International Journal of Mathematical Archive-3(3), 2012, Page: 1141-1153 MA Available online through <u>www.ijma.info</u> ISSN 2229 - 5046

AN INTRODUCTION TO STEINER POLYNOMIALS OF GRAPHS

A. VIJAYAN*

Associate Professor, Department of Mathematics, Nesamony Memorial Christian College, Marthandam – 629165, Affliated to Manonmaniam Sundaranar University, Abishekapatty, Tirunelveli - 627 012, Tamil nadu, India. E-mail: naacnmccm@gmail.in

G. D. SURESH

Assistant Professor, Department of Mathematics, Nesamony Memorial Christian College, Marthandam – 629165, Affliated to Manonmaniam Sundaranar University, Abishekapatty, Tirunelveli - 627 012, Tamil nadu, India. E-mail: gd2suresh@yahoo.co.in

(Received on: 20-02-12; Accepted on: 15-03-12)

ABSTRACT

In this paper, we introduce a new concept of Steiner polynomial of a connected graph G. The Steiner polynomial of G |V(G)|

is the polynomial $S(G, x) = \sum_{i=s(G)}^{\infty} s(G, i) x^{i}$, where s(G, i) is the number of Steiner sets of G of size i and s(G) is the

Steiner number of G. We obtain some properties of S (G, x) and its coefficients. Also, we compute the polynomials for paths.

Key words: Steiner set, Steiner polynomial, Steiner number.

1. INTRODUCTION

For a connected graph G and a set $W \subseteq V$ (G), a tree contained in G is a Steiner tree with respect to W if T is a tree of minimum order with $W \subseteq V$ (G). The set S (W) contains, of all vertices in G that lie on some Steiner tree with respect to W. The minimum cardinality among the Steiner sets of G is the Steiner number, s (G). We denote the family of Steiner sets of a connected graph G with cardinality i by S (G, i).

Each extreme vertex of a graph G belongs to every Steiner set of G. In particular, each end-vertex of G belongs to every Steiner set of G.

Every non trivial tree with exactly k end- vertices has Steiner number k.

A graph in which any two distinct vertices are adjacent is called a complete graph. The complete graph with n vertices is denoted by K_{n} .

A graph G is called a bipartite graph if V (G) of G can be partitioned into two disjoint subsets V_1 and V_2 such that every edge G joins a vertex of V_1 to a vertex of V_2 . If V_1 contains m vertices and V_2 contains n vertices then the complete bigraph G is denoted by $K_{m, n}$. $K_{1, m}$ is called a star for $m \ge 2$.

The complement of a complete graph K_n is denoted by \overline{K}_n and it is a null graph.

If K_m and K_n are two complete graphs of order m and n respectively, then the graph $K_m \bigcup_{V} K_n$ is a graph of order

m + n - 1 with a common cut vertex v_0 .

Let $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ be two graphs with $V_1 \cap V_2 = \phi$. Then, the Sum $G_1 + G_2$ is the graph $G_1 \cup G_2$ together with all the edges joining the vertices of V_1 to the vertices of V_2 .

ie., If G_1 is a (p_1, q_1) graph and G_2 is (p_2, q_2) graph, then $G_1 + G_2$ is a $(p_1 + p_2, q_1 + q_2 + p_1 p_2)$ graph.

A walk is called a path if all its points are distinct. A path of order n is denoted by P_n .

A wheel, W_n , is a graph with n vertices v_1 , v_2 . v_n with v_1 having degree n - 1 and all the remaining (n - 1) vertices having degree 3, v_i is adjacent to v_{i+1} and v_n is adjacent to v_2 .

The corona of two graphs G_1 and G_2 , as defined by Frucht and Harary in [3] is the graph $G = G_1 \circ G_2$ formed from one copy of G_1 and $|V(G_1)|$ copies of G_2 , where the ith vertex of G_1 is adjacent to every vertex in the ith copy of G_2 . The corona $G_1 \circ K_1$, in particular, is the graph constructed from a copy of G, where for each vertex $u \in V(G)$, a new vertex v' and a pendent edge vv' are added.

2. STEINER POLYNOMIAL OF A GRAPH

Definition 2.1: Let S (G, i) be the family of Steiner sets of a graph G with cardinality i and let s (G, i) = |S(G, i)|. Then the Steiner Polynomial, S (G, x) of G is defined as

S (G, x) =
$$\sum_{i=s}^{|v(G)|} s(G, i) x^{i}$$
, where s (G) is the Steiner number of G.

Example 2.2: For the graph G, in Figure 1,

let $W_1 = \{ v_1, v_4, v_6 \}$. Then the trees T_1 , T_2 , T_3 , T_4 given in Figure 2 are four distinct Steiner W_1 - trees of order 5 such that every vertex of G lies on some Steiner W_1 - trees and so W_1 is a Steiner set of G.

Since there is no 2-element Steiner set of G, W_1 is a minimum Steiner set of G so that s(G) = 3.

The other Steiner sets with cardinality 3 are $W_2 = \{v_2, v_4, v_7\}$ and $W_3 = \{v_3, v_6, v_7\}$.

S (G, i) is the family of Steiner sets with cardinality i. S (G, 3) = {{ v_1, v_4, v_6 }, { v_2, v_4, v_7 }, { v_3, v_6, v_7 }

Hence, s(G, 3) = |S(G, 3)| = 3

A Steiner set with cardinality 4 is $W_4 = \{v_1, v_2, v_3, v_5\}$. The Steiner W_4 trees are as follows:

The other Steiner sets with cardinality 4 are $\{v_1, v_2, v_4, v_5\}$, $\{v_1, v_3, v_5, v_6\}$ and $\{v_2, v_3, v_5, v_7\}$

$$\therefore S(G, 4) = \{\{v_1, v_2, v_3, v_5\}, \{v_1, v_2, v_3, v_5\}, \{v_1, v_3, v_4, v_5\}, \{v_2, v_3, v_5, v_7\}$$

Hence, S(G, 4) = 4.

Also, $s(G, 5) = \{ \{v_1, v_2, v_4, v_6, v_7\}, \{v_1, v_3, v_4, v_6, v_7\}, \{v_2, v_3, v_4, v_6, v_7\} \}$

Therefore, s(G, 5) = 3

There is no Steiner set with cardinality 6, because, if we take any six vertices out of 7 vertices, there is a tree of order 6. To include the 7th vertex a tree should have order 7 including the other 6 vertices

 \therefore S (G, 6) = { }

Therefore, s(G, 6) = 0.

The whole set $\{v_1, v_2, \dots, v_7\}$ is also a Steiner set.

ie, $S(G, 7) = \{\{v_1, v_2, \dots, V_7\}\}$

Therefore, s(G, 7) = 1

Hence,

$$S (G, x) = \sum_{i = s(G)}^{|v(G)|} s (G, i) x^{i}$$
$$= 3x^{3} + 4x^{4} + 3x^{5} + x^{7}$$

Theorem 2.3: If $G_1 \cong G_2$, then S (G₁, *x*) = S (G₂, *x*).

Proof: Let $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ be the given isomorphic graphs.

Since $G_1 \cong G_2$, there exists a bijection f: $V_1 \rightarrow V_2$ such that v_i and v_j are end vertices/ extreme vertices in G_1 iff f (v_i) and f (v_j) are end vertices/ extreme vertices in G_2 .

Hence, there is a one to one correspondence between the Steiner sets of G1 and the Steiner sets of G2.

Therefore, s (G₁, i) = s (G₂, i), \forall i.

If S (G₁, x) and S (G₂, x) are the Steiner polynomials of G₁ and G₂ respectively, then S (G₁, x) = S (G₂, x).

Remark: 2.4 Converse is not true.

Example: 2.5 Consider the following two graphs G₁ and G₂.

Steiner sets of G_1 are $\{u_1, u_4, u_5\}$ $\{u_1, u_2, u_4, u_5\}, \{u_1, u_3, u_4, u_5\}$ $\{u_1, u_2, u_3, u_4, u_5\}$ $\therefore S(G_1, x) = x^3 + 2x^4 + x^5$ © 2012, IJMA. All Rights Reserved

(1) *1143* Steiner sets of G_2 are { v_1, v_4, v_5 } { v_1, v_2, v_4, v_5 }, { v_1, v_3, v_4, v_5 } { v_1, v_2, v_3, v_4, v_5 }

:. S (G₂, x) =
$$x^3 + 2x^4 + x^5$$

From (1) and (2)

 $S(G_1, x) = S(G_2, x)$

But, G₁ and G₂ are not isomorphic graphs.

Theorem 2.6: The Steiner polynomial of a complete bipartite graph K_{m, n} is

 $s(K_{m,n}, x) = x^{n} + x^{m} + x^{m+n}; m, n > 1$

Proof: Let $K_{m, n}$ be a complete bipartite graph with two partite sets X and Y so that |X| = m and |Y| = n. Let $X = \{u_1, u_2, \dots u_m\}$ and $Y = \{v_1, v_2, \dots v_n\}$.

Without loss of generality, we assume m > n.

There are only three Steiner sets. Since n < m, the unique Steiner set with minimum cardinality n is Y.

$$\therefore$$
 s (K_{m, n}, n) = 1

The unique Steiner set with cardinality m is X.

$$\therefore$$
 s (K_{m, n}, m) = 1

The Steiner set with cardinality m + n is $X \cup Y$.

$$\therefore$$
 s (K_{m, n} m+1) = 1

There is no other Steiner sets for $K_{m, n}$. For, if $W = X \cup \{u_1\}$, then there is only one tree of order m +1 containing the elements of W. In this tree, only the elements of W are involved, but no other vertex of $K_{m, n}$ is involved. The other tree which contains the elements of W and the remaining vertices of $K_{m, n}$ is of minimum order m + 2.

 \therefore W is not a Steiner set.

 $W_1 = X \cup \{v_i, v_j\}, i \neq j, 1 \le i, j \le n$ is not a Steiner set.

Also, $W_2 = Y \cup \{u_i\}, i = 1, 2, \dots n \text{ is not a Steiner set.}$

Hence,

$$S(K_{m,n}, x) = \sum_{i = s(K_{m,n})}^{|V(K_{m,n})|} S(K_{m,n}, i) x^{i}$$
$$= x^{n} + x^{m} + x^{m+n}$$

© 2012, IJMA. All Rights Reserved

(2)

Corollary 2.7: S (K_{n, n}, x) = $x^n (2 + x^n)$

Proof: Replace m by n in Theorem 2.6, we have

S (K_{m, n}, x) =
$$x^{n} + x^{n} + x^{n+n}$$

= $x^{n} (2 + x^{n})$

Theorem 2.8: S (K_{1, n}, x) = x^{n} (1 + x)

Proof: Let V (K_{1, n}) be{ $u, v_1, v_2, ..., v_n$ }

Since $v_1, v_2 \dots, v_n$ are the end vertices, the minimum Steiner set is $\{v_1, v_2, \dots, v_n\}$.

It is the unique minimum Steiner set.

$$\therefore$$
 s (K_{1, n}, n) = 1

The other Steiner set is $\{u, v_1, v_2, \dots, v_n\}$

:. S (K_{1, n}, x) =
$$x^{n} + x^{n+1}$$

= $x^{n} (1 + x)$

Theorem 2.9: Let G_1 and G_2 be any two connected graphs of order m and n respectively. Then

S $(G_1 + G_2, x) = x^{m+n}$

Proof: If G_1 and G_2 are connected graphs of order m and n respectively, then $G_1 + G_2$ is also a connected graph of order m +n.

The unique Steiner set of $G_1 + G_2$ is { $u_1, u_2, ...u_m, v_1, v_2,v_n$ } of cardinality m + n. \therefore S (G₁ + G₂, x) = x^{m + n}

Hence the proof.

Theorem 2.10: Let G be a connected graph of order n. Then S ($\overline{K_m}$ + G, x) = $x^m (1 + x^n)$

Proof: There are only two Steiner sets for $\overline{K_m} + G$. They are $\{u_1, u_2, ..., u_m\}$ of cardinality m and $\{u_1, u_2, ..., u_m, v_1, v_2, ..., v_n\}$ of cardinality m + n.

$$\therefore S (\overline{K_m} + G, x) = x^m + x^{m+n}$$
$$= x^m (1 + x^n)$$

Theorem 2.11: S (K_m $\bigcup_{V_0} K_n, x) = x^{m+n-2} (1+x)$

Proof: Let $V(K_m) = \{v_0, v_2, v_3 \dots v_m\}$ and $V(K_n) = \{v_0, v_{m+2}, v_{m+3}, \dots v_{m+n}\}$

Since, every vertex of a complete graph is an extreme vertex, $s(K_m) = m$.

Since, v_0 is the cut vertex of $\,K_m \, \bigcup_{v_0} \, K_n$, the minimum

Steiner set is $\{v_2, v_3, ..., v_m, v_{m+2}, v_{m+3}, ..., v_{m+n}\}$ of

Figure 7

Figure 8

cardinality m + n - 2.

The other Steiner set is $\{v_0, v_2, v_3, \dots, v_m, v_{m+2}, V_{m+3} \dots V_{m+n}\}$ of cardinality m + n - 1.

$$\therefore S(K_{m} \bigcup_{V_{0}} K_{n}, x) = x^{m+n-2} + x^{m+n-1}$$
$$= x^{m+n-2} (1+x)$$

3. STEINER POLYNOMIAL OF G o K1

Let G be any connected graph with vertex set $\{v_1, v_2, \ldots v_n\}$. Add n new vertices $\{u_1, u_2 \ldots u_n\}$ and join u_i to v_i for $1 \le i \le n$, by the definition of corona of two graphs. We shall denote this graph by G o K₁. In this section, we calculate the polynomial, S (G oK₁, x). Also, we show that s (G o K₁, x) is unimodal.

Lemma 3.1: For any connected graph G of order n, s (G o K_1 , x) = n.

Proof: Since, every end vertex of the graph $G \circ K_1$ is an element of Steiner sets of it, the minimum Steiner set is the set of all its end vertices.

ie, $W = \{u_1, u_2, ... u_n\}$ is the minimum Steiner set.

$$\therefore$$
 s (G o K₁) = n.

By Lemma 3.1, s (G o K₁, m) = 0 for m < n, we calculate s (G o K₁, m) for $n \le m \le 2n$.

Theorem 3.2: For any graph G of order n and for $n \le m \le 2n$, $s (G \circ K_1, m) = \binom{n}{m-n}$. Hence, S (G o K₁, x) = $x^n (1 + x)^n$.

Proof:

Suppose that W is a Steiner set of $G \circ K_1$ of cardinality m.

When m = n, the Steiner set with cardinality n is $W = \{u_1, u_3, ...u_n\}$.

$$\therefore \ \ s \ (G \ \textbf{o} \ K_1, n) \ = 1 \ = \ \begin{pmatrix} n \\ 0 \end{pmatrix} \ \ = \left(\begin{array}{c} n \\ m \\ n \end{array} \right)$$

When m = n + 1, the Steiner sets with cardinality n + 1 are

$$W_i = \{u_1, u_2, ..., u_n\} \cup \{v_i\} \ i = 1, 2, ..., n.$$

© 2012, IJMA. All Rights Reserved

$$\therefore s (G \mathbf{o} K_1, n+1) = \begin{pmatrix} n \\ 1 \end{pmatrix} = \begin{pmatrix} n \\ m-n \end{pmatrix}$$

When m = n + 2, the Steiner sets with cardinality n + 2 are

$$W_{l} = \{u_{1}, u_{2}, \dots u_{n}\} \cup \{v_{i}, v_{j}\}, 1 \leq i, j \leq n, i \neq j$$

$$\therefore s (G o K_{1}, n + 2) = {n \choose 2} = {n \choose m - n}$$

Continuing this way, the Steiner set with cardinality m = 2n is the whole set

$$\{u_1, u_2, \dots, u_n\} \cup \{v_1, v_2, \dots, v_n\}$$

$$\therefore \quad s (G \circ K_1, 2n) = 1 = \binom{n}{n} = \binom{n}{m-n}$$

In general, we conclude that

In general, we conclude that

$$\therefore S(G \circ K_1, m) = \begin{pmatrix} n \\ m - n \end{pmatrix}$$

 \therefore The Steiner polynomial of $G \cup K_1$ is

$$S (G o K_1, x) = nC_0 x^n + nC_1 x^{n+1} + \dots + nC_n x^{2n}$$

= $x^n (1 + nC_1 x + nC_2 x^2 + \dots + nC_n x^n)$
= $x^n (1 + x)^n$

Here we discuss about unimodality of the Steiner Polynomial of $G_n o K_1$, where G_n denotes a graph with n vertices.

Let us denote $G_n \circ K_1$ by G_n^* .

Theorem 3.3: For every $n \in \mathbb{N}$,

 $s \ (G_n{}^*, \ n) \ = \ s \ (G_n{}^*, \ 2n) \ = \ 1.$

Proof: By theorem 3.2, $s(G_n^*, n) = nC_0 = 1$ and $s(G_n^*, 2n) = nC_n = 1$. Hence the theorem.

Theorem 3.4 (Unimodal theorem for G o K_1): For every $n \in \mathbb{N}$

 $\begin{array}{ll} (i) & 1 = s \; (G_{3n}^{*}, \, 3n) \; < \; s \; (G_{3n}^{*}, \, 3n+1) \; < \ldots < s \; (G_{3n}^{*}, \, 4n-1) < \; s \; \; (G_{3n}^{*}, \, 4n) > \ldots > \\ & s \; (G_{3n}^{*}, \, 6n-1) \; > \; s \; (G_{3n}^{*}, \, 6n) = 1 \end{array}$

(ii) $1 = s (G_{3n+1}^*, 3n+1) < s (G_{3n+1}^*, 3n+2) < \ldots < s (G_{3n+1}^*, 4n) < s (G_{3n+1}^*, 4n+1) > s (G_{3n+1}^*, 4n+2) > \ldots > s (G_{3n+1}^*, 6n+1) > s (G_{3n+1}^*, 6n+2) = 1$

(iii)
$$1 = s (G_{3n+2}^*, 3n+2) < s (G_{3n+2}^*, 3n+3) < \ldots < s (G_{3n+2}^*, 4n+2) < s (G_{3n+2}, 4n+3) > s (G_{3n+2}^*, 4n+4) > \ldots > s (G_{3n+2}^*, 6n+3) > s (G_{3n+2}^*, 6n+4) = 1$$

Proof:

(i) Obviously $s(G_{3n}^*, 3n) = 1$ and $s(G_{3n}^*, 6n) = 1$. We shall prove that $s(G_{3n}^*, i) < s(G_{3n}^*, i+1)$ for $3n \le i \le 4n - 1$ and $s(G_{3n}^*, i) > s(G_{3n}^*, i+1)$ for $4n \le i \le 6n - 1$.

Suppose that s ((G_{3n}^* , i) < s (G_{3n}^* , i + 1), by theorem 3.2, we have

$$\begin{pmatrix} 3n \\ i - 3n \end{pmatrix} < \begin{pmatrix} 3n \\ i - 3n + 1 \end{pmatrix}$$

 \Rightarrow i < 4n - 1. But i ≥ 3n

Hence $3n \le i < 4n - 1$.

Similarly, we have $s(G^*_{3n}, i) > s(G^*_{3n}, i+1)$ for $4n \le i \le 6n-1$

Proof of parts (ii) and (iii) are similar as part (i).

4. STEINER SETS OF PATHS

Let P_n , $n \exists 2$ be a path with n vertices $V(P_n) = \{1, 2, ..., n\}$ and $E(P_n) = \{\{1, 2\}, \{2, 3\}, ..., \{n-1, n\}\}$.

Let S (P_n , i) be the family of Steiner sets of P_n with cardinality i. We investigate the Steiner sets of the path P_n .

Lemma 4.1: The following properties hold for paths: (i) $s(P_n) = 2, n \ge 2$ (ii) S (P_m, i) = ϕ iff i > m or i < 2

Proof:

- (i) In a path P_n , there are two end vertices. The path P_n is the unique Steiner tree. Hence the minimum Steiner set has 2 elements.
 - \therefore s (P_n) = 2

(ii) If follows from part (i) and the definition of Steiner set.

5. STEINER POLYNOMIALS OF PATHS

In this section, we introduce and investigate the Steiner polynomials of paths.

Let S (P_n, i) be the family of Steiner sets of a path P_n with cardinality i and let s (P_n, i) = $|S(P_n, i)|$. Then the Steiner polynomial, S (P_n , x) of P_n is

$$S(P_n, x) = \sum_{i=2}^{n} s(P_n, i) x^i.$$

Theorem 5.1: Let S (P_n , i) be the family of Steiner sets of P_n with cardinality i.

 (\mathbf{i}) Then

(i)
$$|S(P_{n,i})| = |S(P_{n-1}, i-1)| + |S(P_{n-1}, i)|$$

(ii) $S(P_{n,x}) = x S(P_{n-1}, x) + S(P_{n-1}, x)$

$$(-)$$
 $(-)$

For every $n \ge 2$, S (P_n, x) = $x^2 (1 + x)^{n-2}$ (iii)

Proof: Let V (P_n) = { $v_1, v_2, ..., v_n$ } Every Steiner set of P_n contains the end vertices v_1 and v_n .

In this case the entire path is the Steiner tree.

If we fix v_1 and v_n , we have to choose any i - 2 vertices from the remaining n - 2 vertices of P_n , in order to get the Steiner sets of cardinality i.

 \therefore Here, we have $(n - 2) C_{i-2}$ Steiner sets of cardinality i.

$$\therefore |S(P_n, i)| = (n-2)C_{i-2}$$

$$|S(P_{n-1}, i-1)| = (n-3)C_{i-3} \text{ and } |S(P_{n-1}, i)| = (n-3)C_{i-2}$$

But, $(n-2) C_{i-2} = (n-3) C_{i-3} + (n-3) C_{i-2}$

Therefore, $|S(P_{n,i})| = |S(P_{n-1,i-1})| + |S(P_{n-1,i})|$

(ii) By (i), we have

$$|S(P_{n,i})| = |S(P_{n-1}, i-1)| + |S(P_{n-1}, i)|$$

When i = 2,

$$|S(P_{n}, 2)| = |S(P_{n-1}, 1)| + |S(P_{n-1}, 2)|$$

$$\Rightarrow x^{2} |S(P_{n}, 2)| = x^{2} |S(P_{n-1}, 1)| + x^{2} |S(P_{n-1}, 2)|$$

when i = 3,

$$| S (P_n, 3) | = | S (P_{n-1}, 2) | + | S (P_{n-1}, 3) |$$

$$\Rightarrow x^3 | S (P_n, 3) | = x^3 | S (P_{n-1}, 2) | + x^3 | S (P_{n-1}, 3) |$$

When
$$i = 4$$
,

$$|S(P_{n}, 4)| = |S(P_{n-1}, 3)| + |S(P_{n-1}, 4)|$$

$$\Rightarrow x^{4} |S(P_{n}, 4)| = x^{4} |S(P_{n-1}, 3)| + x^{4} |S(P_{n-1}, 4)|$$

When i = n - 1,

$$|S(P_{n, n-1})| = |S(P_{n-1}, n-2)| + |S(P_{n-1}, n-1)|$$

$$\Rightarrow x^{n-1} |S(P_{n-1}, n-1)| = x^{n-1} |S(P_{n-1}, n-2)| + x^{n-1} |S(P_{n-1}, n-1)|$$

When i = n

$$\begin{split} | \; S \; (P_n \; \; , \; n) \; | \; = \; | \; S \; (P_{n \; - \; 1} \; \; , \; n \; - 1) \; | \; + \; | \; S \; (P_{n \; - \; 1} \; \; , \; n) \; | \\ \Longrightarrow \; \; \; x^n \; | \; S \; (P_n, n) \; = \; x^n \; | \; S \; (P_{n \; - \; 1} \; \; , \; n \; - 1) \; | \; + \; x^n \; | \; S \; (P_{n \; - \; 1} \; \; , \; n) \; | \end{split}$$

Hence,

$$\begin{split} x^{2} \mid \mathbf{S} \; (\mathbf{P_{n}} \,, \, 2) \mid + x^{3} \mid \mathbf{S} \; (\mathbf{P_{n}} \,, \, 3) \mid + x^{4} \mid \mathbf{S} \; (\mathbf{P_{n}} \,, \, 4) \mid + \ \dots + x^{n-1} \mid \mathbf{S} \; (\mathbf{P_{n}} \,, \, n-1) \mid + x^{n} \mid \mathbf{S} \; (\mathbf{P_{n}} \,, \, n) \mid \\ &= \; [x^{2} \mid \mathbf{S} \; (\mathbf{P_{n-1}} \,, \, 1) \mid + x^{2} \mid \mathbf{S} \; (\mathbf{P_{n-1}} \,, \, 2) \mid + x^{4} \mid \mathbf{S} \; (\mathbf{P_{n-1}} \,, \, 3) \mid + \ \dots \\ &+ x^{n-1} \mid \mathbf{S} \; (\mathbf{P_{n-1}} \,, \, n-2) \mid + x^{n} \mid \mathbf{S} \; (\mathbf{P_{n-1}} \,, \, n-1) \mid] + \; [x^{2} \mid \mathbf{S} \; (\mathbf{P_{n-1}} \,, \, 2) \mid \\ &+ x^{3} \mid \mathbf{S} \; (\mathbf{P_{n-1}} \,, \, 3) \mid + \ \dots + x^{n-1} \mid \mathbf{S} \; (\mathbf{P_{n-1}} \,, \, n-1) \mid + x^{n} \mid \mathbf{S} \; (\mathbf{P_{n-1}} \,, \, n) \mid] \\ &= \; x \; [x^{2} \mid \mathbf{S} \; (\mathbf{P_{n-1}} \,, \, 2) \mid + x^{3} \mid \mathbf{S} \; (\mathbf{P_{n-1}} \,, \, 3) \mid + \ \dots + x^{n-2} \mid \mathbf{S} \; (\mathbf{P_{n-1}} \,, \, n-2) \mid + x^{n-1} \mid \mathbf{S} \; (\mathbf{P_{n-1}} \,, \, n-1) \mid] \\ &+ \; [x^{2} \mid \mathbf{S} \; (\mathbf{P_{n-1}} \,, \, 2) \mid + x^{3} \mid \mathbf{S} \; (\mathbf{P_{n-1}} \,, \, 3) \mid + \ \dots + x^{n-1} \mid \mathbf{S} \; (\mathbf{P_{n-1}} \,, \, n-1) \mid] \\ &= \; |\mathbf{S} \; (\mathbf{P_{n-1}} \,, \, 1) \mid \; = \; |\mathbf{S} \; (\mathbf{P_{n-1}} \,, \, n) \mid = 0] \end{split}$$

$$\sum_{i=2}^{n} |S(P_{n,i})| x^{i} = x \sum_{i=2}^{n-1} |S(P_{n-1},i)| x^{i} + \sum_{i=2}^{n-1} |S(P_{n-1},i)| x^{i}$$

ie,
$$\sum_{i=2}^{n} s(P_n, i) x^i = x \sum_{i=2}^{n-1} s(P_{n-1}, i) x^i + \sum_{i=2}^{n-1} s(P_{n-1}, i) x^i$$

ie, $S(P_n, x) = x S(P_{n-1}, x) + S(P_{n-1}, x)$

(iii) We prove this by induction on n.

When n = 2

S (**P**₂,
$$x$$
) = x^2

© 2012, IJMA. All Rights Reserved

 \therefore The result is true for n = 2

Assume that the result is true for all natural numbers less than n.

ie, S (P_{n - 1}, x) =
$$x^2 (1 + x)^{n-3}$$

Now we prove the result for n

 \therefore The result is true for all n.

Using theorem 5.1, we get s (P_n , i) for $2 \le n \le 15$ as shown in the Table 2.

Table 2: $s(P_n, i)$ is the number of Steiner sets of P_n with cardinality i.

i n	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
2	0	1													
3	0	1	1												
4	0	1	2	1											
5	0	1	3	3	1										
6	0	1	4	6	4	1									
7	0	1	5	10	10	5	1								
8	0	1	6	15	20	15	6	1							
9	0	1	7	21	35	35	21	7	1						
10	0	1	8	28	56	70	56	28	8	1					
11	0	1	9	36	84	126	126	84	36	9	1				
12	0	1	10	45	120	210	252	210	120	45	10	1			
13	0	1	11	55	165	330	462	462	330	165	55	11	1		
14	0	1	12	66	220	495	702	924	792	495	220	66	12	1	
15	0	1	13	78	286	715	1287	1716	1716	1287	715	286	78	13	1

Theorem 5.2: The following properties for the coefficients of S (P_n, x) hold:

(i) $s(P_n, 2) = 1, \forall n \ge 2$

(ii)
$$s(P_n, n) = 1, \forall n \ge 2$$

(iii)
$$s(P_n, n-1) = n-2, \forall n \ge 3$$

(iv)
$$s(P_n, n-2) = \frac{(n-2)(n-3)}{2}$$
, $\forall n \ge 4$

9v)
$$s(P_n, n-3) = \frac{(n-2)(n-3)(n-4)}{6}, \forall n \ge 5$$

(vi)
$$s(P_n, n - 4) = \frac{(n-2)(n-3)(n-4)(n-5)}{24}, \forall n \ge 6$$

(vii)
$$s(P_n, i) = s(P_n, n - i + 2), \forall n \ge 2$$

(viii) If $S_n = \sum_{i=2}^n s(P_n, i)$, then, for every $n \ge 3$, $S_n = 2(S_{n-1})$ with initial value $S_2 = 1$.

(ix) $S_n = \text{Total number of Steiner sets in } P_n = 2^{n-2}$.

Proof:

(i) There is a unique Steiner set contains the end vertices of cardinality two in P_n .

- \therefore s (P_n, 2) = 1, for all n ≥ 2
- (ii) The whole vertex set {[n]} is also a Steiner set.

 \therefore s (P_n, n) = 1, for all n ≥ 2

(iii) We prove by induction on n.

The result is true for n = 3, since s (P₃, 2) = 1

Assume that the result is true for all natural numbers less than n.

Now, we prove it for n.

By theorem 5.1 (i) and part (ii), we have, $s (P_n, n-1) = s (P_{n-1}, n-2) + s (P_{n-1}, n-1)$ = n - 3 + 1= n - 2.

 \therefore The result is true for all n.

(iv)We prove by induction on n.

The result is true for n = 4, since s (P₄, 2). = 1.

Assume that the result is true for all natural numbers less than n. Now, we prove it for n. By theorem 5.1 (i) and part (iii), we have

$$s (P_n, n-2) = s (P_{n-1}, n-3) + s (P_{n-1}, n-2)$$

$$= \frac{(n-3)(n-4)}{2} + (n-3)$$

$$= \frac{(n-3)(n-4) + 2 (n-3)}{2}$$

$$= \frac{(n-3)(n-4+2)}{2}$$

$$= \frac{(n-2)(n-3)}{2}$$

 \therefore The result is true for all n.

(v) By induction on n.

The result is true for n = 5, since $s(P_5, 2) = 1$.

Assume that the result is true for all natural numbers less than n.

Now we prove it for n.

By theorem 5.1 (i) and part (iv), we have

$$s (P_n, n-3) = s (P_{n-1}, n-4) + s (P_{n-1}, n-3)$$

$$= \frac{(n-3)(n-4) (n-5)}{6} + \frac{(n-3)(n-4)}{2}$$

$$= \frac{(n-3)(n-4) (n-5+3)}{6}$$

$$= \frac{(n-2) (n-3) (n-4)}{6}$$

 \therefore The result is true for all n.

(vi) By induction on n.

The result is true for n = 6, since $s(P_6, 2) = 1$

Assume that the result is true for all natural numberless than n.

Now, we prove it for n.

By theorem 5.1 (i) and part (v), we have

$$s (P_n, n-4) = s (P_{n-1}, n-5) + s (P_{n-1}, n-4)$$

$$= \frac{(n-3)(n-4) (n-5) (n-6)}{24} + \frac{(n-3)(n-4) (n-5)}{6}$$

$$= \frac{(n-3)(n-4) (n-5) (n-6+4)}{24}$$

$$= \frac{(n-2)(n-3) (n-4) (n-5)}{24}$$

 \therefore The result is true for all n.

(vii) By induction on n

The result is true for n = 3, since s $(P_3, 2) = s (P_3, 3) = 1$

Assume that the result is true for all natural number less than n.

We now prove it for n.

By theorem 5.1 (i), we have

$$\begin{split} s\left(P_{n},i\right) &= s\left(P_{n-1},i-1\right) + s\left(P_{n-1},i\right) \\ &= s\left(P_{n-1},\left(n-1\right)-(i-1)+2\right) + s\left(P_{n-1},\left(n-1\right)-i+2\right) \\ &= s\left(P_{n-1},n-i+2\right) + s\left(P_{n-1}\right)n-i+1\right) \\ &= s\left(P_{n},n-i+2\right) \end{split}$$

 \therefore The result is true for all n.

(viii)
$$S_n = \sum_{i=2}^n s(P_n, i)$$

By theorem 5.1 (i), we have

$$S_{n} = \sum_{i=2}^{n} [s (P_{n-1}, i-1) + S (P_{n-1}, i)]$$

=
$$\sum_{i=2}^{n-1} s (P_{n-1}, i) + \sum_{i=2}^{n-1} s (P_{n-1}, i)$$

=
$$S_{n-1} + S_{n-1}$$

$$S_{n} = 2 S_{n-1}.$$

(ix) By induction on n

When n = 3,

$$S_3 = 2 = 2^1 = 2^3 - 2$$

 \therefore The result is true for n = 3

Assume that the result is true for all natural numbers less than n.

$$\therefore$$
 S_{n-1} = 2ⁿ⁻³

Now, $S_n = 2 S_{n-1}$

$$= 2 \times 2^{n-3}$$
$$= 2^{n-2}$$

© 2012, IJMA. All Rights Reserved

 \therefore The result is true for all n

Hence the theorem.

REFERENCES

- [1] Carmen Hernandom Tao Jiang, Merce Mora, Ignacio M. Pelayo, Carlos Seara, On the Steiner, geodetic and hull number of graphs, Preprint to Elsevier Science.
- [2]. Chartrand G., Ping Zhang, The Steiner number of a graph, Discrete Mathematics 242 (2002) 41 54.
- [3]. Frunch R. and F. Harary, On the Corona of two graphs, Aequationes Math 4 (1970) 322 324.
- [4] Saeid Alikhani and Yee hock Peng, Introduction to Domination Polynomial of a graph, ar Xiv: 0905, 225 [v] [Math. Co].
