STEINBERG MODULES IN QUANTUM GROUPS

P. B. SARASIJA*
Department of Mathematics, Noorul Islam Centre for Higher Education, Kumaracoil, Tamil Nadu, India E-mail: sijavk@gmail.com

(Received on: 06-03-12; Accepted on: 26-03-12)

Abstract

In this paper the Verma modules $M_{\varepsilon}(\lambda)$ over the quantum group $U_{\varepsilon}(s l(n+1), C)$, where ε is a primitive lth root of 1 and the socle of $M_{\varepsilon}(\lambda)$ is non-zero are studied. Using this concept we obtained the Steinberg module in Quantum Groups.

0. INTRODUCTION

Let $U_{q}(\mathrm{~g})$ be the Drinfel'd - Jimbo quantum group associated to a symmetrizable Kac- Moody algebra g . Thus $U_{q}(\mathrm{~g})$ is a Hopf Algebra the field $\mathrm{C}(\mathrm{q})$ of rational functions of an indeterminate q and is defined by certain generators and relations.

First constructing $\mathrm{A}=\mathrm{C}\left[\mathrm{q}, \mathrm{q}^{-1}\right]$ form $U_{q}(\mathrm{~g})$, i.e., A - subalgebra $\mathrm{U}_{\mathrm{A}}(\mathrm{g})$ of $U_{q}(\mathrm{~g})$ such that $U_{q}(\mathrm{~g})=\mathrm{U}_{\mathrm{A}}(\mathrm{g}) \otimes \mathrm{C}(\mathrm{q})$. Then define $\left.U_{\varepsilon}(\mathrm{g})=\mathrm{U}_{\mathrm{A}}(\mathrm{g})\right) \otimes_{\mathrm{A}} \mathrm{C}$, via the algebra homomorphism A to C that takes q to $\varepsilon, \varepsilon^{2} \neq 1$.

In the non-restricted form one takes $U_{A}(g)$ to be the A sub algebra of $U_{q}(g)$ generated by the Chevalley generators E_{i}, F_{i}, K_{i} of $U_{q}(g)$. The finite dimensional representation of the non-restricted $U_{\delta}(\mathrm{g})$ have been studied by De Concini and Kac in [1].

In [1], De Concini and Kac defined the notion of Verma modules over U_{q} and U_{ε} (where ε is a primitive $l^{\text {th }}$ root of $1, l$ is an odd integer) analogous to the classical Verma modules.

In [2] the Verma module $\mathrm{M}_{\varepsilon}(\lambda) \mathrm{U}_{\varepsilon}(\mathrm{g})$, where $g=\operatorname{sl}(\mathrm{n}+1)$, and in particular prove that the socle of $\mathrm{M}_{\varepsilon}(\lambda)$ over U_{ε} is nonzero. In this paper we obtain the Steinberg modules in quantum groups.

1. PRELIMINARIES

1.1. Let us fix some notations which are standard (see for example, [1]).

For a fixed $\mathrm{n} \in \mathrm{N}$, let $\left(\mathrm{a}_{\mathrm{ij}}\right) 1 \leq \mathrm{i}, \mathrm{j} \leq \mathrm{n}$ be the cartan matrix of type A_{n}.
Let q be an indeterminate and let $A=\mathrm{C}\left[\mathrm{q}_{\mathrm{q}} \mathrm{q}^{-1}\right]$ with the quotient field $\mathrm{C}(\mathrm{q})$.
For any integer $\mathrm{M} \geq 0$, we define

$$
[M] \quad=\frac{q^{M}-q^{-M}}{q-q^{-1}} \in A, \quad[M]!=[M][M-1] \ldots[1], \text { and }\left[\begin{array}{c}
M \\
j
\end{array}\right]=\frac{[M]!}{[j]![M-j]!} \quad \text { and } \quad \text { for } \mathrm{j} \in \mathrm{~N},\left[\begin{array}{c}
M \\
0
\end{array}\right]=1
$$

Let U_{q} be the $\mathrm{C}(\mathrm{q})$ algebra with 1 , defined by the generators $\mathrm{E}_{\mathrm{i}}, \mathrm{F}_{\mathrm{i}}, K_{i}^{ \pm 1}(1 \leq \mathrm{i} \leq \mathrm{n})$ with the relations:
(a) $\mathrm{K}_{\mathrm{i}} K_{i}^{-1}=K_{i}^{-1} \mathrm{~K}_{\mathrm{i}}=1, \mathrm{~K}_{\mathrm{i}} \mathrm{K}_{\mathrm{j}}=\mathrm{K}_{\mathrm{j}} \mathrm{K}_{\mathrm{i}}$,
(b) $\mathrm{K}_{\mathrm{i}} \mathrm{E}_{\mathrm{j}} K_{i}^{-1}=\mathrm{q}^{\mathrm{aij}} \mathrm{E}_{\mathrm{j}}, \mathrm{K}_{\mathrm{i}} \mathrm{F}_{\mathrm{j}} K_{i}^{-1}=\mathrm{q}^{-\mathrm{aij}} \mathrm{F}_{\mathrm{j}}$,
(c) $\mathrm{E}_{\mathrm{i}} \mathrm{F}_{\mathrm{j}}-\mathrm{F}_{\mathrm{j}} \mathrm{E}_{\mathrm{i}}=\delta_{i j} \frac{K_{i}-K_{i}^{-1}}{q-q^{-1}}$,
(d) $\mathrm{E}_{\mathrm{i}} \mathrm{E}_{\mathrm{i}}=\mathrm{E}_{\mathrm{i}} \mathrm{E}_{\mathrm{i}}$, if $\mathrm{a}_{\mathrm{ij}}=0$,
(e) $\mathrm{E}_{\mathrm{i}}^{2} \mathrm{E}_{\mathrm{i}}-\left(\mathrm{q}+\mathrm{q}^{-1}\right) \mathrm{E}_{\mathrm{i}} \mathrm{E}_{\mathrm{j}} \mathrm{E}_{\mathrm{i}}+\mathrm{E}_{\mathrm{i}} \mathrm{E}_{\mathrm{i}}^{2}=0$, if $\mathrm{a}_{\mathrm{ij}}=-1$,
(f) $\mathrm{F}_{\mathrm{i}} \mathrm{F}_{\mathrm{i}}=\mathrm{F}_{\mathrm{i}} \mathrm{F}_{\mathrm{i}}$ if $\mathrm{a}_{\mathrm{ij}}=0$,
(g) $\mathrm{F}_{\mathrm{i}}^{2} \mathrm{~F}_{\mathrm{i}}-\left(\mathrm{q}+\mathrm{q}^{-1}\right) \mathrm{F}_{\mathrm{i}} \mathrm{F}_{\mathrm{i}} \mathrm{F}_{\mathrm{i}}+\mathrm{F}_{\mathrm{i}} \mathrm{F}_{\mathrm{i}}^{2}=0$, if $\mathrm{a}_{\mathrm{ij}}=-1$,

Then U_{q} is a Hopf algebra over $\mathrm{C}(q)$ which is called the quantum group associated to the matrix $\left(\mathrm{a}_{\mathrm{ij}}\right)$, with comultiplication Δ, antipode S and counit v defined by

$$
\begin{aligned}
& \Delta \mathrm{E}_{\mathrm{i}}=\mathrm{E}_{\mathrm{i}} \otimes 1+\mathrm{K}_{\mathrm{i}} \otimes \mathrm{E}_{\mathrm{i}}, \quad \Delta \mathrm{~F}_{\mathrm{i}}=\mathrm{F}_{\mathrm{i}} \otimes K_{i}^{-1}+1 \otimes \mathrm{~F}_{\mathrm{i}}, \Delta \mathrm{~K}_{\mathrm{i}}=\mathrm{K}_{\mathrm{i}} \otimes \mathrm{~K}_{\mathrm{i}}, \\
& \mathrm{SE}_{\mathrm{i}}=-K_{i}^{-1} \mathrm{E}_{\mathrm{i}}, \mathrm{SF}_{\mathrm{i}}=-\mathrm{F}_{\mathrm{i}} \mathrm{~K}_{\mathrm{i}}, \mathrm{SK}_{\mathrm{i}}=K_{i}^{-1} \\
& v \mathrm{E}_{\mathrm{i}}=0, v \mathrm{~F}_{\mathrm{i}}=0, v \mathrm{~K}_{\mathrm{i}}=1 .
\end{aligned}
$$

Also introduce the elements

$$
\left[K_{i} ; n\right]=\frac{\left(K_{i} q^{n}-K_{i}^{-1} q^{-n}\right)}{q-q^{-1}} \text { in } \mathrm{U}_{\mathrm{q}}
$$

1.2 It is well known that one can introduce a root system associated to the matrix (a_{ij}). We briefly describe the construction here. For details refer to [1, 5].

Let P be a free abelian group with basis $\omega_{i}, \mathrm{i}=1,2, \ldots, n$ (P is usually called the lattice of weights). Let P^{+}denote the subgroup of non-negative integral combinations of $\omega_{1}, \omega_{2}, \ldots, \omega_{n}$ and any element of P^{+}is called a dominant weight. Define the following elements in P :
let

$$
\begin{aligned}
\rho & =\sum_{i=1}^{n} \omega_{i}, \quad \alpha_{j}=\sum_{i=1}^{n} a_{i j} \omega_{i}(\mathrm{j}=1, \ldots, \mathrm{n}) \\
Q & =\sum_{i} Z \alpha_{i}, \quad \quad Q_{+}=\sum_{i} Z_{+} \alpha_{i}
\end{aligned}
$$

Define a bilinear pairing $P \times Q \rightarrow Z$ by

$$
\begin{equation*}
\left(\omega_{i} \mid \alpha_{j}\right)=\delta_{i j} \tag{1.2.1}
\end{equation*}
$$

Then $\left(\alpha_{i} \mid \alpha_{j}\right)=a_{i j}$, so that we get a symmetric Z -valued bilinear form on Q such that $(\alpha \mid \alpha) \in 2 Z$.

Define automorphisms r_{i} of P by ri $\omega_{j}=\omega_{j}-\delta_{i j} \alpha_{i} \quad(\mathrm{i}, \mathrm{j}=1,2, \ldots, \mathrm{n})$.
Then $r_{i} \alpha_{i}=\alpha_{i}-a_{i j} \alpha_{i}$. Let W be the (finite) subgroup of $G L(P)$ generated by $r_{1}, r_{2}, \ldots, r_{n}$. Then Q is W-invariant and the pairing $P \times Q \rightarrow Z$ is W -invariant.

Let II $=\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right\}, R=W \prod$ and denote $R \cap \mathrm{Q}_{+}$by R^{+}. Then R is a root system corresponding to the cartan matrix (a_{ij}) with Weyl group W and R^{+}the system of positive roots. Clearly ρ is half the sum of positive roots. We introduce a partial ordering of P by $\lambda \geq \mu$
if $\lambda-\mu \in Q_{+}$. Let w_{0} be the unique element of W such that $\mathrm{w}_{0}\left(\mathrm{R}^{+}\right)=-\mathrm{R}^{+}$.
1.3. Let U_{A} be the A-subalgebra of U_{q} generated by the elements $\mathrm{E}_{\mathrm{i}}, \mathrm{F}_{\mathrm{i}}, K_{i}^{ \pm 1},[\mathrm{Ki} ; 0](\mathrm{i}=1,2, \ldots, \mathrm{n})$. Let $\mathrm{U}_{\mathrm{A}}{ }^{+}$ (respectively $\mathrm{U}_{\mathrm{A}}{ }^{-}$) be the A-subalgebra of U_{A} generated by the E_{i} (respectively Fi) and $\mathrm{U}_{\mathrm{A}}{ }^{0}$ the subalgebra generated by the K_{i} and $[\mathrm{Ki} ; 0]$.
1.4 We shall show how to choose a canonical basis for U_{q} from the given set of generators (for details see $[1,5,6]$).

We note that we can define an anti-automorphism ω of U_{q} defined by
(1.4.1) $\quad \omega \mathrm{E}_{\mathrm{i}}=\mathrm{F}_{\mathrm{i}}, \quad \omega \mathrm{F}_{\mathrm{i}}=\mathrm{E}_{\mathrm{i}}, \quad \omega \mathrm{K}_{\mathrm{i}}=\mathrm{K}_{\mathrm{i}}^{-1}, \quad \omega \mathrm{q}=\mathrm{q}^{-1}$.

For any $i, 1 \leq \mathrm{i} \leq n$, there is a unique algebra automorphism T_{i} of U_{q} such that

$$
\begin{array}{ll}
\mathrm{T}_{\mathrm{i}} \mathrm{E}_{\mathrm{i}}=-\mathrm{F}_{\mathrm{i}} \mathrm{~K}_{\mathrm{i}}, & \mathrm{~T}_{\mathrm{i}} \mathrm{E}_{\mathrm{i}}=-\mathrm{E}_{\mathrm{i}} \mathrm{E}_{\mathrm{i}}+\mathrm{q}^{-1} \mathrm{E}_{\mathrm{i}} \mathrm{E}_{\mathrm{i}} \text { if } \mathrm{a}_{\mathrm{ij}}=-1 \text { and } \mathrm{T}_{\mathrm{i}}\left(\mathrm{E}_{\mathrm{i}}\right)=\mathrm{E}_{\mathrm{i}} \text { if } \mathrm{a}_{\mathrm{ij}}=0 \\
\mathrm{~T}_{\mathrm{i}} \mathrm{~F}_{\mathrm{i}}=-\mathrm{K}_{\mathrm{i}}^{-1} \mathrm{E}_{\mathrm{i}}, & \mathrm{~T}_{\mathrm{i}} \mathrm{~F}_{\mathrm{i}}=-\mathrm{F}_{\mathrm{i}} \mathrm{~F}_{\mathrm{i}}+\mathrm{qF}_{\mathrm{i}} \mathrm{~F}_{\mathrm{i}} \text { if } \mathrm{a}_{\mathrm{ij}}=-1 \text { and } \mathrm{T}_{\mathrm{i}}\left(\mathrm{~F}_{\mathrm{i}}\right)=\mathrm{F}_{\mathrm{i}} \text { if } \mathrm{a}_{\mathrm{ij}}=0 \\
\mathrm{~T}_{\mathrm{i}} \mathrm{~K}_{\mathrm{j}}=\mathrm{K}_{\mathrm{j}} \mathrm{~K}_{\mathrm{i}}^{-\mathrm{aij}} & \mathrm{~T}_{\mathrm{i}} \omega=\omega \mathrm{T}_{\mathrm{i}} . \tag{1.4.4}
\end{array}
$$

Let ${ }_{\mathrm{w}} \in W$ and let $r_{i_{1}}, \ldots \Gamma_{i_{k}}$ be a reduced expression of w . Then the automorphism $T_{w}=\mathrm{Ti}_{1} \ldots \mathrm{Ti}_{\mathrm{k}}$ of U_{q} is independent of the choice of the reduced expression of w .

Fix a reduced expression $\mathrm{ri}_{1}, \mathrm{ri}_{2}, \ldots, \mathrm{ri}_{\mathrm{N}}$ of the longest element of W , where $\mathrm{N}=\left|R^{+}\right|$. Then this gives us an enumeration of the elements of R^{+}

$$
\beta_{1}=\alpha \mathrm{i}_{1,}, \beta_{2}=r_{i_{1}} \alpha \mathrm{i}_{2,} \ldots, \beta_{\mathrm{N}}=r_{i_{1}}, \ldots r_{i_{N-1}} \alpha \mathrm{i}_{\mathrm{N}}
$$

We define the roots vectors:

$$
E_{\beta s}=T_{i 1} T_{i 2} \ldots T_{i s-1} E_{i s}, \quad F_{\beta s}=T_{i 1} T_{i 2} \ldots T_{i s-1} F_{i s} \text { which is the same as } \omega E_{\beta s} .
$$

For $\mathrm{j}=\left(\mathrm{j}_{1}, \mathrm{j}_{2}, \ldots, \mathrm{j}_{\mathrm{N}}\right) \in \mathrm{Z}_{+}{ }^{\mathrm{N}}$ let he elements $F^{j} K_{j}^{m_{1}} \ldots K_{n}^{m_{n}} E^{r}$ where $\mathrm{j}, \mathrm{r} \in \mathrm{Z}_{+}{ }^{\mathrm{N}},\left(\mathrm{m}_{1}, \ldots, \mathrm{~m}_{\mathrm{n}}\right) \in \mathrm{Z}^{\mathrm{n}}$ form a basis of U_{q} over $C(q)$.
1.5 Given $\varepsilon \in C^{*}$, we now consider the specialization $U_{\varepsilon}=U_{A} /\left[(q-\varepsilon) U_{A}\right]$. We take ε in such way that $\varepsilon^{2} \neq 1$.

Then U_{ε} is an algebra over C with generators $\mathrm{E}_{\mathrm{i}}, \mathrm{F}_{\mathrm{i}}, K_{i}^{ \pm 1}(1 \leq \mathrm{i} \leq \mathrm{n})$ (identifying these vectors with their images), and defining relations ,
(a') $\quad \mathrm{K}_{\mathrm{i}} K_{i}^{-1}=K_{i}^{-1} \mathrm{~K}_{\mathrm{i}}=1, \mathrm{~K}_{\mathrm{i}} \mathrm{K}_{\mathrm{j}}=\mathrm{K}_{\mathrm{j}} \mathrm{K}_{\mathrm{i}}$,
(b') $\quad \mathrm{K}_{\mathrm{i}} \mathrm{E}_{\mathrm{j}} K_{i}^{-1}=\varepsilon^{\mathrm{aij}} \mathrm{E}_{\mathrm{j}}, \quad \mathrm{K}_{\mathrm{i}} \mathrm{F}_{\mathrm{j}} K_{i}^{-1}=\varepsilon^{-\mathrm{aij}} \mathrm{F}_{\mathrm{j}}$,
(c') $\quad \mathrm{E}_{\mathrm{i}} \mathrm{F}_{\mathrm{j}}-\mathrm{F}_{\mathrm{j}} \mathrm{E}_{\mathrm{i}}=\delta_{i j} \frac{K_{i}-K_{i}^{-1}}{\varepsilon-\varepsilon^{-1}}$,
(d') $\quad \mathrm{E}_{\mathrm{i}}^{2} \mathrm{E}_{\mathrm{i}}-\left(\varepsilon+\varepsilon^{-1}\right) \mathrm{E}_{\mathrm{i}} \mathrm{E}_{\mathrm{j}} \mathrm{E}_{\mathrm{i}}+\mathrm{E}_{\mathrm{j}} \mathrm{E}_{\mathrm{i}}^{2}=0$, if $\mathrm{a}_{\mathrm{ij}}=-1$
(e') $\quad \mathrm{F}_{\mathrm{i}}^{2} \mathrm{~F}_{\mathrm{i}}-\left(\varepsilon+\varepsilon^{-1}\right) \mathrm{F}_{\mathrm{i}} \mathrm{F}_{\mathrm{i}} \mathrm{F}_{\mathrm{i}}+\mathrm{F}_{\mathrm{i}} \mathrm{F}_{\mathrm{i}}^{2}=0$, if $\mathrm{a}_{\mathrm{ij}}=-1$,
(f') $\quad \mathrm{E}_{\mathrm{i}} \mathrm{E}_{\mathrm{i}}=\mathrm{E}_{\mathrm{i}} \mathrm{E}_{\mathrm{i}}$, if $\mathrm{a}_{\mathrm{ij}}=0, \mathrm{~F}_{\mathrm{i}} \mathrm{F}_{\mathrm{i}}=\mathrm{F}_{\mathrm{i}} \mathrm{F}_{\mathrm{i}}$ if $\mathrm{a}_{\mathrm{ij}}=0$.
1.6 We denote by $\mathrm{U}_{\varepsilon}^{+}, \mathrm{U}_{\varepsilon}^{-}, \mathrm{U}_{\varepsilon}{ }^{0}$ the images of $\mathrm{U}_{\mathrm{A}}{ }^{+}, \mathrm{U}_{\mathrm{A}}{ }^{-}$, and $\mathrm{U}_{\mathrm{A}}{ }^{0}$ in U_{ε}. The automorphism T_{i} of U_{q} defined in (1.4) clearly induces an automorphism T_{i} of U_{ε}. The vectors $\mathrm{E}^{\mathrm{j}}, \mathrm{F}^{\mathrm{j}}$ of U_{q} defined in (1.4.5) can then be taken to represent their images in U_{ε}. Then the elements $E^{\mathrm{j}}, \mathrm{j} \in \mathrm{Z}_{+}{ }^{\mathrm{N}}$ form a basis of $\mathrm{U}_{\varepsilon}{ }^{+}$over C, and the elements $F^{j} K_{j}^{m_{1}} \ldots K_{n}^{m_{n}} E^{r}$ where $j, r \in Z_{+}^{N},\left(m_{1}, \ldots, m_{n}\right) \in Z^{n}$ form a basis of U_{ε} over C.

2. VERMA MODULES

2.1. The notion of Verma modules over U_{q} and U_{ε} was introduced by De Concini and Kac in [1, 6]. In the rest of the paper, we shall be concerned only with Verma modules over U_{ε}, where ε is a primitive lth root of unity.

We recapitulate the definition below:
For each $\lambda \in P$ the Verma module $\mathrm{M}_{\varepsilon}(\lambda)$ over U_{ε} is the vector space $\mathrm{M}_{\varepsilon}(\lambda)$ in which there exists a non-zero distinguished vector v_{λ} such that $\mathrm{U}_{\varepsilon}{ }^{+} v_{\lambda}=0, \mathrm{~K} v_{\lambda}=\varepsilon^{(\lambda \mid \alpha)} v_{\lambda}, \mathrm{K} \in \mathrm{U}_{\varepsilon}{ }^{0}$ where (\mid) is the pairing from $P \times W \rightarrow Z$ defined in (1.2) and $\left\{\mathrm{F}^{\mathrm{j}} v_{\lambda}\left(\mathrm{j} \in \mathrm{Z}_{+}{ }^{\mathrm{N}}\right)\right\}$ is a basis of $\mathrm{M}_{\varepsilon}(\lambda)$. Let $\mathrm{L}_{\varepsilon}(\lambda)$ denote the unique irreducible quotient of $\mathrm{M}_{\varepsilon}(\lambda)$ by its unique maximal submodule.

Then we have

$$
\begin{equation*}
\mathrm{K} v_{\lambda}=\varepsilon^{(\lambda \mid \alpha)} v_{\lambda} \tag{2.1.1}
\end{equation*}
$$

Also for each $h=1,2, \ldots, N, \mathrm{~F}_{\mathrm{h}} v_{\lambda}$. is a weight vector of weight $\lambda-\alpha_{\mathrm{h}}$ as easily seen below.

$$
\begin{aligned}
K \mathrm{~F}_{\mathrm{h}} v_{\lambda .} & =\mathcal{E}^{-\left(\alpha \mid \alpha_{h}\right)} \mathrm{F}_{\mathrm{h}} \mathrm{~K} v_{\lambda} \\
& =\boldsymbol{E}^{-\left(\alpha \mid \alpha_{h}\right)} \varepsilon^{(\lambda \mid \alpha)} \mathrm{F}_{\mathrm{h}} v_{\lambda} \quad\left(\text { since }\left(\alpha_{\mathrm{h}} \mid \alpha\right)=\left(\alpha \mid \alpha_{\mathrm{h}}\right)\right) \\
& =\boldsymbol{\varepsilon}^{-\left(\lambda-\alpha_{h} \mid \alpha\right)} \mathrm{F}_{\mathrm{h}} v_{\lambda . .}
\end{aligned}
$$

(2.1.2) This shows that for any $r \in \mathrm{Z}_{+}, \mathrm{F}_{\mathrm{h}}{ }^{\mathrm{r}} v_{\lambda}$ is a weight vector of weight $\lambda-r \alpha_{\mathrm{h}}$ and therefore each $\mathrm{F}^{\mathrm{j}} v_{\lambda}\left(=F_{i}^{j_{1}} \ldots F_{N}^{j_{N}} v_{\lambda}\right)$ is a weight vector of weight $\lambda-\sum_{h=1}^{N} j_{h} \alpha_{h}$.

2 . 2 VERMA MODULES OVER SOME SUBALGEBRAS OF U_{E}.

We first define the subalgebras $\mathrm{U}_{\mathrm{r}}, \mathrm{U}_{\mathrm{r}}^{+}$, $\mathrm{U}_{\mathrm{r}}^{-}$, of U_{ε} generated b

$$
\begin{aligned}
\left\{F^{j}, \prod_{i=1}^{n} K_{i}^{m_{i}}, E^{r}, 0<j_{i}, r_{i}<l^{r},\left(m_{1} \ldots m_{n}\right) \in Z^{n}\right\}, & \left\{E^{r}, \prod_{i=1}^{n} K_{i}^{m_{i}}, 0<r_{i}<l^{r},\left(m_{1} \ldots m_{n}\right) \in Z^{n}\right\} \\
& ,\left\{F^{j}, 0 \leq j_{i}<l^{r}\right\} \text { respectively. }
\end{aligned}
$$

The set
(2.2.1) $\left\{F_{1}^{j_{1}} \ldots F_{N}^{j_{N}} K_{1}^{m_{1}} \ldots K_{n}^{m_{n}} E_{1}^{r_{1}} \ldots E_{N}^{r_{N}}, 0 \leq j_{i}, r_{i},<l^{r},\left(m_{1}, \ldots, m_{n}\right) \in Z^{n}\right\}$ is a basis of U_{r} and the set
(2.2.1) $\left\{F_{1}^{j_{1}} \ldots F_{N}^{j_{N}}, 0 \leq j_{i}<l^{r}\right\}$ is a basis of $\mathrm{U}_{\mathrm{r}}^{-}$.

We can then define the Verma modules $\mathrm{M}_{\varepsilon, \mathrm{r}}(\lambda)$ of weight λ over U_{r} analogously to $\mathrm{M}_{\varepsilon}(\lambda)$ over U ε, that is, there exists a non-zero vector (say) \widehat{v}_{λ} such that $\mathrm{U}_{\mathrm{r}}^{+} \widehat{v}_{\lambda}=0, \mathrm{~K} \widehat{v}_{\lambda}=\varepsilon^{(\lambda \mid \alpha)} \widehat{v}_{\lambda}$ for $\mathrm{K} \in \mathrm{U}_{\mathrm{r}}^{0}$ and $\left\{\mathrm{F}^{\mathrm{j}} \widehat{v}_{\lambda}, 0 \leq \mathrm{j}_{\mathrm{i}}<l^{\mathrm{r}}\right\}$ form a basis of $M_{\varepsilon, r}(\lambda)$.

There is a natural injective homomorphism $f_{r}: M_{\varepsilon, r}(\lambda) \longrightarrow M_{\varepsilon}(\lambda)$ given by

$$
\begin{equation*}
\mathrm{f}_{\mathrm{r}}\left(\mathrm{~F}^{\mathrm{j}} \widehat{v}_{\lambda}\right)=\mathrm{F}^{\mathrm{j}} v_{\lambda} \tag{2.2.3}
\end{equation*}
$$

2.3 We next introduce certain elements defined by I_{r} of U_{r}^{-}, which play an important role in our future study of the socles of Verma modules and homomorphisms between Verma modules.
For each positive integer r , let $\mathrm{I}_{\mathrm{r}}=F_{1}^{l^{r}-1} \ldots F_{N}^{l^{r-1}}$ which is an element of $\mathrm{U}_{\mathrm{r}}^{-}$.It then follows that $\mathrm{I}_{\mathrm{r}} v_{\lambda}$ is a weight vector of $U_{r} v_{\lambda}$ of weight $\lambda-2(l-l) \rho$, where ρ is half the sum of the positive roots. In fact,

$$
\begin{align*}
\mathrm{KI}_{\mathrm{r}} \mathrm{v}_{\lambda} & =\mathrm{K} F_{1}^{l^{r}-1} \ldots F_{N}^{l^{r-1}} \mathrm{v}_{\lambda} \tag{2.3.1}\\
& =\mathcal{E}^{\left(\lambda-\left(l^{r}-1\right) \alpha_{1}+\ldots+\alpha_{N} \mid \alpha\right)} F_{1}^{l^{r}-1} \ldots F_{N}^{l^{r-1}} \quad \mathrm{v}_{\lambda} \text { from (2.1.2) } \\
& =\mathcal{E}^{\left(\lambda-2\left(l^{r}-1\right) \rho \mid \alpha\right)} F_{1}^{l^{r}-1} \ldots F_{N}^{l^{r-1}} \quad \mathrm{v}_{\lambda} \\
& \left.=\mathcal{E}^{(\lambda+2 \rho \mid \alpha)} F_{1}^{l^{r}-1} \ldots F_{N}^{l^{r-1}} \mathrm{v}_{\lambda} \quad \quad \text { [since } \mathcal{E}^{l^{r}}=1\right] \\
& =\mathcal{E}^{(\lambda-2 l \rho+2 \rho \mid \alpha)} F_{1}^{l^{r}-1} \ldots F_{N}^{l^{r-1}} \quad \mathrm{v}_{\lambda} \\
& =\mathcal{E}^{(\lambda-2(l-1) \rho \mid \alpha)} F_{1}^{l^{r}-1} \ldots F_{N}^{l^{r-1}} \mathrm{v}_{\lambda}
\end{align*}
$$

In particular, when $\lambda=0$, we see that $\mathrm{I}_{\mathrm{r}} \widehat{v}_{0}$ is a weight vector of $\mathrm{M}_{\varepsilon, \mathrm{r}}(0)$ with minimal weight $-2(l-1) \rho$.

We observe for later use that I_{r} is an integral of $\mathrm{U}_{\mathrm{r}}^{-}$. In fact, for $\alpha \in R^{+}$and $\mathrm{a} \in \mathrm{N}$ such that $0<\mathrm{a}<\mathrm{I}^{\mathrm{r}}, R_{\alpha}^{a} \mathrm{I}_{\mathrm{r}}$ and $\mathrm{I}_{\mathrm{r}} F_{\alpha}^{a}$ are in $\mathrm{U}_{\mathrm{r}}^{-}$. Hence $F_{\alpha}^{a} \mathrm{I}_{r} \widehat{V}_{0}$ and $\mathrm{I}_{\mathrm{r}} F_{\alpha}^{a} \widehat{v}_{0}$ are weight vectors of $\mathrm{M}_{\varepsilon, \mathrm{r}}(0)$ with weight $-2(l-1) \rho-\mathrm{a} \alpha$. By the minimahty of the weight $-2(l-1) \rho$, it follows that $F_{\alpha}^{a} \mathrm{I}_{r}=\mathrm{I}_{r} F_{\alpha}^{a}=0$. This shows that I_{r} is an integral of $\mathrm{U}_{\mathrm{r}}{ }^{-}$, in other works $\mathrm{uI}_{\mathrm{r}}=V(\mathrm{u}) \mathrm{I}_{\mathrm{r}}$ for all $\mathrm{u} \in \mathrm{U}_{\mathrm{r}}^{-}$, where $V: \mathrm{U}_{\mathrm{r}}^{-}->\mathrm{C}$ is the augmentation function.

2.4 A HOMOMORPHISM BETWEEN TWO VERMA MODULES

$M_{\varepsilon}(\lambda), M_{\varepsilon}(\mu)$ is a map $\phi: M_{\varepsilon}(\lambda) —>M_{\varepsilon}(\mu)$ such that ϕ is a vector space homomorphism and $\phi(u u)=u \phi(v), u \in U_{\varepsilon}$, $v \in M_{\varepsilon}(\lambda)$.

Lemma 2.4.1: If $M_{\varepsilon}(\lambda), M_{\varepsilon}(\mu)$ are Verma modules over the quantum grou U_{ε}, and there is an injective U_{ε} module homomorphism $\phi: M_{\varepsilon}(\lambda) \longrightarrow M_{\varepsilon}(\mu)$, then $\lambda=\mu$ and ϕ is multipli'cation by some element of C.

Proof: Let v_{λ}, v_{μ} be non-zero highest weight vectors of $M_{\varepsilon}(\lambda), M_{\varepsilon}(\mu)$ respectively. Since v_{λ} generates $M_{\varepsilon}(\lambda), \psi$ is determined by $\psi\left(v_{\lambda}\right)$. Say $\psi\left(v_{\lambda}\right)={u v_{\mu}}, u \in U_{\varepsilon}^{-}$. Now by definition, $\mathrm{U}_{\varepsilon}^{-}$is the union of the subalgebras $\mathrm{U}_{\mathrm{r}}^{-}$for $\mathrm{r}=1,2$,.. and so there is some r for which $u \in U_{r}^{-}$. Since I_{r} is an integral for U_{r}^{-},

$$
\mathrm{V}(\mathrm{u}) \mathrm{I}_{\mathrm{r}} \mathrm{v}_{\mathrm{u}}=\mathrm{I}_{\mathrm{r}} u \mathrm{v}_{\mathrm{u}}=\mathrm{I}_{\mathrm{r}} \psi\left(\mathrm{v}_{\lambda}\right)=\phi\left(\mathrm{I}_{\mathrm{r}} \mathrm{v}_{\lambda}\right)
$$

where $V: \mathrm{U}_{\mathrm{r}}^{-} —>C$ is the augmentation function and $\mathrm{I}_{\mathrm{r}} \mathrm{v}_{\lambda}$ is an element of the basis for $\mathrm{M}_{\varepsilon}(\lambda)$, so is non-zero, and therefore $V(u) \neq 0$. But $\psi\left(\mathrm{v}_{\lambda}\right)$ must have weight λ, so uv ${ }_{\mu}$ has weight λ, which contradicts $V(u) \neq 0$ unless $\lambda=\mu$.

Since v_{μ} spans the μ-weight space of $\mathrm{M}_{\varepsilon}(\mu), \psi\left(\mathrm{v}_{\lambda}\right)=\mathrm{cv}_{\mu}=\mathrm{cv}_{\lambda}$ for some $\mathrm{c} \in \mathrm{C}$, and ϕ is just multiplication by c .

3. SOCLE OF VERMA MODULES

Denote the socle of the U_{ε} module $M_{\varepsilon}(\lambda)$ by $\operatorname{Soc}\left(M_{\varepsilon}(\lambda)\right)$ and the socle of the U_{r} module $M_{\varepsilon, r}(\lambda)$ by $\operatorname{Soc}\left(M_{\varepsilon, r}(\lambda)\right)$.[3].
Since for any $r>0, M_{\varepsilon, r}(\lambda)$ is finite dimensional, clearly $\operatorname{Soc}\left(M_{\varepsilon, r}(\lambda)\right) \neq 0$. It is interesting to note that even for the infinite dimensional module $\mathrm{M}_{\varepsilon}(\lambda)$, its socle is non-zero. We proceed to prove this in this section.

Lemma 3.1: If $0 \neq u \in U_{r}^{-}$for some $r \in N$, then $U_{r} u$ contains $C I_{r}$.
Proof: We shall order the positive roots $\alpha(\mathrm{l}), \alpha(2) \ldots \alpha(\mathrm{N})$ in such a way that if

$$
\alpha(\mathrm{i})+\alpha(\mathrm{j})=\alpha(\mathrm{k}) \text { then } \mathrm{k}<\mathrm{i}, \mathrm{j} .
$$

If $0<a<l^{r}$ then clearly

$$
F_{\alpha(1)}^{l^{r}-1} F_{\alpha(1)}^{a}=F_{\alpha(1)}^{l^{r}-1+a}=0
$$

We shall prove by induction on i , with $1 \leq \mathrm{i} \leq \mathrm{N}$, that $F_{\alpha(1)}^{l^{r}-1} \ldots F_{\alpha(i)}^{l^{r}-1} F_{\alpha=0}^{a}$
whenever $\alpha \in\{\alpha(1), \ldots, \alpha(i)\}$ and $0<a<l^{r}$.
Suppose there exists some $\mathrm{i}, 2 \leq \mathrm{i} \leq \mathrm{N}$, such that

$$
\begin{equation*}
F_{\alpha(1)}^{l^{r}-1} F_{\alpha(2)}^{l^{r-1}} \ldots F_{\alpha(i-1)}^{l^{r}-1} F_{\alpha=0, \text { whenever } \alpha \in\{\alpha(1) \ldots \alpha(\mathrm{i}-1)\} \text { and } 0<a<l^{r} .} \tag{3.1.1}
\end{equation*}
$$

Now, suppose that there is some $\alpha \in\{\alpha(1), \alpha(2), \ldots, \alpha(\mathrm{i})\}$ and choose a such that $0<a<l^{r}$.
If $\alpha=\alpha(\mathrm{i})$, then $F_{\alpha(i)}^{l^{r}-1} F_{\alpha=0}^{a}$, and so

$$
F_{\alpha(1)}^{l^{r}-1} F_{\alpha(2)}^{l^{r-1}} \ldots F_{\alpha(i)}^{l^{r}-1} F_{\alpha=0}^{a}
$$

If $\alpha \neq \alpha$ (i), then using the commutation relations imply that

$$
F_{\alpha(1)}^{l^{r}-1} F_{\alpha(2)}^{l^{r-1}} \ldots F_{\alpha(i)}^{l^{r}-1} F_{\alpha}^{a}
$$

is a sum of elements of the form

$$
F_{\alpha(1)}^{l^{r}-1} F_{\alpha(2)}^{l^{r-1}} \ldots F_{\alpha(i-1)}^{l^{r}-1} F_{\beta \mathrm{u}}^{b}
$$

with $\beta \in\{\alpha(1), \ldots, \alpha(i-1)\} 0<b<I^{r}, u \in U_{\varepsilon}$ and each element of this form equals 0 by (3.1.1). So (3.1.1) holds for all i.

Using this equation together with the commutation relations if $1 \leq \mathrm{i} \leq \mathrm{N}$ and $0<a<I^{r}$, then

$$
\begin{equation*}
F_{\alpha(1)}^{l^{r}-1} F_{\alpha(2)}^{l^{r-1}} \ldots F_{\alpha(i-1)}^{l^{r}-1} F_{\alpha(i)}^{a}-\varepsilon^{-1(i-1)\left(l^{r}-1\right)} F_{\alpha(1)}^{l^{r}-1} F_{\alpha(2)}^{l^{r-1}} \ldots F_{\alpha(i-1)=0}^{l^{r}-1} \tag{3.1.2}
\end{equation*}
$$

and so if $1 \leq \mathrm{i} \leq \mathrm{N}$ and $0<\mathrm{a}, b<l^{\mathrm{r}}$ then

$$
\begin{aligned}
& F_{\alpha(i)}^{a} F_{\alpha(1)}^{l^{r}-1} F_{\alpha(2)}^{l^{r-1}} \ldots F_{\alpha(i-1)}^{l^{r}-1} F_{\alpha(i)}^{b} \\
& =\varepsilon^{-1(i-1)\left(l^{r}-1\right)} F_{\alpha(1)}^{l^{r}-1} F_{\alpha(2)}^{l^{r-1}} \ldots F_{\alpha(i-1)}^{l^{r}-1} F_{\alpha(i)}^{a+b} \\
& =0 \text { if a + b } \geq l^{\mathrm{r}}
\end{aligned}
$$

Suppose u is a non-zero element of $\mathrm{U}_{\mathrm{r}}^{-}$. Then by the basis of $\mathrm{U}_{\mathrm{r}}^{-}$the element u is of the form $F_{\alpha(1)}^{\alpha(1)} F_{\alpha(2)}^{\alpha(2)} \ldots F_{\alpha(N)}^{\alpha(N)}$ with $0 \leq \mathrm{a}(1), \ldots, \mathrm{a}(\mathrm{N})<l^{r}$

By repeated use of (3.1.2) $\mathrm{C}_{\alpha(N)}^{l^{r}-1-\alpha(N)} \ldots F_{\alpha(1)}^{l^{r}-1-\alpha(1)} u=\mathrm{C} F_{\alpha(N)}^{l^{r}-1} \ldots F_{\alpha(1)}^{l^{r}-1}=\mathrm{C} \mathrm{I}_{\mathrm{r}}$ as required.
Corollary 3.2: Let r be a positive integer.

$$
\mathrm{I}_{\mathrm{r}+1} \in \mathrm{U}_{\varepsilon} \mathrm{I}_{\mathrm{r} .}
$$

Proof: Lemma 3.1 implies that $\mathrm{CI}_{\mathrm{r}+1} \subseteq \mathrm{U}_{\mathrm{r}+1} \mathrm{I}_{\mathrm{r}}$, so $\mathrm{I}_{\mathrm{r}+1} \in \mathrm{U}_{\mathrm{r}+1} \mathrm{I}_{\mathrm{r}} \subseteq \mathrm{U}_{\varepsilon} \mathrm{I}_{\mathrm{r}}$.

Corollary 3.3:

(i) If M is a non-zero U_{r} submodule of $M_{\varepsilon, r}(\lambda)$ and $\widehat{v}_{\lambda} \in M_{\varepsilon, r}(\lambda)$, then $I_{r} \widehat{v}_{\lambda} \in M$.
(ii) If M is a non-zero U_{ε} submodule of $M_{\varepsilon}(\lambda)$ and $v_{\lambda} \in M_{\varepsilon}(\lambda)$, then $I_{r} v_{\lambda} \in M$ for all r.

Proof:

(i) By the basis of $M_{\varepsilon, r}(\lambda)$, M contains some vector $u \widehat{v}_{\lambda}$ with $u \in \mathrm{U}_{r}^{-}$. By Lemma 3.1, $\mathrm{I}_{\mathrm{r}} \widehat{v}_{\lambda} \in \mathrm{CI}_{\mathrm{r}} \widehat{v}_{\lambda} \subseteq \mathrm{U}_{\mathrm{r}} \mathrm{u} \widehat{v}_{\lambda} \subseteq \mathrm{M}$.
(ii) By the basis of $M_{\varepsilon}(\lambda)$, M contains some vector $u v_{\lambda}$ with $u \in U_{\varepsilon}^{-}$, hence $u \in U_{r}^{-}$for somer.

By Lemma 3.1, $\mathrm{I}_{\mathrm{r}} \mathrm{v}_{\lambda} \in \mathrm{CI}_{\mathrm{r}} \mathrm{v}_{\lambda} \subseteq \mathrm{U}_{\varepsilon} \mathrm{uv}_{\lambda} \subseteq \mathrm{M}$.
Corollary 3.4: $\operatorname{Soc}\left(\mathrm{M}_{\varepsilon, r}(\lambda)\right)$ is simple.
Proof: $\operatorname{Soc}\left(M_{\varepsilon, r}(\lambda)\right)$ is a non-zero U_{r} submodule of $M_{\varepsilon, r}(\lambda)$ and by Corollary 3.3 (i) the submodule $U_{r} I_{r} \widehat{v}_{\lambda}$ is contained in every simple component of $\operatorname{Soc}\left(M_{\varepsilon, r}(\lambda)\right)$ and hence $\operatorname{Soc}\left(M_{\varepsilon, r}(\lambda)\right)$ itself is simple.

Lemma 3.5: Let $\lambda \in P^{+}$, the set of dominant weights. Then for all $r>0$, the highest weight of $\operatorname{Soc}\left(M_{\varepsilon, r}(\lambda)\right)$ is $\mathrm{w}_{0}(\lambda-2(1-\mathrm{l}) \rho)$ and hence is independent of r .

Proof: From (2.3.1), the lowest weight of $M_{\varepsilon, r}(\lambda)$ is $\lambda-2(l-l) \rho$ for all $r>0$. From Corollary 3.3(i), we have seen that any non-zero submodule of $\mathrm{M}_{\varepsilon, r}(\lambda)$ contains $\mathrm{I}_{\mathrm{r}} \widehat{v}_{\lambda}$. Hence Soc $\left(\mathrm{M}_{\varepsilon, r}(\lambda)\right)$ contains $\mathrm{I}_{\mathrm{r}} \widehat{v}_{\lambda}$ whose weight is $\lambda-2(l-1) \rho$.

Therefore the lowest weight of $\operatorname{Soc}\left(M_{\varepsilon, r}(\lambda)\right)$ is $\lambda-2(l-1) \rho$ for all $r>0$ and hence the highest weight of $\operatorname{Soc}\left(M_{\varepsilon, r}(\lambda)\right)$ is $\mathrm{w}_{0}(\lambda-2(1-1) \rho)=\mathrm{w}_{0}(\lambda+2 \rho)$, which is independent of r . Hence the result.

P. B. SARASIJA*/ STEINBERG MODULES IN QUANTUM GROUPS/ IJMA- 3(3), Mar.-2012, Page: 1154-1161

Corollary 3.6: $\quad \operatorname{Soc}\left(M_{\varepsilon, r}(\lambda)\right)$ is isomorphics to $L_{\varepsilon, r}\left(W_{0}(\lambda-2(1-l) \rho)\right.$ for all $r>0$.
Proof: From the corollary 3.4 and the lemma 3.5 we get $\operatorname{Soc}\left(\mathrm{M}_{\varepsilon, r}(\lambda)\right)$ is simple and the highest weight is $\mathrm{w}_{0}(\lambda-2(1-1) \rho)$. But $\lambda-2(l-1) \rho$ is a weight of $\mathrm{L}_{\varepsilon, r}\left(\mathrm{w}_{0}(\lambda-2(1-l) \rho)\right.$ and hence this simple U_{r} module is isomorphic to the U_{r} module $\operatorname{Soc}\left(\mathrm{M}_{\varepsilon, \mathrm{r}}(\lambda)\right.$), for all $\mathrm{r}>0$.

We shall proceed to prove our main result concerning the socle of the Verma modules.
Theorem 3.7: Soc $\left(\mathrm{M}_{\varepsilon}(\lambda)\right)$ is non-zero for all $\lambda \in P^{+}$.
Proof: Let $v_{\lambda}, \widehat{v}_{\lambda}$ be non-zero highest weight vectors of the Verma module $M_{\varepsilon}(\lambda)$ over U_{ε}, and $M_{\varepsilon, r}(\lambda)$ over U_{r} respectively. Let M be an arbitrary non-zero U_{ε} submodule of $M_{\varepsilon}(\lambda)$. Then by Corollary 3.3 (ii), $\mathrm{I}_{\mathrm{r}} \widehat{v}_{\lambda} \in \mathrm{U}_{\mathrm{r}} \mathrm{u} \widehat{v}_{\lambda} \subseteq \mathrm{M}$ for all r and hence $\mathrm{U}_{\varepsilon} \mathrm{I}_{\mathrm{r}} \mathrm{v}_{\lambda} \subseteq \mathrm{M}$. Now, let I denote the submodule $\bigcap_{r>0} U_{\varepsilon} I_{r} V_{\lambda}$ of $\mathrm{M}_{\varepsilon}(\lambda)$.

Replacing M by each simple component of $\operatorname{Soc}\left(\mathrm{M}_{\varepsilon}(\lambda)\right)$, it immediately follows that $\operatorname{Soc}\left(\mathrm{M}_{\varepsilon}(\lambda)\right) \supseteq \mathrm{I}$.
We proceed to prove that $I \neq(0)$. Since $M_{\varepsilon, r}(\lambda)$ is finite dimensional, $\operatorname{Soc}\left(M_{\varepsilon, r}(\lambda)\right) \neq 0$. By Corollary 3.3(i), $\operatorname{Soc}\left(M_{\varepsilon, r}(\lambda)\right)$ is simple and we can take $\operatorname{Soc}\left(M_{\varepsilon, r}(\lambda)\right)$ to be isomorphic to the simple U_{r} module $L_{\varepsilon, r}(\mu)$ (where μ is $w_{0}(\lambda-2(1-1) \rho)$). Also by Corollary 3.3(i), $\operatorname{Soc}\left(M_{\varepsilon, r}(\lambda)\right)$ contains $I_{r} \hat{v}_{\lambda}$. Therefore there is some x_{r} in U_{r} such that $x_{r} I_{r}$ \widehat{v}_{λ} is in the highest weight space of $\operatorname{Soc}\left(\mathrm{M}_{\varepsilon, r}(\lambda)\right)$).

In other words, $\mathrm{x}_{\mathrm{r}} \mathrm{I}_{\mathrm{r}} \widehat{v}_{\lambda} \in\left(\mathrm{M}_{\varepsilon, \mathrm{r}}(\lambda)\right)^{\mu}$, the μ th weight space of $\mathrm{M}_{\varepsilon, \mathrm{r}}(\lambda)$. Now let f_{r} be the injective U_{r} module homomorphism from $M_{\varepsilon, r}(\lambda)$ to $M_{\varepsilon}(\lambda)$ described in (3.2.3), then $\mathrm{f}_{\mathrm{r}}\left(\widehat{v}_{\lambda}\right)=\mathrm{v}_{\lambda}$.
So, $\mathrm{x}_{\mathrm{r}} \mathrm{I}_{\mathrm{r}} \mathrm{V}_{\lambda}=\mathrm{f}_{\mathrm{r}}\left(\mathrm{xrI}_{\mathrm{r}} \widehat{\mathrm{V}}_{\lambda}\right) \in\left(\mathrm{M}_{\varepsilon}(\lambda)\right)^{\mu}$.
This shows that for each $r, \quad U_{\varepsilon} I_{r} v_{\lambda} \cap\left(M_{\varepsilon}(\lambda)\right)^{\mu} \neq(0)$ and is a finite dimensional C-vector space (since $\left(M_{\varepsilon}(\lambda)\right)^{\mu}$ is finite dimensional).

From Corollary (3.2), we have the descending chain of submodules

$$
\mathrm{U}_{\varepsilon} \mathrm{I}_{1} \mathrm{v}_{\lambda} \cap\left(\mathrm{M}_{\varepsilon}(\lambda)\right)^{\mu} \supseteq \mathrm{U}_{\varepsilon} \mathrm{I}_{2} \mathrm{v}_{\lambda} \cap\left(\mathrm{M}_{\varepsilon}(\lambda)\right)^{\mu} \supseteq \ldots
$$

Hence its intersection which is just $\mathrm{I} \cap \mathrm{M}_{\varepsilon}(\lambda)^{\mu}$ is non-zero which implies that $\mathrm{I} \neq 0$. Since $\operatorname{Soc}\left(\mathrm{M}_{\varepsilon}(\lambda)\right) \supseteq \mathrm{I} \neq 0$, it follows that $\operatorname{Soc}\left(\mathrm{M}_{\varepsilon}(\lambda)\right) \neq 0$.

Hence the theorem.
Theorem 3.8: Soc $\left(M_{\varepsilon}(\lambda)\right)$ is simple and isomorphic to the simple $U_{\varepsilon}-$ module $L_{\varepsilon}\left(W_{0}(\lambda-2(1-l) \rho)\right)=L_{\varepsilon}\left(W_{0}(\lambda+2 \rho)\right)$.
Proof: From the above theorem we get $\operatorname{Soc}\left(M_{\varepsilon}(\lambda)\right)$ is a non zero $U_{\varepsilon^{-}}$module of $M_{\varepsilon}(\lambda)$ and by the corollary (3.3.) (ii) the submodule $U_{\varepsilon} I_{r} V_{\lambda}$ is contained in every simple component of $\operatorname{Soc}\left(M_{\varepsilon}(\lambda)\right)$ and hence $\operatorname{Soc}\left(M_{\varepsilon}(\lambda)\right)$ itself is simple.

Since $\operatorname{Soc}\left(M_{\varepsilon}(\lambda)\right)$ contains $I_{r} v_{\lambda}$ whose weight is $\lambda-2(l-1) \rho$, the lowest weight of $\operatorname{Soc}\left(M_{\varepsilon}(\lambda)\right)$ is $\lambda-2(l-1) \rho$ and the highest weight of $\operatorname{Soc}\left(M_{\varepsilon}(\lambda)\right)$ is $w_{0}(\lambda-2(1-l) \rho)$.

But $\lambda-2(l-1) \rho$ is a weight of $L_{\varepsilon}\left(W_{0}(\lambda-2(1-l) \rho)=L_{\varepsilon}\left(W_{0}(\lambda+2 \rho)\right)\right.$ and hence this simple U_{ε} - module is isomorphic to the U_{ε} module socle of $M_{\varepsilon}(\lambda)$.

4. STEINBERG MODULE IN QUANTUM GROUPS

One can naturally expect to define a Steinberg module in Quantum groups. [6]
We let $M_{\varepsilon}(\lambda), M_{\varepsilon}(\mu), M_{\varepsilon, r}(\lambda)$ to denote the Verma modules over U_{ε} and $L_{\varepsilon}(\lambda), L_{\varepsilon, r}(\lambda)$ the corresponding (unique) simple factor modules. From the corollary 3.6 we get

$$
\begin{equation*}
\operatorname{Soc}\left(\mathrm{M}_{\varepsilon, \mathrm{r}}(\lambda)\right) \cong \mathrm{L}_{\varepsilon, \mathrm{r}}\left(\mathrm{w}_{0}(\lambda+2 \rho)\right) \tag{4.1.1}
\end{equation*}
$$

P. B. SARASIJA*/ STEINBERG MODULES IN QUANTUM GROUPS/ IJMA- 3(3), Mar.-2012, Page: 1154-1161

Now we take $\lambda=(l-1) \rho$ which is in P^{+}.
Then (4.1.1) implies that

$$
\begin{aligned}
\operatorname{Soc}\left(\mathrm{M}_{\varepsilon, r}((l-1) \rho)\right) & \cong \mathrm{L}_{\varepsilon, r}\left(\mathrm{w}_{0}((l-1) \rho+2 \rho)\right) \\
& =\mathrm{L}_{\varepsilon, r}\left(\mathrm{~W}_{0}(l \rho+\rho)\right) \\
& =\mathrm{L}_{\varepsilon, r}((l-1) \rho) \quad\left(\text { since } \varepsilon^{-\rho}=\varepsilon^{l \rho-\rho}=\varepsilon^{(l-1) \rho}\right) \text { for all } \mathrm{r}>0 .
\end{aligned}
$$

There is some non zero vector v in $\operatorname{SocM}_{\varepsilon, r}((l-1) \rho)$ with weight $(l-1) \rho$.
But $M_{\varepsilon, r}((l-1) \rho)_{(l-1) \rho}=\operatorname{Cv}_{\lambda}$. So $v_{\lambda} \in \operatorname{SocM}_{\varepsilon, r}((l-1) \rho)$ and v_{λ} generates $M_{\varepsilon, r}((l-1) \rho)$.
Hence $M_{\varepsilon, r}((l-1) \rho)=\operatorname{SocM}_{\varepsilon, r}((l-1) \rho) \cong L_{\varepsilon, r}((l-1) \rho)$ for all $r \in N$.
We call this the Steinberg module St_{r}, which is of dimension l^{N}, where $\mathrm{N}=\left|\mathrm{R}^{+}\right|$. At the same time, we know that there exists a natural injective U_{r} - homomorphism,

$$
\mathrm{f}_{\mathrm{r}}: \mathrm{M}_{\varepsilon, \mathrm{r}}((l-1) \rho) \rightarrow \mathrm{M}_{\varepsilon}((l-1) \rho) \quad[\text { From (2.2.3) }]
$$

Hence we conclude that

$$
\begin{aligned}
\mathrm{St}_{\mathrm{r}}=\mathrm{M}_{\varepsilon, r}((l-1) \rho) & =\operatorname{Soc}_{\varepsilon, r}((l-1) \rho) \subset \operatorname{SocM}_{\varepsilon, r}((l-1) \rho) \\
& \cong \mathrm{L}_{\varepsilon}((l-1) \rho) \quad
\end{aligned}
$$

We call $\mathrm{L}_{\varepsilon}((l-1) \rho)$ the Universal Steinberg module.

REFERENCES

[1] De Concini and V.G. Kac, 'Representations of quantum groups at roof of 1', in Operator algebras, unitary representations, enveloping algebras and invariant theory, Progr. Math. (Paris 1989) 92 (Birkhauser Boston, Boston), pp. 471-506.
[2] V. G. Drinfield, 'Quantum group', Proc. ICM, Berkely (1986), 798-820.
[3] A. V. Jeyakumar and P. B.Sarasija, Socles of verma modules in quantum groups, Bull. of the Australian Mathematical society, vol.47,No.2, (1993).221-232.
[4] G. Lusztig, 'Modular representations and quantum groups', Contemp.Math. 82 1989), 58-77.
[5] G. Lusztig, 'Finite dimensional Hopf algebras arising from quantum groups', Amer. Math. Soc. 3 (1990), 259-296.
[6] G. Lusztig, 'Quantum group at root of 1', Geom. Dedicata (1990)

