky mis called a star for m > 2.

The complement of a complete graph Ky, is denoted by K, and it is a null graph.

If K, and K, are two complete graphs of order m and n respectively, then the graph K, U K, is a graph of order
v,

<]

m +n -1 with a common cut vertex v,

Let Gy = (V1, Eq) and G, = (V2, E;) be two graphs with Vi n V, = ¢. Then, the Sum G, + G, is the graph G,UG;
together with all the edges joining the vertices of V; to the vertices of V,.
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ie., If Gyisa (py, i) graph and G, is (pz, d2) graph, then Gy + Gpis a (p1+ Pz, A1 + d2 + P2 p2) graph.

A walk is called a path if all its points are distinct. A path of order n is denoted by P,.

A wheel, W,,, is a graph with n vertices vy, v, . v, with vy having degree n — 1 and all the remaining ( n - 1) vertices
having degree 3, v; is adjacent to v; ;1 and v, is adjacent to v;.

The corona of two graphs G; and Gy, as defined by Frucht and Harary in [3] is the graph G = G; o G, formed from one

copy of G; and |V (Gy) | copies of Gy, where the i" vertex of G; is adjacent to every vertex in the ith copy of G,. The
corona G; o Kj, in particular, is the graph constructed from a copy of G, where for each vertex
u e V (G), anew vertex V' and a pendent edge vv' are added.

2. STEINER POLYNOMIAL OF A GRAPH

Definition 2.1: Let S (G, i) be the family of Steiner sets of a graph G with cardinality i and let s (G, i) = | S (G, i) | .
Then the Steiner Polynomial, S (G, x) of G is defined as
IV (G)] _
S(Gx)= Y s(G,i) X, where s (G) isthe Steiner number of G.
i=5(G)

Example 2.2: For the graph G, in Figure 1,
let Wq = { v1, V4, Ve}. Then the trees Ty, T,, Ta, T4 given in Figure 2 are four

distinct Steiner Wy- trees of order 5 such that every vertex of G lies on some
Steiner W1 - trees and so Wy is a Steiner set of G.

Figure: 1

Figure: 2
Since there is no 2-element Steiner set of G, W, is a minimum Steiner set of G so that s (G) = 3.

The other Steiner sets with cardinality 3 are W, = {vy, V4, v;} and W3 = {v3, vg, V7}.

S (G, i) is the family of Steiner sets with cardinality i.
S (G, 3) ={{ V1, Va, Ve}, {V2, Vs, V7}, {V3, V6, V7}}

Hence, s (G, 3) =|S (G, 3)| =3
A Steiner set with cardinality 4 is Wy = {vy, V2, v, vs}. The Steiner W, trees are as follows:

1 vy

vy O ™

TS Tﬁ T'.'
Figure: 3
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The other Steiner sets with cardinality 4 are {vi, vz, Vs, Vs}, {V1, V3, Vs, Ve} and {va, Vs, Vs, v7}
= S(G, 4) = {{v1, V2, V3, Vs}, {V1, V2, V3, Vs }, {1, V3, Vg, Vs }, {V2, V3, Vs, V7}

Hence, S (G, 4) = 4.

Also, s(G,5) = {{va, V2, V4, Vg, V7}, {V1, V3, V4, Vg, V7}, {V2, V3, Vs, Ve, V7}}

Therefore, s (G, 5) =3

There is no Steiner set with cardinality 6, because, if we take any six vertices out of 7 vertices, there is a tree of order 6.
To include the 7th vertex a tree should have order 7 including the other 6 vertices

.S(G6)={}
Therefore, s(G,6) = 0.
The whole set {vi, vz, . . .v7} is also a Steiner set.
ie, S(G ) ={{vy, vz ... V7}}
Therefore, s(G,7)=1
IV (G)|

Hence, SGx= Y s(Gi) X
i =5(G)

=33+ 44 + 3 + x/
Theorem 2.3: If Gy = Gy, then S (Gy, X) = S (G, X).
Proof: Let G; = (V3, E1) and G, = (2, E) be the given isomorphic graphs.

Since Gy = G, there exists a bijection f: V3 — V; such that v; and v; are end vertices/ extreme vertices in Gq iff f
(v;) and f (vj) are end vertices/ extreme vertices in G,.

Hence, there is a one to one correspondence between the Steiner sets of G; and the Steiner sets of G,.

Therefore, s (Gy, i) =5 (Gy, 1), V i.

If S (G, X) and S (Gg, x) are the Steiner polynomials of G; and G, respectively, then S (G, X) = S (G, X).

Remark: 2.4 Converse is not true.

Example: 2.5 Consider the following two graphs G; and G..
Ug

uy Wy Uy

Lg

G
Figure: 4
Steiner sets of G; are
{ull Ug, U5}
{uy, Uy, Ug, Usi},{Ul, Us, Ug, Us}
{uy, Uz, U, Uy, Us}
. S(Gr,x)= x3 + 2xH X2 (D)
© 2012, IIMA. All Rights Reserved 1143
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Steiner sets of G, are
{v1, V4, V5}
{v1, Vo, V4, W5}, {V1, V3, V4, Vs}
{v1, Vo, V3, V4, V5}

S(GyX)=x*+2x* +x° (2)
From (1) and (2)
S (G, X) =S (Gz X)
But, G; and G, are not isomorphic graphs.

Theorem 2.6: The Steiner polynomial of a complete bipartite graph Kpy,  is

m . m+n

s(Km, e ¥) = X0+ x ;m, n>1

Proof: Let Ky, , be a complete bipartite graph with two partite sets Xand Y sothat | X| =mand |Y | = n.
Let X ={uq, Up,...up} and Y ={vq,vy,...vq}

Without loss of generality, we assume m > n.

Figure 5

There are only three Steiner sets. Since n < m, the unique Steiner set with minimum cardinality n is Y.
5 s(Km,pon=1
The unique Steiner set with cardinality m is X.
S S(Kmop.m=1
The Steiner set with cardinalitym +nis X U Y.
©S(Kpmpm+1)=1

There is no other Steiner sets for Ky, . For, if W= X U {uy}, then there is only one tree of order m +1 containing the
elements of W. In this tree, only the elements of W are involved, but no other vertex of Ky, 1, is involved. The other
tree which contains the elements of W and the remaining vertices of Ky, 1, is of minimum order m + 2.

.. Wis not a Steiner set.

W, = X udy;, vj}, i#j, 1<i, j<n isnota Steiner set.
Also, W,=Yu {uj}, i=1,2,....nisnota Steiner set.

Hence,
IV (K, )l .
SKnmX) = Y SKpp X
i=s(K
= XM+ xM 4+ x

© 2012, IIMA. All Rights Reserved 1144
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Corollary 2.7: S (K, ., x) = x" (2+x")
Proof: Replace m by n in Theorem 2.6, we have

n n+n

S(Km’n,x)=xn+x +X

= X @2+xM
Theorem 2.8: S (Ky n, X) = X" (1 +X)

Proof: Let V (Ky ) be{u, vi, V2, . ., Vi}

Since vy, V7 . . ., Vv, are the end vertices, the minimum Steiner set is {vy, Vy, . ., Vo }.

It is the unique minimum Steiner set. Figure 6

s(Kynn)=1
The other Steiner set is {u, vi, V, . ., Vo }

S(Kyn X) = x" + x"*!
= x"(1+x)

Theorem 2.9: Let G; and G, be any two connected graphs of order
mand n respectively. Then

S(Gl+G2, X)=Xm+n

Proof: If Gy and G, are connected graphs of order m and n
respectively, then G; + G, isalso a connected graph of order m +n.

G+ G,

The unique Steiner set of G + Gy is ,
Figure 7

{uq, Uy, ..Uy, V1, V2,....vp} Of cardinality m +n.
" S(Gy+Gy,x)=xM*N

Hence the proof.

Theorem 2.10: Let G be a connected graph of order n. Then
S(K, +G,x) =xM (@ +xM

Proof: There are only two Steiner sets for K+ G.

. K, +G2
They are {uq, Ug, .. up} of cardinality m and
{u, up, ..y, V1, Vo, . .V} of cardinality m + n. Figure 8
Vy

S (K_m +G,X)= XM 4 xm+n

=xM 1+ xn)

Theorem 2.11: S (K | J Kp, ) =xM*N=2 (14 x)
VO

Proof: LetV (Ky) ={vg.v2, Vs ..vi}

and V (K,) = {Vo, Vm+2, Vm+3, - - - Vm+n}

Vm+2

Since, every vertex of a complete graph is an extreme

vertex, s(Ky) = m. Vm+3
Since, Vo is the cut vertex of Ky, | | Ky , the minimum Vim+5 Vm+a
vy Km U Kn
Steiner set is {v2, V3,..Vm, Vm + 2: Vm + 3 - Vm + n} Of Vo
Figure 9
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cardinality m +n - 2.

The other Steiner set is{vg, Vo, V3, .....Vq, Vi +2;
Vm + 3 Vm + n} of cardinality m+n-1.

S(Km Kn,x)=xm+n_2+xm+n_1
VO
= xm+n_2(1+x)

3. STEINER POLYNOMIAL OF G o Kq

Let G be any connected graph with vertex set {vq, vo, . . .vy}. Add n new vertices {uq, us . .. uy} and join u; to v; for
1 < i < n, by the definition of corona of two graphs. We shall denote this graph by G o Kj. In this section, we
calculate the polynomial, S (G oK1, x). Also, we show that s (G o K1, X) is unimodal.

Lemma 3.1: For any connected graph G of order n, s (G o Kq, X) =n.

Proof: Since, every end vertex of the graph G o K1 is an element of Steiner sets of it, the minimum Steiner set is the
set of all its end vertices.

ie, W={uq, up,...uy} is the minimum Steiner set.

~ s(GoKqp)=n.

A
3
IA
N
>

By Lemma 3.1, s (Go K1, m)=0 form <n, we calculate s (Go K¢, m) for n <

Theorem 3.2: For any graph G of order n andfor n < m <2n, s(GoKq,m)=

|
TN
3
| >
=]
~—

Hence, S (Go Kq,x)=x" (1 +x)".

Proof:

Uy

L

Figure 10

Suppose that W is a Steiner set of G o K1 of cardinality m.

When m =n, the Steiner set with cardinality nis W = {uq, ug, ...up}-

n n
s(GoKl,n)zlz[ J =[ ]
0 m —n

When m =n + 1, the Steiner sets with cardinality n + 1 are

Wi = {ug, up,..up} v {vj} i =1.2,.n.

© 2012, IIMA. All Rights Reserved 1146
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n n
~ s(GoKyg,n+1) =[ J =£ ]
1 m-n

When m = n + 2, the Steiner sets with cardinality n + 2 are

W :{ul,uz,...un}u{vi,vj}, 1<i,j<ni=#]j

n n
s(GoKq,n+2) =[ J =£ ]
2 m-n

Continuing this way, the Steiner set with cardinality m = 2n is the whole set

{ug, up, .. .up} U {vy,vo, ..vp}

n n
s (GoKg,2n) =1=[ J =[ ]
n m-—n

In general, we conclude that

S(GoKl,m)=( " ]
m —n

The Steiner polynomial of G v Kq is

SGoKy,x) = nCox"+nCyx"F 14+ nc, K"
2+

xM(1+ nCyx + nCyx“+ ...+ nCpx")

X1 (@ +x)"

Here we discuss about unimodality of the Steiner Polynomial of G, o Ky, where Gy, denotes a graph with n vertices.

Let us denote G, o Kq by Gy,

Theorem 3.3: For every n e N,
s(Gp*, n) = s(Gp*, 2n) = 1.

Proof: By theorem 3.2, s (Gy*,n) = nCy =1 and s(Gy*, 2n) = nC, = 1.
Hence the theorem.

Theorem 3.4 (Unimodal theorem for G o K1): For everyne N

(i) 1=5(G37,3n) < s(G3p3n+1) <...<s(G3n4n-1)< s (G3n, 4n)>...>
s (G, 6n—1) > s(G3,,6n)=1

(ii) 1=5(G3n+1 3n+1) <s(G3p+1 3n+2) <...<s(G34+1, 4N
<s(G3p+1,4n+1) >s(G3n4+1,4n+2) >...> s(G3q4+1 6N+1)
>s(G3p+1,6n+2) =1

(iii)  1=s(G3n+2,3n+2) <s(G3n+2 3N+3) <...<s5(G3n+2 4 +2)<s(Gz+ 2 4n+3)
>s(G3p+20 4n+4) > ..> (G349 6n+3)
>s(G3q+20, BN+4) =1

Proof:
(i) Obviously s (G'3,, 3n) = 1and s (G'zp, 6n) =1.

We shall prove that s (G'gp, i) <s(G3n, i+1) for 3n<i<4n-1 and s(G3,, i) > s(G3, i+1) for
4n<i<obn-1.

© 2012, IIMA. All Rights Reserved 1147
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Suppose that s (G3p , i) < s(G3p, i+1), bytheorem 3.2, we have

()02

= i<4n-1. Buti=3n

Hence 3n< i< 4n-1.

Similarly, we have s (G3p, 1) > s (G3p, i+ 1) for 4n <i < 6n-1

Proof of parts (ii) and (iii) are similar as part (i).

4. STEINER SETS OF PATHS

Let P, n 32 be a path with n vertices V (P,) = {1,2, ...n} and E (P)={{1,2}.{2,3},...{n-1,n}}.
Let S (P, i) be the family of Steiner sets of P, with cardinality i. We investigate the Steiner sets of the path P,.

Lemma 4.1: The following properties hold for paths:
(i)sPp) =2, n=2
(i)S(Pq, 1) =¢ iff i >mori <2

Proof:
(i) Ina path Py, there are two end vertices. The path P, is the unique Steiner tree. Hence the minimum Steiner set

has 2 elements.
ws(Pp=2
(ii) If follows from part (i) and the definition of Steiner set.

5. STEINER POLYNOMIALS OF PATHS
In this section, we introduce and investigate the Steiner polynomials of paths.

Let S (P, i) be the family of Steiner sets of a path P, with cardinality i and lets (P, ,i)= |S (P, i) | Then the
Steiner polynomial, S (P, X) of P, is

n

SPhLN= 3 s Py, i)x.
i=2
Theorem 5.1: Let S (Pp i) be the family of Steiner sets of P, with cardinality i.

Then () ISPy ) I=ISPr_1i-D]+ |SPy_1.D)]
(i)  S(Pn.X) =xSPh_1.X) + S(Ph_1.%)

(i)  Foreveryn>2S (Py,x) = x2(1+ x)"~2

Proof: LetV (Pp) = {v1, Vo, ... Vp}
Every Steiner set of P, contains the end vertices v1 and vy,.

In this case the entire path is the Steiner tree.

If we fix v; and v,, we have to choose any i — 2 vertices from the remaining n — 2 vertices of P, , in order to get the
Steiner sets of cardinality i.

. Here, we have (n — 2) C; _ o Steiner sets of cardinality i.
2SS P D= (=-2)Ci_yp

|ISPh_1,1-1)|=MN-3)Cj_3 and|S(Ph_1,1)| = (-3)Cj_»
© 2012, IIMA. All Rights Reserved 1148
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But, (n-2)Cj_p=(n-3)Cj_3+(n-3)Cj_
Therefore, [ S (Py ) [=[S (Ph—1, -1 |+[S(Py_1.,D)]I
(i) By (i), we have
[SPn, DI=1SCPn_1, -1+ [S(Ph_1,D)

Wheni=2,
ISP, 2| =1SPn-1, D[+ [SPh=1 .2

= X [SPy 2 =% |SPy_1 DI +x[SPh_1, 2

when i = 3,

IS(Pn 3 =1SPn_1.2l +IS(Pr_1.,3)]
= x3S(Py .3)[=x3|SPr_1.2]| +X |SP,_1.3)]

When i =4,
ISP, 4| =1SPn-1.3) |+ |SPh_1.9]|

= x}SP, 4= xSPr_1.3)|+ X [SPr_1.4)]

When i.: n-1,
ISPy n-1)| =|SPy_1.,n=2) |+ [SPr_1.n-1)|

= X" lis(Pyig 0= = X" SP,_1 . n=2)| + X" S(Pr_q . n-1)]

Wheni=n
[SPr M| =1SPh_1,n=-1)| +[SPr_1 .M

= X' [S(Pnn) =X |SPy_y n-D]+x"[SPyr_1 .|
Hence,

XISPh, 2|+ xXI1SPy . 3)| + X' [SCPy . D]+ ...+ X" "|SPy ,n=-1)| + X" |S(Py ,N)]
= ISPho1 DI+ X SCPr_1,.2] + X [S(Py_1.3)]+...
+X" N SPr_1  n=2)+ X" |SPr_1 . N=-D 0+ [XISPy_1.2]
+ X SPr_1 )|+ .. +X"[SPr_1  n=1) |+ X" [SPr_1 M

= XSSP, + X [SPr_1 )|+ +X"?[SPr_1 . N=-2)| +X" Y SPr_1 . n-1)]
+[X|SPh_1 .21+ X ISPr_1 .3 +... + X SPr_1 ., n=-D]]
[ISCPho1 DI =1SPr_q.m]=0]

n n-1 n-1
S ISP ) IX=x Y ISCPr_1 . DIX+ Y [SPr_q.i)X
i=2 i=2 i=2

n ) n-1 ) n-1 )

ie, Y s(Poi) X =% Y s(Paog, )X + D s(Paoyg, i) X
i=2 i=2 i=2

ie, S(P,X) = XS(Ph_1,X) + S(Ph_1,X)

(iii) We prove this by induction on n.

When n = 2

S (P, x) = X2

© 2012, IIMA. All Rights Reserved 1149
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o. Theresultistrue for n=2
Assume that the result is true for all natural numbers less than n.

ie, S(Pp_1,%) = xX*(1+x"-3

Now we prove the result for n
S(PnX)=XS(Pr-1,X)+S(Pr_1,%
=XPE@+X)"] + XL +x)"7
=X (L+x) " (x+1)
=x*(L+x)"°
.. The result is true for all n.

Using theorem 5.1, we get s (Py, i) for 2 < n < 15 as shown in the Table 2.

Table 2: s (P,, i) is the number of Steiner sets of P, with cardinality i.

rl1 112|3| 4 5 6 7 8 9 10 11 | 12 |13 | 14| 15
2 101

310]1]1

4 101121

510113 ]38 1

6 |0]1|4 |6 4 1

710]1]5]10] 10 5 1

8 0|16 |15] 20 | 15 6 1

9 |01 7 [21] 3% | 3 21 7 1

10| 01| 8 |28|56 | 70 56 28 8 1

1110)1] 9 | 36| 84 | 126 | 126 84 36 9 1

121 0]1]10)45|120|210| 252 | 210 | 120 45 10 1

13|01 |11 )55]165|330| 462 | 462 | 330 | 165 | 55 | 11 | 1

14 | 01|12 66| 220|495 | 702 | 924 | 792 | 495 | 220 | 66 |12 | 1
1501|1378 |286| 715 |1287 | 1716 | 1716 | 1287 | 715|286 | 78 | 13| 1

Theorem 5.2: The following properties for the coefficients of S (P,, x) hold:
(i) s(Pn,2) =1 Vnz=2

(i) s(P,n)=1 Vnx=2

(iii) s(Ph,n-1) =n-2, Vn =3

(iv) s(P,n-2)= &;n_?’) . vn>4
o)  s(P,n-3)= (n—2)(n;3)(n—4) ,Vn>5
i) sP.n-4) = (-2 -9 -H0-5) | 6

24
(i)  s(Pni) =S(Pnn-i+2), V n>2
n
(viii)  IfS, = > s (P, i), then, for every n> 3,
i=2
Sn =2 (Sp-1) with initial value S, = 1.

(ix) S, = Total number of Steiner setsin P, = 2"~ 2

Proof:
(i)  Thereisaunique Steiner set contains the end vertices of cardinality two in P,

s(Pn,2)=1, foralln>2

(i)  The whole vertex set {[n]} is also a Steiner set.
s(Pp,n)=1,foralln>2

© 2012, IIMA. All Rights Reserved 1150
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(iii)  We prove by induction on n.

The result is true for n = 3, since s (P3, 2) = 1

Assume that the result is true for all natural numbers less than n.

Now, we prove it for n.

By theorem 5.1 (i) and part (ii), we have,

s(Pn,n-1) =s(Py.,n=-2)+s(Py_1,n=-1)

=n-3+1
=n-2.

.. Theresult is true for all n.

(iv)We prove by induction on n.

Theresultis true for n =4, since s (Py, 2). = 1.

Assume that the result is true for all natural numbers less than n. Now, we prove it for n. By theorem 5.1 (i) and part
(iii), we have

S (Py,,n=-2) = s(Pr-1,n=3) +s(Py_1.n=-2)
_ (n-3)(n—-4) s - 3)
2

_ (n=3)(n-4)+2(n - 3)
) 2
_ (n=-3)(n-4+2)
) 2

(n-2)(n-3)
) 2

.. The result is true for all n.

(v) By induction on n.

Theresultistrue for n=5, sinces (Ps, 2) = 1.

Assume that the result is true for all natural numbers less than n.
Now we prove it for n.

By theorem 5.1 (i) and part (iv), we have

S (P, n=3) = S(Ph_-,n—-4) + s(Py_1,n-=-3)
(n=3)(n-4) (n - 5) (n=3)(n-4)
= +
6 2
_ (n=-3)(n-4) (n - 5+3)
B 6
(n=2) (n=3) (n — 4)
6

The result is true for all n.

(vi) By induction on n.

Theresultistruefor n= 6, since s(Ps 2)=1
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Assume that the result is true for all natural numberless than n.

Now, we prove it for n.

By theorem 5.1 (i) and part (v), we have

s (P, n-4) = s(Py-1,n=5) + s(Py_1.n-4)
(n=3)(n-4) (n — 5)(n — 6) (n=3)(n-4) (n - 5)
= +
24 6
_ (n=3)(n-4)(n - 5)(n - 6+4)
B 24
~ (n=2)(n-3)(n - 4)(n - 5)
B 24

The result is true for all n.
(vii) By induction on n
The result is true for n = 3, since s (P3, 2) =s(P3,3) = 1
Assume that the result is true for all natural number less than n.
We now prove it for n.

By theorem 5.1 (i), we have

S(Ppi) =s(Pp_1,1=-1) + s(Pp_1.1)
S(Pr-1,(N=-1)—(-1)+2)+s(Py_s, (N-1) i +2)
SPh_p,n=i+2) + s(Ph_q)n-i+1)

s(Ppn—-i+2)

The result is true for all n.
n

(i)  S,= 3 s (P, i)

i=2

By theorem 5.1 (i), we have

M s

S, = [s(Pp_1,i-1) + S(Ph_1,1)
i=2
n-1 n-1
= 2 sCPhop)+ 3 sPro1i)
i=2 i=2
= Sio1+Shos
Sy, = 2S,_1.

(ix) Byinduction on n
When n =3,
Sg=2=21 =23-2
Theresult is true forn = 3

Assume that the result is true for all natural numbers less than n.

" Sy_p1=2""°

Now, S, = 2S,_1
= 2x2n-3
- 2n—2
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.. Theresultis true for all n
Hence the theorem.
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