International Journal of Mathematical Archive-3(3), 2012, Page: 1154-1161

STEINBERG MODULES IN QUANTUM GROUPS

P. B. SARASIJA*

Department of Mathematics, Noorul Islam Centre for Higher Education, Kumaracoil, Tamil Nadu, India E-mail: sijavk@gmail.com

(Received on: 06-03-12; Accepted on: 26-03-12)

ABSTRACT

In this paper the Verma modules $M_{\varepsilon}(\lambda)$ over the quantum group $U_{\varepsilon}(sl(n + 1), C)$, where ε is a primitive lth root of 1 and the socle of $M_{\varepsilon}(\lambda)$ is non-zero are studied. Using this concept we obtained the Steinberg module in Quantum Groups.

0. INTRODUCTION

Let $U_q(g)$ be the Drinfel'd – Jimbo quantum group associated to a symmetrizable Kac-Moody algebra g. Thus $U_q(g)$ is a Hopf Algebra the field C(q) of rational functions of an indeterminate q and is defined by certain generators and relations.

First constructing $A = C[q,q^{-1}]$ form $U_q(g)$, i.e., A – subalgebra $U_A(g)$ of $U_q(g)$ such that $U_q(g) = U_A(g) \otimes C(q)$. Then define $U_{\varepsilon}(g) = U_A(g) \otimes_A C$, via the algebra homomorphism A to C that takes q to ε , $\varepsilon^2 \neq 1$.

In the non-restricted form one takes $U_A(g)$ to be the A sub algebra of $U_q(g)$ generated by the Chevalley generators E_i , F_i , K_i of $U_q(g)$. The finite dimensional representation of the non-restricted $U_{\varepsilon}(g)$ have been studied by De Concini and Kac in [1].

In [1], De Concini and Kac defined the notion of Verma modules over U_q and U_{ε} (where ε is a primitive l^{th} root of 1, l is an odd integer) analogous to the classical Verma modules.

In [2] the Verma module $M_{\varepsilon}(\lambda)$ $U_{\varepsilon}(g)$, where g = sl(n + 1), and in particular prove that the socle of $M_{\varepsilon}(\lambda)$ over U_{ε} is nonzero. In this paper we obtain the Steinberg modules in quantum groups.

1. PRELIMINARIES

1.1. Let us fix some notations which are standard (see for example, [1]).

For a fixed $n \in N$, let $(a_{ij}) \ 1 \le i, j \le n$ be the cartan matrix of type A_n .

Let q be an indeterminate and let $A = C[q,q^{-1}]$ with the quotient field C(q).

For any integer $M \ge 0$, we define

$$[M] = \frac{q^{M} - q^{-M}}{q - q^{-1}} \in A, \quad [M]! = [M] [M - 1] \dots [1], \text{ and } \begin{bmatrix} M \\ j \end{bmatrix} = \frac{[M]!}{[j]! [M - j]!} \text{ and } \text{ for } j \in \mathbb{N}, \begin{bmatrix} M \\ 0 \end{bmatrix} = 1.$$

Let U_q be the C (q) algebra with 1, defined by the generators E_i , F_i , $K_i^{\pm 1}$ ($1 \le i \le n$) with the relations:

(a) $K_i K_i^{-1} = K_i^{-1} K_i = 1, K_i K_j = K_j K_i,$ (b) $K_i E_j K_i^{-1} = q^{aij} E_j, K_i F_j K_i^{-1} = q^{-aij} F_j,$ (c) $E_i F_j - F_j E_i = \delta_{ij} \frac{K_i - K_i^{-1}}{q - q^{-1}},$

Corresponding author: P. B. SARASIJA, *E-mail: sijavk@gmail.com

 $\begin{array}{l} (d) \ E_i E_i = E_i E_i \ , \ if \ a_{ii} = 0, \\ (e) \ E_i{}^2 E_i \ - \ (q + q^{-1}) E_i E_i E_i + E_i E_i{}^2 = 0, \ if \ a_{ii} = -1, \\ (f) \ F_i F_i = F_i F_i \ if \ a_{ij} = 0, \\ (g) \ F_i{}^2 F_i \ - \ (q + q^{-1}) F_i F_i F_i + F_i F_i{}^2 = 0, \ if \ a_{ii} = -1, \end{array}$

Then U_q is a Hopf algebra over C(q) which is called the quantum group associated to the matrix(a_{ij}), with comultiplication Δ , antipode S and counit v defined by

$$\begin{split} \Delta \mathbf{E}_{i} &= \mathbf{E}_{i} \otimes 1 + \mathbf{K}_{i} \otimes \mathbf{E}_{i}, \quad \Delta \mathbf{F}_{i} = \mathbf{F}_{i} \otimes \mathbf{K}_{i}^{-1} + 1 \otimes \mathbf{F}_{i}, \ \Delta \mathbf{K}_{i} = \mathbf{K}_{i} \otimes \mathbf{K}_{i}, \\ \mathbf{S}\mathbf{E}_{i} &= -\mathbf{K}_{i}^{-1}\mathbf{E}_{i}, \ \mathbf{S}\mathbf{F}_{i} = -\mathbf{F}_{i}\mathbf{K}_{i}, \ \mathbf{S}\mathbf{K}_{i} = \mathbf{K}_{i}^{-1} \\ \nu \mathbf{E}_{i} &= 0, \ \nu \mathbf{F}_{i} = 0, \ \nu \mathbf{K}_{i} = 1. \end{split}$$

Also introduce the elements

$$[K_i; n] = \frac{(K_i q^n - K_i^{-1} q^{-n})}{q - q^{-1}} \text{ in } U_q.$$

1.2 It is well known that one can introduce a root system associated to the matrix (a_{ij}) . We briefly describe the construction here. For details refer to [1, 5].

Let P be a free abelian group with basis ω_i , i = 1, 2, ..., n (P is usually called the lattice of weights). Let P⁺ denote the subgroup of non-negative integral combinations of ω_1 , ω_2 , ..., ω_n and any element of P⁺ is called a dominant weight. Define the following elements in P:

$$\rho = \sum_{i=1}^{n} \omega_i, \quad \alpha_j = \sum_{i=1}^{n} a_{ij} \omega_i \quad (j = 1,...,n)$$
$$Q = \sum_i Z \alpha_i, \qquad Q_+ = \sum_i Z_+ \alpha_i.$$

let

Define a bilinear pairing $P \times Q \rightarrow Z$ by (1.2.1) $(\omega_i \mid \alpha_i) = \delta_{ii}$.

Then $(\alpha_i \mid \alpha_i) = a_{ii}$, so that we get a symmetric Z-valued bilinear form on Q such that $(\alpha \mid \alpha) \in 2Z$.

Define automorphisms r_i of P by $ri \omega_i = \omega_i - \delta_{ij} \alpha_i$ (i,j = 1, 2, ..., n).

Then $r_i\alpha_i = \alpha_i - a_{ii}\alpha_i$. Let *W* be the (finite) subgroup of *GL*(*P*) generated by $r_1, r_2, ..., r_n$. Then *Q* is W-invariant and the pairing $P \times Q \rightarrow Z$ is W-invariant.

Let II = { $\alpha_1, \alpha_2, ..., \alpha_n$ }, R = W \prod and denote R $\cap Q_+$ by R⁺. Then R is a root system corresponding to the cartan matrix (a_{ij}) with Weyl group W and R⁺ the system of positive roots. Clearly ρ is half the sum of positive roots. We introduce a partial ordering of P by $\lambda \ge \mu$

if $\lambda - \mu \in Q_+$. Let w_0 be the unique element of W such that $w_0(R^+) = -R^+$.

1.3. Let U_A be the A-subalgebra of U_q generated by the elements E_i , F_i , $K_i^{\pm 1}$, [Ki;0] (i = 1,2, ..., n). Let U_A^+ (respectively U_A^-) be the A-subalgebra of U_A generated by the E_i (respectively Fi) and U_A^0 the subalgebra generated by the K_i and [Ki;0].

1.4 We shall show how to choose a canonical basis for U_a from the given set of generators (for details see [1, 5, 6]).

We note that we can define an anti-automorphism ω of U_q defined by

(1.4.1) $\mathcal{O} \mathbf{E}_{i} = \mathbf{F}_{i}, \quad \mathcal{O} \mathbf{F}_{i} = \mathbf{E}_{i}, \quad \mathcal{O} \mathbf{K}_{i} = \mathbf{K}_{i}^{-1}, \quad \mathcal{O} \mathbf{q} = \mathbf{q}^{-1}.$

P. B. SARASIJA*/ STEINBERG MODULES IN QUANTUM GROUPS/ IJMA- 3(3), Mar.-2012, Page: 1154-1161

For any *i*, $1 \le i \le n$, there is a unique algebra automorphism T_i of U_q such that

(1.4.2)
$$T_i E_i = -F_i K_i$$
, $T_j E_i = -E_j E_i + q^{-1} E_i E_j$ if $a_{ij} = -1$ and $T_j (E_i) = E_i$ if $a_{ij} = 0$

(1.4.3)
$$T_iF_i = -K_i^{-1}E_i, \quad T_jF_i = -F_jF_i + qF_iF_j \text{ if } a_{ij} = -1 \text{ and } T_j(F_i) = F_i \text{ if } a_{ij} = 0$$

(1.4.4)
$$T_i K_j = K_j K_i^{-aij} \quad T_i \omega = \omega T_i$$

Let $w \in W$ and let $\mathcal{V}_{i_1}, \dots, \mathcal{V}_{i_k}$ be a reduced expression of w. Then the automorphism $T_w = \text{Ti}_1 \dots \text{Ti}_k$ of U_q is independent of the choice of the reduced expression of w.

Fix a reduced expression $ri_1, ri_2, ..., ri_N$ of the longest element of W, where $N = /R^+ / .$ Then this gives us an enumeration of the elements of R^+

$$\beta_1 = \alpha i_{1,} \beta_2 = \boldsymbol{r}_{i_1} \alpha i_{2,} \dots, \beta_N = \boldsymbol{r}_{i_1} \boldsymbol{\dots} \boldsymbol{r}_{i_{N-1}} \alpha i_N$$

We define the roots vectors:

 $E_{\beta s} = T_{i1} T_{i2} \dots T_{is-1} E_{is}, \quad F_{\beta s} = T_{i1} T_{i2} \dots T_{is-1} F_{is} \quad \text{which is the same as } \mathcal{O} E_{\beta s}.$

For $j = (j_1, j_2, ..., j_N) \in Z_+^N$ let he elements $F^j K_j^{m_1} ... K_n^{m_n} E^r$ where $j, r \in Z_+^N, (m_1, ..., m_n) \in Z^n$ form a basis of U_q over C (q).

1.5 Given $\varepsilon \in \mathbb{C}^*$, we now consider the specialization $U_{\varepsilon} = U_A / [(q-\varepsilon)U_A]$. We take ε in such way that $\varepsilon^2 \neq 1$.

Then U_{ε} is an algebra over C with generators E_i , F_i , $K_i^{\pm 1}$ ($1 \le i \le n$) (identifying these vectors with their images), and defining relations,

(a')
$$K_i K_i^{-1} = K_i^{-1} K_i = 1, K_i K_j = K_j K_i,$$

(b')
$$K_i E_j K_i^{-1} = \varepsilon^{aij} E_j, K_i F_j K_i^{-1} = \varepsilon^{-aij} F_j,$$

(c')
$$E_iF_j - F_jE_i = \delta_{ij} \frac{K_i - K_i^{-1}}{\varepsilon - \varepsilon^{-1}}$$

- (d') $E_i^2 E_j (\epsilon + \epsilon^{-1}) E_i E_j E_i + E_j E_i^2 = 0$, if $a_{ij} = -1$
- (e') $F_i^2 F_j (\epsilon + \epsilon^{-1}) F_i F_j F_i + F_j F_i^2 = 0$, if $a_{ij} = -1$,
- (f') $E_iE_j = E_jE_i$, if $a_{ij} = 0$, $F_iF_j = F_jF_i$ if $a_{ij} = 0$.

1.6 We denote by U_{ε}^{+} , U_{ε}^{-} , U_{ε}^{0} the images of U_{A}^{+} , U_{A}^{-} , and U_{A}^{0} in U_{ε} . The automorphism T_{i} of U_{q} defined in (1.4) clearly induces an automorphism T_{i} of U_{ε} . The vectors E^{j} , F^{j} of U_{q} defined in (1.4.5) can then be taken to represent their images in U_{ε} . Then the elements E^{j} , $j \in Z_{+}^{N}$ form a basis of U_{ε}^{+} over C, and the elements $F^{j}K_{j}^{m_{1}}\dots K_{n}^{m_{n}}E^{r}$ where j, $r \in Z_{+}^{N}$, $(m_{1},\dots,m_{n}) \in Z^{n}$ form a basis of U_{ε} over C.

2. VERMA MODULES

2.1. The notion of Verma modules over U_q and U_{ε} was introduced by De Concini and Kac in [1, 6]. In the rest of the paper, we shall be concerned only with Verma modules over U_{ε} , where ε is a primitive *l*th root of unity.

We recapitulate the definition below:

For each $\lambda \in P$ the Verma module $M_{\epsilon}(\lambda)$ over U_{ϵ} is the vector space $M_{\epsilon}(\lambda)$ in which there exists a non-zero distinguished vector v_{λ} such that $U_{\epsilon}^{+}v_{\lambda} = 0$, $K v_{\lambda} = \epsilon^{(\lambda|\alpha)}v_{\lambda}$, $K \in U_{\epsilon}^{0}$ where (|) is the pairing from $P \times W \to Z$ defined in (1.2) and $\{F^{j}v_{\lambda}(j \in Z_{+}^{N})\}$ is a basis of $M_{\epsilon}(\lambda)$. Let $L_{\epsilon}(\lambda)$ denote the unique irreducible quotient of $M_{\epsilon}(\lambda)$ by its unique maximal submodule.

Then we have

Also for each h = 1, 2, ..., N, $F_h v_{\lambda}$ is a weight vector of weight $\lambda - \alpha_h$ as easily seen below.

$$K F_{h} v_{\lambda} = \mathcal{E}^{-(\alpha | \alpha_{h})} F_{h} K v_{\lambda}$$

= $\mathcal{E}^{-(\alpha | \alpha_{h})} \mathcal{E}^{(\lambda | \alpha)} F_{h} v_{\lambda}$ (since $(\alpha_{h} | \alpha) = (\alpha | \alpha_{h})$)
= $\mathcal{E}^{-(\lambda - \alpha_{h} | \alpha)} F_{h} v_{\lambda}$...

(2.1.2) This shows that for any $r \in \mathbb{Z}_+$, $\mathbb{F}_h^r v_\lambda$ is a weight vector of weight $\lambda - r\alpha_h$ and therefore each $\mathbb{F}^j v_\lambda \ (= F_i^{j_1} \dots F_N^{j_N} v_\lambda)$ is a weight vector of weight $\lambda - \sum_{h=1}^N j_h \alpha_h$.

2 .2 VERMA MODULES OVER SOME SUBALGEBRAS OF UE.

We first define the subalgebras U_r , $U_r^{\,\scriptscriptstyle +}$, $U_r^{\,\scriptscriptstyle -}$, of U_ϵ generated b

$$\left\{ F^{j}, \prod_{i=1}^{n} K_{i}^{m_{i}}, E^{r}, 0 < j_{i}, r_{i} < l^{r}, (m_{1}...m_{n}) \in \mathbb{Z}^{n} \right\}, \left\{ E^{r}, \prod_{i=1}^{n} K_{i}^{m_{i}}, 0 < r_{i} < l^{r}, (m_{1}...m_{n}) \in \mathbb{Z}^{n} \right\}, \left\{ F^{j}, 0 \leq j_{i} < l^{r} \right\} \text{ respectively.}$$

The set

(2.2.1)
$$\{F_1^{j_1} \dots F_N^{j_N} K_1^{m_1} \dots K_n^{m_n} E_1^{r_1} \dots E_N^{r_N}, 0 \le j_i, r_i, < l^r, (m_1, \dots, m_n) \in \mathbb{Z}^n\}$$
 is a basis of U_r and the set
(2.2.1) $\{F_1^{j_1} \dots F_N^{j_N}, 0 \le j_i < l^r\}$ is a basis of U_r .

We can then define the Verma modules $M_{\epsilon,r}(\lambda)$ of weight λ over U_r analogously to $M_{\epsilon}(\lambda)$ over U_{ϵ} , that is, there exists a non-zero vector (say) $\hat{\nu}_{\lambda}$ such that $U_r^+ \hat{\nu}_{\lambda} = 0$, $K \hat{\nu}_{\lambda} = \epsilon^{(\lambda \mid \alpha)} \hat{\nu}_{\lambda}$ for $K \in U_r^0$ and $\{F^j \hat{\nu}_{\lambda}, 0 \le j_i < l^r\}$ form a basis of $M_{\epsilon,r}(\lambda)$.

There is a natural injective homomorphism $f_r: M_{\epsilon,r}(\lambda) \longrightarrow M_{\epsilon}(\lambda)$ given by

(2.2.3)
$$f_{\rm r}(\mathbf{F}^{\rm j} \ \widehat{\boldsymbol{v}}_{\lambda}) = \mathbf{F}^{\rm j} \boldsymbol{v}_{\lambda}$$

2.3 We next introduce certain elements defined by I_r of U_r^- , which play an important role in our future study of the socles of Verma modules and homomorphisms between Verma modules.

For each positive integer r, let $I_r = F_1^{l^r-1} \dots F_N^{l^{r-1}}$ which is an element of U_r . It then follows that $I_r v_{\lambda}$ is a weight vector of $U_r v_{\lambda}$ of weight $\lambda - 2(l-1)\rho$, where ρ is half the sum of the positive roots. In fact,

(2.3.1)
$$KI_{r}v_{\lambda} = K F_{1}^{l^{r}-1} \dots F_{N}^{l^{r-1}} v_{\lambda}$$

$$= \mathcal{E}^{(\lambda - (l^{r}-1)\alpha_{1} + \dots + \alpha_{N} | \alpha)} F_{1}^{l^{r}-1} \dots F_{N}^{l^{r-1}} v_{\lambda} \text{ from (2.1.2)}$$

$$= \mathcal{E}^{(\lambda - 2(l^{r}-1)\rho | \alpha)} F_{1}^{l^{r}-1} \dots F_{N}^{l^{r-1}} v_{\lambda}$$

$$= \mathcal{E}^{(\lambda + 2\rho | \alpha)} F_{1}^{l^{r}-1} \dots F_{N}^{l^{r-1}} v_{\lambda} \quad \text{[since } \mathcal{E}^{l^{r}} = 1]$$

$$= \mathcal{E}^{(\lambda - 2l\rho + 2\rho | \alpha)} F_{1}^{l^{r}-1} \dots F_{N}^{l^{r-1}} v_{\lambda}$$

$$= \mathcal{E}^{(\lambda - 2(l-1)\rho | \alpha)} F_{1}^{l^{r}-1} \dots F_{N}^{l^{r-1}} v_{\lambda}$$

In particular, when $\lambda = 0$, we see that $I_r \hat{v}_0$ is a weight vector of $M_{\varepsilon,r}(0)$ with minimal weight $-2(l-1)\rho$.

We observe for later use that I_r is an integral of U_r^- . In fact, for $\alpha \in R^+$ and $a \in N$ such that $0 < a < l^r$, $R_{\alpha}^a I_r$ and $I_r F_{\alpha}^a$ are in U_r^- . Hence $F_{\alpha}^a I_r \hat{V}_0$ and $I_r F_{\alpha}^a \hat{V}_0$ are weight vectors of $M_{\varepsilon,r}(0)$ with weight $-2(l-1)\rho$ -a α . By the minimality of the weight $-2(l-1)\rho$, it follows that $F_{\alpha}^a I_r = I_r F_{\alpha}^a = 0$. This shows that I_r is an integral of U_r^- , in other works $uI_r = V(u)I_r$ for all $u \in U_r^-$, where $V: U_r^- \longrightarrow C$ is the augmentation function.

2.4 A HOMOMORPHISM BETWEEN TWO VERMA MODULES

 $M_{\epsilon}(\lambda)$, $M_{\epsilon}(\mu)$ is a map ϕ : $M_{\epsilon}(\lambda) \longrightarrow M_{\epsilon}(\mu)$ such that ϕ is a vector space homomorphism and $\phi(uu) = u\phi(v)$, $u \in U_{\epsilon}$, $v \in M_{\epsilon}(\lambda)$.

Lemma 2.4.1: If $M_{\varepsilon}(\lambda), M_{\varepsilon}(\mu)$ are Verma modules over the quantum grou U_{ε} , and there is an injective U_{ε} module homomorphism ϕ : $M_{\varepsilon}(\lambda) \longrightarrow M_{\varepsilon}(\mu)$, then $\lambda = \mu$ and ϕ is multiplication by some element of C.

Proof: Let v_{λ} , v_{μ} be non-zero highest weight vectors of $M_{\epsilon}(\lambda), M_{\epsilon}(\mu)$ respectively. Since v_{λ} generates $M_{\epsilon}(\lambda), \psi$ is determined by $\psi(v_{\lambda})$. Say $\psi(v_{\lambda}) = uv_{\mu}, u \in U_{\epsilon}^{-}$. Now by definition, U_{ϵ}^{-} is the union of the subalgebras U_{r}^{-} for r = 1, 2, ... and so there is some r for which $u \in U_{r}^{-}$. Since I_{r} is an integral for U_{r}^{-} ,

$$V(u) I_r v_{\mu} = I_r u v_{\mu} = I_r \psi(v_{\lambda}) = \phi(I_r v_{\lambda})$$

where $V : U_r^- \longrightarrow C$ is the augmentation function and $I_r v_\lambda$ is an element of the basis for $M_{\varepsilon}(\lambda)$, so is non-zero, and therefore $V(u) \neq 0$. But $\psi(v_\lambda)$ must have weight λ , so uv_μ has weight λ , which contradicts $V(u) \neq 0$ unless $\lambda = \mu$.

Since v_{μ} spans the μ -weight space of $M_{\epsilon}(\mu), \psi(v_{\lambda}) = cv_{\mu} = cv_{\lambda}$ for some $c \in C$, and ϕ is just multiplication by c.

3. SOCLE OF VERMA MODULES

Denote the socle of the U_{ε} module $M_{\varepsilon}(\lambda)$ by Soc($M_{\varepsilon}(\lambda)$) and the socle of the U_{r} module $M_{\varepsilon,r}(\lambda)$ by Soc($M_{\varepsilon,r}(\lambda)$).[3].

Since for any r > 0, $M_{\epsilon,r}(\lambda)$ is finite dimensional, clearly $Soc(M_{\epsilon,r}(\lambda)) \neq 0$. It is interesting to note that even for the infinite dimensional module $M_{\epsilon}(\lambda)$, its socle is non-zero. We proceed to prove this in this section.

Lemma 3.1: If $0 \neq u \in U_r^-$ for some $r \in N$, then $U_r u$ contains CI_r .

Proof: We shall order the positive roots $\alpha(l)$, $\alpha(2)$... $\alpha(N)$ in such a way that if

$$\alpha(i) + \alpha(j) = \alpha(k)$$
 then $k < i, j$.

If $0 < a < l^{r}$ then clearly

$$F_{\alpha(1)}^{l^{r}-1}F_{\alpha(1)}^{a} = F_{\alpha(1)}^{l^{r}-1+a} = 0.$$

We shall prove by induction on i, with $1 \le i \le N$, that $F_{\alpha(1)}^{l^r-1} \dots F_{\alpha(i)}^{l^r-1} F_{\alpha}^a = 0$

whenever $\alpha \in \{\alpha(1), ..., \alpha(i)\}$ and $0 < a < l^{r}$.

Suppose there exists some i, $2 \le i \le N$, such that

(3.1.1)
$$F_{\alpha(1)}^{l^{r-1}}F_{\alpha(2)}^{l^{r-1}}...F_{\alpha(i-1)}^{l^{r-1}}F_{\alpha}^{a} = 0$$
, whenever $\alpha \in \{\alpha(1)..., \alpha(i-1)\}$ and $0 < a < l^{r}$.

Now, suppose that there is some $\alpha \in \{\alpha(1), \alpha(2), ..., \alpha(i)\}$ and choose *a* such that $0 < a < l^r$.

If
$$\alpha = \alpha(i)$$
, then $F_{\alpha(i)}^{l^r-1}F_{\alpha}^a = 0$, and so
 $F_{\alpha(1)}^{l^r-1}F_{\alpha(2)}^{l^{r-1}}...F_{\alpha(i)}^{l^r-1}F_{\alpha}^a = 0$.

If $\alpha \neq \alpha(i)$, then using the commutation relations imply that

$$F_{\alpha(1)}^{l^{r-1}}F_{\alpha(2)}^{l^{r-1}}...F_{\alpha(i)}^{l^{r-1}}F_{\alpha}^{a}$$

is a sum of elements of the form

$$F_{lpha(1)}^{l^{r-1}}F_{lpha(2)}^{l^{r-1}}...F_{lpha(i-1)}^{l^{r}-1}F_{eta}^{b}$$
 u

with $\beta \in \{\alpha(1), ..., \alpha(i-1)\} 0 < b < l^{t}$, $u \in U_{\varepsilon}$ and each element of this form equals 0 by (3.1.1). So (3.1.1) holds for all i.

Using this equation together with the commutation relations if $1 \le i \le N$ and $0 < a < l^r$, then

(3.1.2)
$$F_{\alpha(1)}^{l^{r-1}}F_{\alpha(2)}^{l^{r-1}}...F_{\alpha(i-1)}^{l^{r-1}}F_{\alpha(i)}^{a} - \varepsilon^{-1(i-1)(l^{r-1})}F_{\alpha(1)}^{l^{r-1}}F_{\alpha(2)}^{l^{r-1}}...F_{\alpha(i-1)}^{l^{r-1}} = 0$$

and so if $1 \le i \le N$ and $0 < a, b < l^r$ then

$$F_{\alpha(i)}^{a} F_{\alpha(1)}^{l^{r}-1} F_{\alpha(2)}^{l^{r-1}} ... F_{\alpha(i-1)}^{l^{r}-1} F_{\alpha(i)}^{b}$$

= $\varepsilon^{-1(i-1)(l^{r}-1)} F_{\alpha(1)}^{l^{r}-1} F_{\alpha(2)}^{l^{r-1}} ... F_{\alpha(i-1)}^{l^{r}-1} F_{\alpha(i)}^{a+b}$
= 0 if $\mathbf{a} + \mathbf{b} \ge l^{r}$.

Suppose u is a non-zero element of U_r^- . Then by the basis of U_r^- the element u *is* of the form $F_{\alpha(1)}^{\alpha(1)}F_{\alpha(2)}^{\alpha(2)}$... $F_{\alpha(N)}^{\alpha(N)}$ with $0 \le a(1), \ldots, a(N) < l^r$

By repeated use of (3.1.2) $CF_{\alpha(N)}^{l^r-1-\alpha(N)} \dots F_{\alpha(1)}^{l^r-1-\alpha(1)} u = CF_{\alpha(N)}^{l^r-1} \dots F_{\alpha(1)}^{l^r-1} = C I_r$ as required.

Corollary 3.2: Let r be a positive integer. $I_{r+1} \in U_{\epsilon}I_{r}$.

Proof: Lemma 3.1 implies that $CI_{r+1} \subseteq U_{r+1}I_r$, so $I_{r+1} \in U_{r+1}I_r \subseteq U_{\epsilon}I_r$.

Corollary 3.3:

- (i) If M is a non-zero U_r submodule of $M_{\epsilon,r}(\lambda)$ and $\hat{v}_{\lambda} \in M_{\epsilon,r}(\lambda)$, then $I_r \hat{v}_{\lambda} \in M$.
- (ii) If M is a non-zero U_{ε} submodule of M_{ε}(λ) and $v_{\lambda} \in M_{\varepsilon}(\lambda)$, then I_rv_{$\lambda \in M$} for all r.

Proof:

- (i) By the basis of $M_{\varepsilon,r}(\lambda)$, M contains some vector $u \hat{v}_{\lambda}$ with $u \in U_r^-$. By Lemma 3.1, $I_r \hat{v}_{\lambda} \in CI_r \hat{v}_{\lambda} \subseteq U_r u \hat{v}_{\lambda} \subseteq M$.
- (ii) By the basis of $M_{\epsilon}(\lambda)$, M contains some vector uv_{λ} with $u \in U_{\epsilon}^{-}$, hence $u \in U_{r}^{-}$ for some r. By Lemma 3.1, $I_{r}v_{\lambda} \in CI_{r}v_{\lambda} \subseteq U_{\epsilon}uv_{\lambda} \subseteq M$.

Corollary 3.4: Soc($M_{\epsilon,r}(\lambda)$) is simple.

Proof: Soc($M_{\varepsilon,r}(\lambda)$) is a non-zero U_r submodule of $M_{\varepsilon,r}(\lambda)$ and by Corollary 3.3 (i) the submodule $U_r I_r \hat{v}_{\lambda}$ is contained in every simple component of Soc($M_{\varepsilon,r}(\lambda)$) and hence Soc($M_{\varepsilon,r}(\lambda)$) itself is simple.

Lemma 3.5: Let $\lambda \in P^+$, the set of dominant weights. Then for all r > 0, the highest weight of Soc $(M_{\epsilon,r}(\lambda))$ is $w_0(\lambda - 2(1 - 1)\rho)$ and hence is independent of r.

Proof: From (2.3.1), the lowest weight of $M_{\epsilon,r}(\lambda)$ is $\lambda - 2(l - 1)\rho$ for all r > 0. From Corollary 3.3(i), we have seen that any non-zero submodule of $M_{\epsilon,r}(\lambda)$ contains $I_r \hat{v}_{\lambda}$. Hence Soc $(M_{\epsilon,r}(\lambda))$ contains $I_r \hat{v}_{\lambda}$ whose weight is $\lambda - 2(l-1)\rho$.

Therefore the lowest weight of $Soc(M_{\varepsilon,r}(\lambda))$ is $\lambda - 2(l-1)\rho$ for all r > 0 and hence the highest weight of $Soc(M_{\varepsilon,r}(\lambda))$ is $w_0(\lambda - 2(l-1)\rho) = w_0(\lambda + 2\rho)$, which is independent of r. Hence the result.

P. B. SARASIJA*/ STEINBERG MODULES IN QUANTUM GROUPS/ IJMA- 3(3), Mar.-2012, Page: 1154-1161

Corollary 3.6: Soc($M_{\epsilon,r}(\lambda)$) is isomorphics to $L_{\epsilon,r}(w_0(\lambda - 2(1 - 1)\rho))$ for all r > 0.

Proof: From the corollary 3. 4 and the lemma 3.5 we get $Soc(M_{\epsilon,r}(\lambda))$ is simple and the highest weight is $w_0(\lambda - 2(l - 1)\rho)$. But $\lambda - 2(l - 1)\rho$ is a weight of $L_{\epsilon,r}(w_0(\lambda - 2(l - 1)\rho))$ and hence this simple U_r module is isomorphic to the U_r module $Soc(M_{\epsilon,r}(\lambda))$, for all r > 0.

We shall proceed to prove our main result concerning the socle of the Verma modules.

Theorem 3.7: Soc $(M_{\varepsilon}(\lambda))$ is non-zero for all $\lambda \in P^+$.

Proof: Let v_{λ} , \hat{v}_{λ} be non-zero highest weight vectors of the Verma module $M_{\varepsilon}(\lambda)$ over U_{ε} , and $M_{\varepsilon,r}(\lambda)$ over U_{r} respectively. Let M be an arbitrary non-zero U_{ε} submodule of $M_{\varepsilon}(\lambda)$. Then by Corollary 3.3(ii), $I_{r}\hat{v}_{\lambda} \in U_{r}u\hat{v}_{\lambda} \subseteq M$

for all r and hence $U_{\varepsilon}I_{r}v_{\lambda} \subseteq M$. Now, let I denote the submodule $\bigcap_{r>0} U_{\varepsilon}I_{r}v_{\lambda}$ of $M_{\varepsilon}(\lambda)$.

Replacing M by each simple component of $Soc(M_{\varepsilon}(\lambda))$, it immediately follows that $Soc(M_{\varepsilon}(\lambda)) \supseteq I$.

We proceed to prove that $I \neq (0)$. Since $M_{\epsilon,r}(\lambda)$ is finite dimensional, $Soc(M_{\epsilon,r}(\lambda)) \neq 0$. By Corollary 3.3(i), $Soc(M_{\epsilon,r}(\lambda))$ is simple and we can take $Soc(M_{\epsilon,r}(\lambda))$ to be isomorphic to the simple U_r module $L_{\epsilon,r}(\mu)$ (where μ is $w_0(\lambda - 2(1 - 1)\rho)$). Also by Corollary 3.3(i), $Soc(M_{\epsilon,r}(\lambda))$ contains $I_r \hat{v}_{\lambda}$. Therefore there is some x_r in U_r such that $x_r I_r \hat{v}_{\lambda}$ is in the highest weight space of $Soc(M_{\epsilon,r}(\lambda))$).

In other words, $x_r \ I_r \ \hat{v}_{\lambda} \in (M_{\epsilon,r}(\lambda))^{\mu}$, the μ th weight space of $M_{\epsilon,r}(\lambda)$. Now let f_r be the injective U_r module homomorphism from $M_{\epsilon,r}(\lambda)$ to $M_{\epsilon}(\lambda)$ described in (3.2.3), then $f_r(\ \hat{v}_{\lambda}) = v_{\lambda}$.

So,
$$x_r I_r v_{\lambda} = f_r (xr I_r v_{\lambda}) \in (M_{\varepsilon}(\lambda))^{\mu}$$
.

This shows that for each r, $U_{\epsilon}I_{r}v_{\lambda} \cap (M_{\epsilon}(\lambda))^{\mu} \neq (0)$ and is a finite dimensional C-vector space (since $(M_{\epsilon}(\lambda))^{\mu}$ is finite dimensional).

From Corollary (3.2), we have the descending chain of submodules

$$U_{\epsilon}I_{1}v_{\lambda}\cap \left(M_{\epsilon}(\lambda)\right)^{\mu} \supseteq U_{\epsilon}I_{2}v_{\lambda}\cap \left(M_{\epsilon}(\lambda)\right)^{\mu} \supseteq \ldots$$

Hence its intersection which is just $I \cap M_{\varepsilon}(\lambda)^{\mu}$ is non-zero which implies that $I \neq 0$. Since $Soc(M_{\varepsilon}(\lambda)) \supseteq I \neq 0$, it follows that $Soc(M_{\varepsilon}(\lambda)) \neq 0$.

Hence the theorem.

Theorem 3.8: Soc $(M_{\varepsilon}(\lambda))$ is simple and isomorphic to the simple U_{ε} - module $L_{\varepsilon}(w_0(\lambda - 2(1 - 1)\rho)) = L_{\varepsilon}(w_0(\lambda + 2\rho))$.

Proof: From the above theorem we get Soc ($M_{\varepsilon}(\lambda)$) is a non zero U_{ε} - module of $M_{\varepsilon}(\lambda)$ and by the corollary (3.3.) (ii) the submodule $U_{\varepsilon}I_{r}v_{\lambda}$ is contained in every simple component of Soc($M_{\varepsilon}(\lambda)$) and hence Soc($M_{\varepsilon}(\lambda)$) itself is simple.

Since Soc(M_{ε}(λ)) contains I_rv_{λ} whose weight is λ -2(l – 1) ρ , the lowest weight of Soc(M_{ε}(λ)) is λ -2(l-1) ρ and the highest weight of Soc(M_{ε}(λ)) is w₀(λ - 2(l - 1) ρ).

But $\lambda - 2(l-1)\rho$ is a weight of $L_{\varepsilon}(w_0(\lambda - 2(l-1)\rho) = L_{\varepsilon}(w_0(\lambda + 2\rho))$ and hence this simple U_{ε} -module is isomorphic to the U_{ε} module socle of $M_{\varepsilon}(\lambda)$.

4. STEINBERG MODULE IN QUANTUM GROUPS

One can naturally expect to define a Steinberg module in Quantum groups. [6]

We let $M_{\epsilon}(\lambda)$, $M_{\epsilon}(\mu)$, $M_{\epsilon,r}(\lambda)$ to denote the Verma modules over U_{ϵ} and $L_{\epsilon}(\lambda)$, $L_{\epsilon,r}(\lambda)$ the corresponding (unique) simple factor modules. From the corollary 3.6 we get

(4.1.1)
$$\operatorname{Soc}(M_{\epsilon,r}(\lambda)) \cong L_{\epsilon,r}(w_0(\lambda+2\rho))$$

Now we take $\lambda = (l - 1) \rho$ which is in P⁺.

Then (4.1.1) implies that

$$\begin{aligned} \operatorname{Soc}(\operatorname{M}_{\varepsilon,r}((l-1)\rho)) &\cong \operatorname{L}_{\varepsilon,r}(\operatorname{w}_0((l-1)\rho+2\rho)) \\ &= \operatorname{L}_{\varepsilon,r}(\operatorname{w}_0(l\rho+\rho)) \\ &= \operatorname{L}_{\varepsilon,r}((l-1)\rho) \quad (\text{ since } \varepsilon^{-\rho} = \varepsilon^{(l-1)\rho}) \text{ for all } r > 0. \end{aligned}$$

There is some non zero vector v in SocM _{ε .r}($(l-1)\rho$) with weight $(l-1)\rho$.

But $M_{\varepsilon,r}((l-1)\rho)_{(l-1)\rho} = Cv_{\lambda}$. So $v_{\lambda} \in SocM_{\varepsilon,r}((l-1)\rho)$ and v_{λ} generates $M_{\varepsilon,r}((l-1)\rho)$.

Hence M _{$\varepsilon,r}((l-1)\rho) = \text{SocM}_{\varepsilon,r}((l-1)\rho) \cong L_{\varepsilon,r}((l-1)\rho)$ for all $r \in N$.</sub>

We call this the Steinberg module St_r , which is of dimension l^{rN} , where $N = |R^+|$. At the same time, we know that there exists a natural injective U_r – homomorphism,

 $f_r: M_{\varepsilon,r}((l-1)\rho) \rightarrow M_{\varepsilon}((l-1)\rho)$ [From (2.2.3)]

Hence we conclude that

$$\begin{aligned} \text{St}_{\text{r}} &= \text{M}_{\varepsilon,\text{r}}((l-1)\,\rho) &= \text{Soc } \text{M}_{\varepsilon,\text{r}}((l-1)\,\rho) &\subset \text{Soc } \text{M}_{\varepsilon,\text{r}}((l-1)\,\rho) \\ &\cong L_{\varepsilon}\left((l-1)\,\rho\right) & \text{[From theorem 3.8]} \end{aligned}$$

We call L $_{\varepsilon}$ ((l - 1) ρ) the Universal Steinberg module.

REFERENCES

[1] De Concini and V.G. Kac, 'Representations of quantum groups at roof of 1', in Operator algebras, unitary representations, enveloping algebras and invariant theory, Progr. Math. (Paris 1989) 92 (Birkhauser Boston, Boston), pp. 471-506.

[2] V. G. Drinfield, 'Quantum group', Proc. ICM, Berkely (1986), 798-820.

[3] A. V. Jeyakumar and P. B.Sarasija, Socles of verma modules in quantum groups, Bull. of the Australian Mathematical society, vol.47,No.2, (1993).221-232.

[4] G. Lusztig, 'Modular representations and quantum groups', Contemp.Math. 82 1989), 58-77.

[5] G. Lusztig, 'Finite dimensional Hopf algebras arising from quantum groups', Amer. Math. Soc. 3 (1990), 259-296.

[6] G. Lusztig, 'Quantum group at root of 1', Geom. Dedicata (1990)
