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ABSTRACT 
 

In this paper, we introduce a new concept of Steiner polynomial of a connected graph G. The Steiner polynomial of G 

is the polynomial S (G, x) = 
|V (G)|

i = s(G)
Σ s (G, i) xi , where s(G, i) is the number of Steiner sets of G of size i and s (G) is the 

Steiner number of G. We obtain some properties of S (G, x) and its coefficients. Also, we compute the polynomials for 
paths.  
 
Key words:  Steiner set, Steiner polynomial, Steiner number. 
________________________________________________________________________________________________ 
 
1. INTRODUCTION 
 
For a connected graph G and a set W ⊆ V (G), a tree contained in G is a Steiner tree with respect to W if T is a tree of 
minimum order with W ⊆ V (G). The set S (W) contains, of all vertices in G that lie on some Steiner tree with respect 
to W. The minimum cardinality among the Steiner sets of G is the Steiner number, s (G). We denote the family of 
Steiner sets of a connected graph G with cardinality i by S (G, i).  
 
Each extreme vertex of a graph G belongs to every Steiner set of G. In particular, each end-vertex of G belongs to 
every Steiner set of G. 
 
Every non trivial tree with exactly k end- vertices has Steiner number k. 
 
A graph in which any two distinct vertices are adjacent is called a complete graph. The complete graph with n vertices 
is denoted by Kn. 
 
A graph G is called a bipartite graph if V (G) of G can be partitioned into two disjoint subsets V1 and V2 such that 
every edge G joins a vertex of V1 to a vertex of  V2.   If V1 contains m vertices and V2 contains n vertices then the 
complete bigraph G is denoted by Km, n.  K1, m is called a star for m ≥ 2.  
 
The complement of a complete graph Kn is denoted by Κn and it is a null graph. 
 
If  Km  and  Kn  are two complete graphs of order m and n respectively, then the graph  Km 

oV


 Kn is a graph of order  

m + n – 1  with a common cut vertex  v
0
. 

 
Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs with V1 ∩  V2 = φ. Then, the Sum G1 + G2 is the graph G1∪G2 
together with all the edges joining the vertices of V1 to the vertices of V2.  
____________________________________________________________________________________________ 
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ie., If  G1 is a (p1, q1) graph and G2 is (p2, q2) graph, then G1 + G2 is a (p1 + p2, q1 + q2 +  p1 p2) graph. 

 
A walk is called a path if all its points are distinct. A path of order n is denoted by Pn. 
 
A wheel, Wn, is a graph with n vertices v1, v2 . vn with v1 having degree n – 1 and all the  remaining ( n - 1) vertices 

having degree 3, vi is adjacent to vi +1 and vn is adjacent to v2. 
 
The corona of two graphs G1 and G2, as defined by Frucht and Harary in [3] is the graph G = G1 ο G2 formed from one 
copy of G1 and |V (G1) | copies of G2, where the ith vertex of G1 is adjacent to every vertex in the ith copy of G2. The 
corona G1 ο K1, in particular, is the graph constructed from a copy of G, where for each vertex   
u  ∈ V (G), a new vertex  v′ and a pendent edge  vv′ are added. 
 
2. STEINER POLYNOMIAL OF A GRAPH  
 
Definition 2.1: Let S (G, i) be the family of Steiner sets of a graph G with cardinality i and let s (G, i) =  | S (G, i) | . 
Then the Steiner Polynomial, S (G, x) of G is defined as  

 S (G, x) = 
|V (G)|

i = s (G)
Σ s (G, i)  xi, where  s (G) is the Steiner number of  G. 

 
Example 2.2: For the graph G, in Figure   1,  
let W1 = { v1, v4, v6}. Then the trees T1, T2, T3, T4 given in Figure 2 are four 
distinct Steiner W1- trees of order 5 such that every vertex of G lies on some 
Steiner W1 - trees and so W1 is a Steiner set of  G. 
 

 
Figure: 2 

Since there is no 2-element Steiner set of G,  W1 is a minimum Steiner set of G so that s (G)  =  3. 
 
The other Steiner sets with cardinality 3 are W2 = {v2, v4, v7} and   W3 = {v3, v6, v7}.  
 
S (G, i) is the family of Steiner sets with cardinality i. 
S (G, 3)  = {{ v1, v4, v6}, {v2, v4, v7}, {v3, v6 , v7}} 
 
Hence, s (G, 3) = | S (G, 3)| = 3   
 
A Steiner set with cardinality 4 is W4 = {v1, v2, v3, v5}. The Steiner W4 trees are as follows: 

 
Figure: 3 

 
Figure: 1 



A. VIJAYAN* & G. D. SURESH/ AN INTRODUCTION TO STEINER POLYNOMIALS OF GRAPHS/ IJMA- 3(3), Mar.-2012,  
Page: 1141-1153 

© 2012, IJMA. All Rights Reserved                                                                                                                                                   1143   

 
The other Steiner sets with cardinality 4 are {v1, v2, v4, v5}, {v1, v3, v5, v6} and {v2, v3, v5, v7} 
 
∴ S (G, 4) = {{v1, v2, v3, v5}, {v1, v2, v3, v5}, {v1, v3, v4, v5}, {v2, v3, v5, v7} 
 
Hence, S (G, 4) = 4. 
 
Also,        s (G, 5)   =   {{v1, v2, v4, v6, v7}, {v1, v3, v4, v6, v7}, {v2, v3, v4, v6, v7}} 
 
Therefore, s (G, 5) = 3 
 
There is no Steiner set with cardinality 6, because, if we take any six vertices out of 7 vertices, there is a tree of order 6. 
To include the 7th vertex a tree should have order 7 including the other 6 vertices 
 
 ∴ S (G, 6) = {  }  
 
Therefore, s (G, 6)   =   0. 
 
The whole set {v1, v2, . . .v7} is also a Steiner set.  
 
ie,  S ( G, 7) = {{ v1, v2, . . . V7}} 
    
Therefore,    s (G, 7) = 1 
 
 

Hence,   S (G, x) = 
|V (G)|

i = s(G)
Σ  s (G, i) xi 

          = 3x3 +  4x4  +  3x5  +  x7   
 
Theorem 2.3: If G1 ≅ G2, then S (G1, x) = S (G2, x). 
 
Proof: Let G1 = (V1, E1) and  G2 = (V2, E2) be the given isomorphic graphs. 
 
Since G1 ≅ G2,  there exists a bijection f: V1 → V2 such that  vi  and vj are end vertices/ extreme vertices  in G1 iff  f 
(vi) and f (vj) are end vertices/ extreme vertices in G2.  
 
Hence, there is a one to one correspondence between the Steiner sets of G1 and the Steiner sets of G2.  
 
Therefore, s (G1, i) = s (G2, i), ∀ i. 
 
If S (G1, x) and S (G2, x) are the Steiner polynomials of G1 and G2 respectively, then   S (G1, x) = S (G2, x). 
 
Remark: 2.4 Converse is not true. 
 
Example: 2.5 Consider the following two graphs G1 and G2. 
 

 
  G1      G2 

Figure: 4 
Steiner sets of G1 are 

{u1, u4, u5} 
{u1, u2, u4, u5,},{u1, u3, u4, u5} 
{u1, u2, u3, u4, u5} 

 ∴ S (G1, x) = x3 + 2x4+ x5                                                                                                         (1) 
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Steiner sets of G2 are  
{v1, v4, v5} 
{v1, v2, v4, v5}, {v1, v3, v4, v5} 
{v1, v2, v3, v4, v5} 
 
∴   S (G2, x) = x3 + 2x4 + x5                                                                                                         (2) 
 
From (1) and (2) 
  
S (G1, x) = S (G2, x) 
 
But, G1 and G2 are not isomorphic graphs.          
 
Theorem 2.6: The Steiner polynomial of a complete bipartite graph Km, n is  

s (Km, n,  x)  =  xn  +  xm  +  xm + n  ;  m,  n > 1  
 
Proof: Let Km, n be a complete bipartite graph with two partite sets X and Y so that | X |   = m and  | Y |  =  n.  
Let X = {u1, u2, . . . um}  and  Y = {v1, v2 , . . . vn}.  
 
Without loss of generality, we assume m > n. 
 

 
Figure 5 

 
There are only three Steiner sets. Since n < m, the unique Steiner set with minimum cardinality n is Y.  
 
 ∴ s (Km, n , n) = 1 
 
The unique Steiner set with cardinality m is X. 
 
∴ s (Km, n , m) = 1 
 
The Steiner set with cardinality m + n is X ∪ Y. 
 
∴  s (Km, n m +1) = 1 
 
There is no other Steiner sets for Km, n. For, if W =  X ∪ {u1}, then there is only one tree of order m +1 containing the 
elements of W. In this tree, only the elements of W are involved, but no other vertex of Km, n is involved. The other 
tree which contains the elements of W and the remaining vertices of Km, n is of minimum order m + 2.  
 
∴ W is not a Steiner set. 
 
 W1 = X ∪ {vi, vj},    i ≠ j,    1 ≤ i,    j ≤ n   is not a Steiner set. 
 
Also, W2 = Y ∪ {uj}, i = 1, 2, . . .. n is not a Steiner set. 
 
Hence, 

S (Km ,n, x)  = 
m, n

m, n

|V (K )|

i  s (K )=
Σ  S (Km, n, i) x

i 

     =    xn +  xm  +  xm + n 
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Corollary 2.7: S (Kn, n , x)  =  xn (2 + xn) 
 
Proof: Replace m by n in Theorem 2.6, we have  
 

   S (Km, n, x) = xn + xn + xn + n 

            =   xn (2 + xn) 
 
Theorem 2.8: S (K1, n, x) = xn (1 + x) 
 
Proof: Let V (K1, n) be{u, v1, v2, . . , vn} 
 
Since v1, v2 . . . , vn are the end vertices, the minimum Steiner set is {v1, v2, . . , vn}. 
 
It is the unique minimum Steiner set. 
 
∴    s (K1, n, n) = 1 
 
The other Steiner set is {u, v1, v2, . . , vn} 
 
∴   S (K1, n,  x)  =   xn  +  xn + 1 
             =   xn (1 + x)               
          
Theorem 2.9: Let G1  and  G2  be any two connected graphs of order   
m and  n  respectively.  Then 
  
S (G1 + G2, x) = xm + n 
 
Proof: If G1 and  G2  are connected graphs of order  m  and  n   
respectively,  then  G1  +  G2  is also a connected graph of order m +n. 
 
The unique Steiner set of   G1 + G2 is  
{u1, u2, ...um, v1, v2,....vn} of cardinality m + n.  

  ∴  S (G1 + G2, x) = x m + n 
 
Hence the proof.             

 
Theorem 2.10: Let G  be a connected graph of order n. Then 

S ( mK   + G, x) = xm (1 + xn)  
 
Proof: There are only two Steiner sets for mK + G.  
They are {u1, u2, .. um} of cardinality  m  and  
{u1, u2, ...um, v1, v2, . .vn} of cardinality m + n. 
 

∴  S  ( mK  + G, x ) =  xm  +  xm+n 

     = xm  (1 + xn)          
 
Theorem 2.11: S (Km 

0V


  Kn, x) = xm + n – 2 (1 + x) 

Proof:   Let V (Km) = {v0,v2, v3 ...vm}  
and   V (Kn)  =  {v0, vm + 2, vm + 3 , . . . vm + n} 
 
Since, every vertex of a complete graph is an extreme  
vertex,  s(Km)  =  m.  

Since, v0 is the cut vertex of  Km 
0v


 Kn , the minimum  

Steiner set is {v2, v3,...vm, vm + 2, vm + 3, ... vm + n} of  

          
Figure 6 
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cardinality m + n – 2. 
 
The other Steiner set is{v0, v2, v3, .....vm, vm +2,  
Vm + 3 ... Vm + n} of cardinality   m + n – 1. 

   ∴   S (Km  
0V


 Kn, x) = xm + n – 2 + xm + n – 1   

                                       =   xm + n – 2 (1 + x)                
 
3. STEINER POLYNOMIAL OF G ο K1 
 
Let G be any connected graph with vertex set {v1, v2, . . .vn}. Add n new vertices {u1, u2 . . . un} and join ui to vi for 
1  ≤  i  ≤  n, by the definition of corona of two graphs. We shall denote this graph by G ο K1. In this section, we 
calculate the polynomial, S (G οK1, x). Also, we show that s (G ο  K1, x) is unimodal. 
 
Lemma 3.1: For any connected graph G of order n, s (G ο K1, x) = n. 
 
Proof: Since, every end vertex of the graph G ο K1 is an element of Steiner sets of it, the minimum Steiner set is the 
set of all its end vertices.  
 
ie, W = {u1, u2,...un} is the minimum Steiner set. 
 
∴  s (G ο K1) = n.         
 
By Lemma 3.1, s (G ο K1, m) = 0  for m  < n, we calculate  s (G ο K1, m)   for  n  ≤  m  ≤ 2n. 
 

Theorem 3.2: For any graph G  of order  n  and for  n  ≤  m  ≤ 2n,  s (G ο K1 , m) =  
n

m  n−

 
 
 

. 

Hence, S (G ο K1, x) = xn (1 + x)n . 
 
Proof:   

 
Figure 10 

 
Suppose that W  is a Steiner set of  G ο K1 of cardinality m. 
 
When m = n,  the Steiner set with cardinality n is W =  {u1, u3, ...un}. 
 

∴   s (G ο K1, n)  = 1  =  
n

0

 
 
 

   = 
n

m  n−

 
 
 

 

 
When m = n + 1, the Steiner sets with cardinality  n + 1 are  
 
Wi  =  {u1, u2,...un}  ∪  {vi}  i  = 1,2,...n. 
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∴  s (G ο K1, n + 1) = 
n

1

 
 
 

   =  
n

m  n−

 
 
 

 

 
When m = n + 2, the Steiner sets with cardinality  n + 2 are  
 
Wl  = {u1, u2, . . . un}  ∪  {vi , vj} ,  1  ≤  i,  j  ≤  n,  i  ≠  j 

∴   s (G ο K1, n + 2) =  
n

2

 
 
 

   = 
n

m  n−

 
 
 

 

 
Continuing this way, the Steiner set with cardinality m = 2n is the whole set  
 
{u1, u2, . .  . un}  ∪  {v1,v2, ...vn} 

∴   s (G ο K1, 2n)   = 1 =  
n

n

 
 
 

   = 
n

m  n−

 
 
 

 

In general, we conclude that  

∴   S (G ο K1, m )  = 
n

m  n−

 
 
 

 

∴   The Steiner polynomial of  G υ K1 is 
 
S (G ο K1, x)   =   nC0 xn + nC1 xn + 1 + . . . . +  nCn  x2n  

  =   xn (1 +  nC1x  +  nC2 x
2 +  . . . +  nCn x

n) 

  =   xn  (1 + x)n            
            

Here we discuss about unimodality of the Steiner Polynomial of Gn ο K1 , where  Gn denotes a graph with n vertices.  
 
Let us denote Gn ο K1 by Gn

*. 
 
Theorem 3.3: For every n ∈ ,  
 
s (Gn* ,  n)  =   s (Gn*, 2n)  =  1. 
 
Proof: By theorem 3.2, s (Gn* , n)  =   nC0   =  1  and  s (Gn*, 2n)  =   nCn  =  1. 
Hence the theorem. 

 
Theorem 3.4 (Unimodal theorem for G ο K1): For every n∈  
(i)  1 = s (G*

3 n, 3n)  <  s (G*
3n, 3n + 1)  < . .  . < s (G*

3n, 4n – 1) <  s  (G*
3n, 4n) > . . . >   

s (G*
3n, 6n – 1)  >  s (G*

3n , 6n) = 1 
(ii)  1 = s (G*

3n + 1,  3n + 1)  <  s (G*
3n + 1,  3n + 2)  < . . . <  s (G*

3n + 1, 4n)   
< s (G*

3n + 1, 4n + 1)  >  s (G*
3n + 1, 4n + 2)  > . . . >   s (G*

3n + 1,  6n + 1)   
> s (G*

3n + 1, 6n + 2)  =  1 
 
(iii)  1 = s (G*

3n + 2 ,  3n + 2)  <  s (G*
3n + 2,  3n + 3)  < . . .< s (G*

3n+2, 4n + 2) < s (G3n + 2, 4n + 3)  
> s (G*

3n + 2,  4n + 4)  >. . . >   s (G*
3n + 2,  6n + 3)   

> s (G*
3n + 2 ,  6n + 4)  =  1 

 
Proof: 

(i) Obviously s (G*
3n, 3n) = 1 and s (G*

3n, 6n) =1.   
We shall prove that  s (G*

3n, i)  < s (G*
3n, i + 1)  for  3n ≤ i ≤ 4n – 1  and  s (G*

3n, i)  >  s (G*
3n  i + 1)  for   

4n ≤  i ≤  6n – 1.  
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Suppose that s ((G*
3n , i)  <  s (G*

3n,  i + 1),  by theorem 3.2, we have  
 

 
3n 3n

  <  
i  3n i  3n + 1− −

   
   
   

 

  
⇒   i < 4n – 1.   But i ≥ 3n   
 
Hence   3n ≤  i <  4n – 1. 
 
Similarly, we have s (G*

3n, i) >  s (G*
3n, i + 1) for   4n  ≤  i   ≤  6n – 1  

 
Proof of parts (ii) and (iii) are similar as part (i). 
 
4.  STEINER SETS OF PATHS 
 
Let Pn, n ∃ 2  be a path with  n  vertices  V (Pn)  =  {1, 2,  . . . n}  and  E (Pn) = {{1, 2}, {2, 3}, . . . {n – 1, n}}.   
 
Let S (Pn, i)   be the family of Steiner sets of Pn with cardinality i.  We investigate the Steiner sets of the path Pn. 
 
Lemma 4.1: The following properties hold for paths: 
(i) s (Pn)  =  2,    n  ≥ 2 
(ii) S (Pm, i)   = φ  iff   i  > m  or i  <  2 
 
Proof: 

(i)  In a path Pn, there are two end vertices.   The path Pn is the unique Steiner tree.  Hence the minimum Steiner set 
has 2 elements. 

 ∴  s (Pn) = 2 
(ii) If follows from part (i) and the definition of Steiner set. 

 
5.  STEINER POLYNOMIALS OF PATHS 
 
In this section, we introduce and investigate the Steiner polynomials of paths. 
 
Let  S (Pn, i)  be the family of Steiner sets of a path Pn with cardinality  i  and let s (Pn , i) =  | S (Pn , i) |.  Then the 
Steiner polynomial, S (Pn, x) of Pn is  

  S (Pn, x) = 
n

i  2=
Σ s (Pn , i) x

i. 

Theorem 5.1: Let S (Pn, i) be the family of Steiner sets of  Pn  with cardinality  i. 
 
Then    (i)   | S (Pn, i) | = | S (Pn – 1, i – 1) | +  | S (Pn – 1 , i) |  
 (ii)   S (Pn , x)   =  x S (Pn – 1 , x)  +  S (Pn – 1 , x) 

 (iii) For every n ≥ 2, S (Pn , x) =  x2 ( 1 +  x) n – 2 
 
Proof: Let V (Pn) = {v1, v2, . . . vn} 
Every Steiner set of Pn contains the end vertices v1 and vn. 
 
In this case the entire path is the Steiner tree. 
 
If we fix v1 and vn, we have to choose any i – 2 vertices from the remaining n – 2 vertices of  Pn , in order to get the 
Steiner sets of cardinality i. 
 
∴  Here, we have (n – 2) Ci – 2 Steiner sets of cardinality i. 
 
∴ | S (Pn , i) |  =  (n – 2) Ci – 2 
              
 | S (Pn – 1., i – 1) |  =  (n – 3) Ci – 3   and | S (Pn – 1 , i) |  =  (n – 3) Ci – 2 
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But,         (n – 2) Ci – 2 = (n – 3) Ci – 3 + (n – 3) Ci – 2  
 
Therefore, | S (Pn, i) | = | S (Pn – 1, i – 1) | + | S (Pn – 1 , i) |  
 
(ii) By (i), we have 
 
   | S (Pn, i) | = | S (Pn – 1 , i – 1) |  +  | S (Pn – 1 , i) |  
 
When i = 2, 
  | S (Pn , 2) |  =  | S (Pn – 1 , 1) |  +  | S (Pn – 1  , 2) |    

⇒     x2  | S (Pn  , 2)|  =  x2  | S (Pn – 1,  1) |  +  x2  | S (Pn – 1 ,  2)| 
 
when  i  =  3, 
             | S (Pn  , 3) |   =  | S (Pn – 1  , 2)|  + | S (Pn – 1  , 3) |  

             ⇒  x3 | S (Pn   , 3) | =  x3 | S (Pn – 1  , 2) |  + x3  | S (Pn – 1  , 3) | 
 
 
When i = 4, 
  | S (Pn , 4) |  =  | S (Pn – 1  , 3) |  +  | S (Pn – 1  , 4) |    

⇒   x4 | S (Pn   , 4) | =  x4 | S (Pn – 1  , 3) |  +  x4  | S (Pn – 1  , 4) |  
 . 
 . 
When   i =  n – 1, 
        | S (Pn, n – 1) |   =  | S (Pn – 1  , n – 2) |  +  | S (Pn – 1  , n – 1) |   

⇒  xn – 1 | S (Pn - 1  , n – 1) |  =  xn – 1 | S (Pn – 1  , n – 2) |  +  xn – 1 | S (Pn – 1  , n – 1) | 
 
When i = n 
  | S (Pn  , n) |  =  | S (Pn – 1  , n – 1) |  +  | S (Pn – 1  , n) |   

    ⇒     xn  | S (Pn, n)  =  xn | S (Pn – 1 , n – 1) |  +  xn | S (Pn – 1  , n) | 
 
Hence, 
 
x2 | S (Pn , 2) |  +  x3 | S (Pn  , 3) |  +  x4 | S (Pn  , 4) |  +  . . . +  xn – 1 | S (Pn  , n – 1)|  +  xn | S (Pn  , n) | 
                  =   [x2 | S (Pn – 1  , 1) |  +  x2 | S (Pn – 1  , 2) |  +  x4  | S (Pn – 1  , 3) |  + . . .  

+ xn – 1 | S (Pn – 1  , n – 2 )| +  xn | S (Pn – 1  , n – 1) |] +  [ x2 | S (Pn – 1  , 2) |   
+  x3 | S (Pn – 1  , 3) | + . . . + xn – 1  | S (Pn – 1  , n – 1) |  +  xn  | S (Pn – 1  , n) |] 

  
    =   x [x2 | S (Pn – 1  , 2) |  +  x3 | S (Pn – 1  , 3) | + . ..  + xn – 2 | S (Pn – 1  , n – 2) |  + xn – 1| S (Pn – 1  , n – 1) |]  

+ [ x2 | S (Pn – 1  , 2) | +  x3 | S (Pn – 1  , 3) |  + . . .  +  xn – 1 | S (Pn – 1  , n – 1) |] 
    [ | S (Pn – 1  , 1) |   =  | S (Pn – 1  , n) |  = 0] 

 
n

i 2=
Σ  | S (Pn, i) | x

i = x 
n 1

i 2

−

=
Σ | S (Pn – 1  , i) | x

i  + 
n 1

i  2

−

=
Σ | S (Pn – 1  , i) | x

i 

 

ie,          
n

i 2=
Σ s (Pn, i)  xi   =  x  

n 1

i 2

−

=
Σ s (Pn – 1, i) xi  + 

n 1

i 2

−

=
Σ s (Pn – 1, i)  xi 

                 
ie,   S (Pn, x)  =  x S (Pn – 1, x)  +  S (Pn – 1 , x ) 
 
(iii) We prove this by induction on n. 
 
When  n  =  2 
  
S (P2, x) = x2 
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∴  The result is true for  n = 2 
 
Assume that the result is true for all natural numbers less than n. 
 
ie,  S (Pn – 1, x)  =  x2 (1 + x) n – 3 
 
Now we prove the result for n 
 
       S (Pn, x) = x S (Pn – 1, x) + S (Pn – 1, x) 
           = x [x2 (1 + x)n – 3]  +  x2 (1 + x )n – 3] 
           = x2 (1 + x) n – 3 (x + 1) 
  = x2 (1 + x)n – 2 
 
∴  The result is true for all n.  
 
Using theorem 5.1, we get s (Pn, i) for 2 ≤ n ≤ 15 as shown in the Table 2. 
 

Table 2:  s (Pn, i) is the number of Steiner sets of Pn with cardinality i. 
 

i 
n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

2 0 1              
3 0 1 1             
4 0 1 2 1            
5 0 1 3 3 1           
6 0 1 4 6 4 1          
7 0 1 5 10 10 5 1         
8 0 1 6 15 20 15 6 1        
9 0 1 7 21 35 35 21 7 1       
10 0 1 8 28 56 70 56 28 8 1      
11 0 1 9 36 84 126 126 84 36 9 1     
12 0 1 10 45 120 210 252 210 120 45 10 1    
13 0 1 11 55 165 330 462 462 330 165 55 11 1   
14 0 1 12 66 220 495 702 924 792 495 220 66 12 1  
15 0 1 13 78 286 715 1287 1716 1716 1287 715 286 78 13 1 

 
Theorem 5.2: The following properties for the coefficients of S (Pn, x) hold: 
(i) s (Pn, 2)  =  1,     ∀ n  ≥ 2 
(ii) s (Pn, n)  =  1,     ∀ n ≥ 2 
(iii) s (Pn, n – 1)  =  n – 2,  ∀ n  ≥3 

(iv) s (Pn, n – 2) =  
(n 2)(n 3)

2

− −
   ,   ∀ n ≥ 4 

9v) s (Pn, n – 3) =  
(n 2)(n 3)(n 4)

6

− − −
 , ∀ n ≥ 5 

(vi) s (Pn, n  –  4) =  
(n 2)(n 3)(n 4)(n 5)

24

− − − −
,  ∀ n ≥ 6 

(vii) s (Pn, i)  = s (Pn, n – i + 2),   ∀  n ≥ 2 

(viii) If Sn   = 
n

i 2=
Σ s (Pn, i), then, for every n≥ 3, 

 Sn = 2 (Sn – 1) with initial value S2 = 1. 
 
(ix) Sn = Total number of Steiner sets in  Pn  =  2n – 2. 
 
Proof: 
(i) There is a unique Steiner set contains the end vertices of cardinality two in Pn. 
 
∴   s (Pn, 2) = 1,   for all n ≥2 
 
(ii) The whole vertex set {[n]} is also a Steiner set. 
∴   s (Pn, n) = 1, for all n ≥ 2 
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(iii) We prove by induction on n. 
 
The result is true for n = 3, since s (P3, 2) =  1 
 
Assume that the result is true for all natural numbers less than  n. 
 
Now, we prove it for n. 
 
By theorem 5.1 (i) and part (ii), we have, 

  s (Pn, n – 1)   =  s (Pn – 1, n – 2) + s (Pn – 1, n – 1) 
   = n - 3 + 1 
   = n – 2.  
 
∴  The result is true for all n. 
 
(iv)We prove by induction on n. 
 
The result is true for   n = 4, since s (P4, 2). = 1. 
 
Assume that the result is true for all natural numbers less than n.  Now, we prove it for  n.  By theorem 5.1 (i) and part 
(iii), we have 
 
 s (Pn, n – 2)   =  s (Pn – 1, n – 3)  +  s (Pn – 1, n – 2) 

   =   
(n 3)(n 4)

  +  (n  3)
2

− −
−  

   =  
(n 3)(n 4) + 2 (n  3)

2

− − −
 

   =  
(n 3)(n 4 2)

2

− − +
 

   =  
(n 2)(n 3)

2

− −
 

∴ The result is true for all n. 
 
(v) By induction on  n. 
 
The result is true for  n = 5,  since s (P5, 2)  =  1. 
 
Assume that the result is true for all natural numbers less than  n. 
 
Now we prove it for n. 
 
By theorem 5.1 (i) and part (iv), we have 
 

 s (Pn, n – 3)   =    s (Pn – 1, n – 4)  +  s (Pn – 1, n – 3) 

   =    
(n 3)(n 4) (n  5) (n 3)(n 4)

  +  
6 2

− − − − −
 

   =   
(n 3)(n 4) (n  5 + 3)

6

− − −
 

   =   
(n 2) (n 3) (n  4)

6

− − −
 

∴    The result is true for all n. 
 
(vi) By induction on n. 
 
 
The result is true for  n =  6,  since   s (P6, 2) = 1 
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Assume that the result is true for all natural numberless than  n. 
 
Now, we prove it for n. 
 
By theorem 5.1 (i) and part (v), we have 
 
    s (Pn, n – 4)  =  s (Pn – 1, n – 5)  +  s (Pn – 1, n – 4) 

   =  
(n 3)(n 4) (n  5) (n  6) (n 3)(n 4) (n  5)

  +  
24 6

− − − − − − −
 

   =  
(n 3)(n 4) (n  5) (n  6 + 4)

24

− − − −
 

=  
(n 2)(n 3) (n  4) (n  5)

24

− − − −
 

∴   The result is true for all n. 
 
(vii) By induction on n 
 
The result is true for n = 3, since s (P3, 2) = s (P3, 3) =  1 
 
Assume that the result is true for all natural number less than n. 
 
We now prove it for n. 
 
By theorem 5.1 (i), we have 
 
               s (Pn, i)  =  s (Pn – 1, i – 1)  +  s (Pn – 1, i) 
   =  s (Pn – 1, (n – 1) – (i – 1) + 2) + s (Pn – 1, (n – 1) – i + 2) 
   =  s (Pn – 1, n – i + 2)  +  s (Pn – 1) n – i + 1) 
   =  s (Pn, n – i + 2) 
 
∴   The result is true for all n. 

(viii) Sn = 
n

i 2=
Σ s (Pn, i) 

 
By theorem 5.1 (i), we have 

       Sn   =  
n

i 2=
Σ  [s (Pn – 1, i – 1)  +  S (Pn – 1, i) 

   =   
n 1

i 2

−

=
Σ  s (Pn – 1, i)  + 

n 1

i 2

−

=
Σ s (Pn – 1, i) 

   =   Sn – 1 + Sn – 1 
          Sn   =   2 Sn – 1. 
 
(ix) By induction on  n 
 
When n = 3, 
   S3 = 2 =  21  =  23 – 2 
 
∴   The result is true for n = 3 
 
Assume that the result is true for all natural  numbers less than  n. 
 
∴  Sn – 1 = 2n – 3 
 
Now,        Sn  =   2 Sn – 1 

 =   2 x 2n – 3 
 =   2n  –  2 
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∴  The result is true for all n 
 
Hence the theorem. 
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