THE METHOD OF CENTERED SYSTEM OF SMOOTH FUZZY TOPOLOGICAL SPACE VIA t-OPEN SETS

T. Nithiya
Department of Mathematics, Shri Sakthikailass Women’s College, Salem-636003, Tamil Nadu, India
E-mail: nithiyaniva@gmail.com

M. K. Uma and E. Roja
Department of Mathematics, Sri Sarada College for Women, Salem-636016, Tamil Nadu, India
(Received on: 03-02-12; Accepted on: 25-02-12)

ABSTRACT

In this paper, we introduce maximal smooth fuzzy t-centered system, the smooth fuzzy space \(\theta(R) \). The concept of t-absolute \(\omega(R) \) of a smooth fuzzy topological space is studied.

Key Words: Maximal smooth fuzzy t-centered system, the smooth fuzzy space \(\theta(R) \) and t-absolute \(\omega(R) \).

2000 Mathematics Subject Classification: 54A40-03E72.

INTRODUCTION AND PRELIMINARIES:

The concept of fuzzy set was introduced by Zadeh [11]. Since then the concept has invaded nearly all branches of Mathematics. In 1985, a fuzzy topology on a set \(X \) was defined as a fuzzy subset \(T \) of the family \(I^X \) of fuzzy subsets of \(X \) satisfying three axioms, the basic properties of such a topology were represented by Sostak [9]. In 1992, Ramadan [6], studied the concepts of smooth topological spaces. The method of centered systems in the theory of topology was introduced in [5]. In 2007, the above concept was extended to fuzzy topological spaces by Uma, Roja and Balasubramanian [10]. In this paper, t-absolute \(\omega(R) \) is studied in the theory of smooth fuzzy topology. The concept of fuzzy compactness was found in [3]. The fundamental theorem on smooth fuzzy t-irreducible* and smooth fuzzy t-perfect mapping is also studied.

Definition 1.1: [9] A function \(T: I^X \rightarrow I \) is called a smooth fuzzy topology on \(X \) if it satisfies the following conditions:

(a) \(T(0) = T(1) = 1 \)
(b) \(T(\mu_1 \wedge \mu_2) \geq T(\mu_1) \wedge T(\mu_2) \) for any \(\mu_1, \mu_2 \in I^X \)
(c) \(T(\bigvee_{i \in I} \mu_i) \geq \bigwedge_{i \in I} T(\mu_i) \) for any \(\{ \mu_i \}_{i \in I} \in I^X \)

The pair \((X, T)\) is called a smooth fuzzy topological space.

Definition 1.2: [10] Let \(R \) be a fuzzy Hausdorff space. A system \(p = \{ \lambda_{\alpha} \} \) of fuzzy open sets of \(R \) is called fuzzy centered system if any finite collection of fuzzy sets of the system has a non-zero intersection. The system \(p \) is called maximal fuzzy centered system or a fuzzy end if it cannot be included in any larger fuzzy centered system.

Definition 1.3: [10] A fuzzy Hausdorff space \(R \) is extremally disconnected if the closure of an open set is open.

Definition 1.4: [10] A fuzzy Hausdorff space \(R \) is extremally disconnected if the closure of an open set is open.

Corresponding author: T. Nithiya, E-mail: nithiyaniva@gmail.com
where \(\lambda(t) = \bigwedge \{ \lambda(s) : s < t \} \) and \(\lambda(t^+) = \bigvee \{ \lambda(s) : s > t \} \). The natural L-fuzzy topology on R (L) is generated from the sub-basis \(\{ L_0, R_0 \} \) where \(L_0(\lambda) = \lambda(t^-) \) and \(R_0(\lambda) = \lambda(t^+) \).

Definition 1.6: [4] The L-fuzzy unit interval \(I(L) \) is a subset of R(L) such that \(\{ \lambda \} \in I(L) \) if \(\lambda(t) = 1 \) for \(t < 0 \) and \(\lambda(t) = 0 \) for \(t > 1 \).

Definition 1.7: [6] A fuzzy set \(\lambda \) is quasi-coincident with a fuzzy set \(\mu \), denoted by \(\lambda \sqcap \mu \), if there exists \(x \in X \) such that \(\lambda(x) + \mu(x) > 1 \). Otherwise \(\lambda \not\sqcap \mu \).

2. THE SPACES OF MAXIMAL SMOOTH FUZZY \(t \)-centered SYSTEMS

Definition 2.1: A smooth fuzzy topological space \((X, T) \) is said to be smooth fuzzy \(t \)-Hausdorff if for any two distinct points \(x, y \in X \), there exists \(r \)-fuzzy \(t \)-open sets \(\lambda, \mu \in I^X \) such that, \(x \in \lambda \) and \(y \in \mu \) with \(\lambda \sqcap \mu \).

Notation 2.1: A smooth fuzzy \(t \)-Hausdorff space is denoted by \(R \).

Definition 2.2: Let \(R \) be a smooth fuzzy \(t \)-Hausdorff space. A system \(p = \{ \lambda_i \} \) of \(r \)-fuzzy \(t \)-open sets of \(R \) is called a smooth fuzzy \(t \)-centered system if any finite collection of \(\{ \lambda_i \} \) is such that \(\lambda_i \not\sqcap \lambda_j \) for \(i \neq j \). The system \(p \) is called maximal smooth fuzzy \(t \)-centered system or a smooth fuzzy \(t \)-end if it cannot be included in any larger smooth fuzzy \(t \)-centered system of \(r \)-fuzzy \(t \)-open sets.

Definition 2.3: Let \((X, T) \) be a smooth fuzzy topological space. Its \(Q^* \) \(t \)-neighbourhood structure is a mapping \(Q^* : X \times I^X \to I \) (\(X \) denotes the totality of all fuzzy points in \(X \)), defined by \(Q^*(X^t_0, \lambda) = \sup \{ \mu : \mu \) is an \(r \)-fuzzy \(t \)-open set, \(\mu \leq \lambda \), \(X^t_0 \in \mu \} \) and \(\lambda = \inf_{x \in \phi} Q^*(X^t_0, \lambda) \) is \(r \)-fuzzy \(t \)-open set.

We note the following properties of maximal smooth fuzzy \(t \)-centered system.

1. If \(\lambda_i \in p \) (\(i = 1, 2, 3 \ldots, n \)), then \(\bigwedge_{i=1}^n \lambda_i \in p \).

Proof: If \(\lambda_i \in p \) (\(i = 1, 2, 3 \ldots, n \)), then \(\lambda_i \not\sqcap \lambda_j \) for \(i \neq j \). If \(\bigwedge_{i=1}^n \lambda_i \not\in p \), then \(p \cup \{ \bigwedge_{i=1}^n \lambda_i \} \) will be a larger smooth fuzzy \(t \)-end than \(p \). This contradicts the maximality of \(p \). Therefore, \(\bigwedge_{i=1}^n \lambda_i \in p \).

2. If \(\emptyset \neq \lambda \sqcap \mu \), \(\lambda \in p \) and \(\mu \) is an \(r \)-fuzzy \(t \)-open set, then \(\mu \in p \).

Proof: If \(\mu \not\in p \), then \(p \cup \{ \mu \} \) will be a larger smooth fuzzy \(t \)-end than \(p \). This contradicts the maximality of \(p \).

3. If \(\lambda \) is \(r \)-fuzzy \(t \)-open set, then \(\lambda \not\in p \) iff there exists \(\mu \in p \) such that \(\lambda \not\sqcap \mu \).

Proof: Let us suppose that \(\lambda \not\in p \) for each \(r \)-fuzzy \(t \)-open set. If there exists no \(\mu \in p \) such that \(\lambda \not\sqcap \mu \), then \(\lambda \not\sqcap \mu \) for all \(\mu \in p \). That is, \(p \cup \{ \lambda \} \) will be a larger smooth fuzzy \(t \)-end than \(p \). This contradicts the maximality of \(p \).

Conversely, suppose that there exists \(\mu \in p \) such that \(\lambda \not\sqcap \mu \). If \(\lambda \in p \), then \(\lambda \not\sqcap \mu \), which is a contradiction. Hence \(\lambda \not\in p \).

4. If \(\lambda_1 \lor \lambda_2 = \lambda_3 \in p \), \(\lambda_1 \) and \(\lambda_2 \) are \(r \)-fuzzy \(t \)-open sets with \(\lambda_1 \not\sqcap \lambda_2 \), then either \(\lambda_1 \in p \) or \(\lambda_2 \in p \).

Proof: Let us suppose that both \(\lambda_1 \in p \) and \(\lambda_2 \in p \). Then \(\lambda_1 \not\sqcap \lambda_2 \), which is a contradiction. Hence either \(\lambda_1 \in p \) or \(\lambda_2 \in p \).

Note 2.1: Every smooth fuzzy \(t \)-centered system of \(r \)-fuzzy \(t \)-open sets can be extended in at least one way to a maximum one.

3. THE SMOOTH FUZZY MAXIMAL STRUCTURE IN \(\theta(R) \)

Let \(\theta(R) \) denote the collection of all smooth \(t \)-ends belonging to \(R \). We introduce a smooth fuzzy maximal structure in \(\theta(R) \) in the following way:
Let P_λ be the set of all smooth fuzzy t-ends that include λ as an element, where λ is a r-fuzzy t-open set of R. Now, P_λ is a smooth fuzzy Q^t-neighbourhood structure of each smooth fuzzy t-end contained in P_λ. Thus to each r-fuzzy t-open set λ of R corresponds to a smooth fuzzy Q^t-neighbourhood structure P_λ in $\theta(R)$.

Proposition 3.1: If λ and μ are r-fuzzy t-open sets, then

(a) $P_{\lambda \vee \mu} = P_\lambda \cup P_\mu$.

(b) $P_\lambda \cup P_{T-C_{T(R)}(\lambda, r)} = \theta(R)$.

Proof:

(a) Let $p \in P_\lambda$. That is, $\lambda \in p$. Then by property (2), $\lambda \vee \mu \in p$. That is, $p \in P_{\lambda \vee \mu}$. Hence $P_\lambda \cup P_\mu \subseteq P_{\lambda \vee \mu}$. Let $p \in P_{\lambda \vee \mu}$. That is, $\lambda \vee \mu \in p$. By the definition of P_λ, $\lambda \in p$ or $\mu \in p$. That is, $p \in P_\lambda$ or $p \in P_\mu$, therefore, $p \in P_\lambda \cup P_\mu$. This shows that $P_\lambda \cup P_\mu \supseteq P_{\lambda \vee \mu}$. Hence, $P_{\lambda \vee \mu} = P_\lambda \cup P_\mu$.

(b) If $p \notin P_{T-C_{T(R)}(\lambda, r)}$, then $\overline{\lambda} - C_{T(R)}(\lambda, r) \notin p$. That is, $\lambda \notin p$ and $p \notin P_\lambda$. Hence,

$$\theta(R) - P_{T-C_{T(R)}(\lambda, r)} \subseteq P_\lambda.$$ If $p \in P_\lambda$, then $\lambda \in p$. That is, $\overline{\lambda} - C_{T(R)}(\lambda, r) \notin p$, $p \notin \theta(R) - P_{T-C_{T(R)}(\lambda, r)}$. Hence, $P_\lambda \cup P_{T-C_{T(R)}(\lambda, r)} = \theta(R)$.

Proposition 3.2: $\theta(R)$ with the smooth fuzzy maximal structure described above is a smooth fuzzy t-compact space and has a base of smooth fuzzy Q^t-neighbourhoods $\{P_\lambda\}$ that are both smooth fuzzy t-open and smooth fuzzy t-closed ends.

Proof: It follows from the definition above that $\theta(R)$ is a smooth fuzzy T_1 space. Each P_λ in $\theta(R)$ is smooth fuzzy t-open end by definition and by (b) of Proposition 3.1. it follows that it is smooth fuzzy t-closed. Thus $\theta(R)$ has Q^t-neighbourhoods $\{P_\lambda\}$ that are both smooth fuzzy t-open and smooth fuzzy t-closed. We now show that $\theta(R)$ is smooth fuzzy t-compact. Let $\{P_{\lambda_i}\}$ be a covering of $\theta(R)$ where each P_{λ_i} is smooth fuzzy t-open. If it is impossible to pick a finite subcovering from the covering, then no set of the form $F = \bigcap_{i=1}^n t-C_{T(R)}(\lambda_{\alpha_i}, r)$ is λ, since otherwise the sets $P_{\lambda_{\alpha_i}}$ would form a finite covering of $\theta(R)$. Hence the sets $F = \bigcap_{i=1}^n t-C_{T(R)}(\lambda_{\alpha_i}, r)$ form a smooth fuzzy t-centered system.

It may be extended to a maximal smooth fuzzy t-centered system p. This maximal smooth fuzzy t-centered system is not contained in $\{P_{\alpha_i}\}$ since it contains in particular, all the $t-C_{T(R)}(\lambda_{\alpha_i}, r)$. This contradiction proves that $\theta(R)$ is smooth fuzzy t-compact.

4. THE ABSOLUTE $\omega_0(R)$ OF A SMOOTH FUZZY TOPOLOGICAL SPACE R.

The maximal smooth fuzzy t-centered system of r-fuzzy t-open sets of R regarded as elements of the space $\theta(R)$, fall into two classes, those smooth fuzzy t-ends each of which contain all r-fuzzy t-open sets containing a fuzzy point of R and the smooth fuzzy t-ends not containing such smooth fuzzy t-system of r-fuzzy t-open sets. The space of all smooth fuzzy t-ends of first type of $\theta(R)$ is called the smooth fuzzy t-absolute of R and is denoted by $\omega_0(R)$. In $\omega_0(R)$ each fuzzy point α of R is represented by smooth fuzzy t-ends containing all r-fuzzy t-open sets containing α.

Now $\omega_0(R) = \{\lambda(\alpha) / \alpha$ is a fuzzy point of R, where $\lambda(\alpha)$ denotes the set of all smooth fuzzy t-ends containing all r-fuzzy t-open sets containing α. The smooth fuzzy t-absolute space $\omega_0(R)$ is mapped in a natural way onto R. If $p \in \omega_0(R)$, then we define $\pi_p(p) = \alpha$, where α is the fuzzy point such that all r-fuzzy t-open sets containing α belongs to p. π_p is called smooth fuzzy natural mapping of $\omega_0(R)$ onto R.

Definition 4.1: Let R_1 and R_2 be any two smooth fuzzy t-Hausdorff spaces. A mapping $f: R_1 \rightarrow R_2$ is called smooth fuzzy t-irreducible* if there is no proper r-fuzzy t-closed set λ of R_1 such that $f(\lambda) = \overline{\lambda}_{R_2}$.

Definition 4.2: Let R_1 and R_2 be any two smooth fuzzy t-Hausdorff spaces. A mapping $f: R_1 \rightarrow R_2$ is called smooth fuzzy t-perfect if the image of a r-fuzzy t-closed set is r-fuzzy t-closed and the inverse image of each fuzzy point is smooth fuzzy t-compact.
Definition 4.3: Let R_1 and R_2 be any two smooth fuzzy t-Hausdorff spaces. A mapping $f: R_1 \rightarrow R_2$ is called smooth fuzzy t-compact if the inverse image of each λ is smooth fuzzy t-compact.

Proposition 4.1: The natural mapping π_0 of $\omega(R)$ onto R is smooth fuzzy t-irreducible* and smooth fuzzy t-compact.

Proof: Let β be a fuzzy point of R. If $\pi_0(P) = \beta$, $\pi_0^{-1}(\beta)$ is a set of all smooth fuzzy t-ends p which contain all the r-fuzzy t-open sets containing β. Since $\theta(R)$ has a base of smooth fuzzy Q^t-neighbourhood structure $\{P_\lambda\}$ that are both smooth fuzzy t-open and smooth fuzzy t-closed, $\pi_0^{-1}(\beta)$ is a r-fuzzy t-closed set in $\theta(R)$. Since $\theta(R)$ is smooth fuzzy t-compact, $\pi_0^{-1}(\beta)$ is smooth fuzzy t-compact. Therefore π_0 is smooth fuzzy t-compact. To prove π_0 is smooth fuzzy t-irreducible* it is enough to show that every r-fuzzy t-open set in $\omega(R)$ contains whole of some set $\pi_0^{-1}(\beta)$, where $\beta \leq \lambda$, and because $\{P_\lambda\}$ is a Q^t-neighbourhood in $\theta(R)$.

Proposition 4.2: If $f : R_1 \rightarrow R_2$ is a smooth fuzzy t-irreducible* and t-closed, then the image of every r-fuzzy t-open set $\lambda \neq 0$ in R_1 is a r-fuzzy t-open set in R_2 with $f(\lambda) \neq 0$.

Proof: Let λ be a r-fuzzy t-open set with $\lambda \neq 0$ in R_1. Since f is smooth fuzzy t-closed, $f(\lambda - r)$ is also a r-fuzzy t-closed. Since f is onto, $f(\lambda - r) = \overline{f(\lambda)}$. Therefore $f(\lambda)$ is a r-fuzzy t-open set in R_2. Since f is smooth fuzzy t-irreducible* $f(\overline{\lambda - r}) \neq 0$. That is, $\overline{f(\lambda)} = \overline{f(\overline{\lambda})} \Rightarrow f(\lambda) \neq 0$.

Notation: t-$\text{Int}(\lambda, r)$ denotes the interior of an fuzzy set λ.

Proposition 4.3: If f is a smooth fuzzy t-irreducible* mapping of R_1 onto R_2, $\text{Int}_{R_1}(f^{-1}(\lambda), r) \neq 0$ for every r-fuzzy t-open set $\lambda \neq 0$ in R_2.

Proof: Since f is smooth fuzzy t-closed and smooth fuzzy t-irreducible*, $f(\overline{\lambda - r}) \neq 0$. By Proposition 4.2 it follows that $\text{Int}_{R_1}(f^{-1}(\lambda), r) \neq 0$.

5. The fundamental theorem on smooth fuzzy t-irreducible* and smooth fuzzy t-perfect mapping.

Theorem 5.1: Let R_1 and R_2 be smooth fuzzy t-Hausdorff spaces. Let f be a smooth fuzzy t-irreducible* and smooth fuzzy t-perfect mapping of R_1 onto R_2. Then there exists a smooth fuzzy t-homeomorphism ψ of $\omega(R_1)$ onto $\omega(R_2)$ such that $f \circ \pi_{R_1} = \pi_{R_2} \circ \psi$.

Proof: Let $\{\lambda\}$ be a maximal smooth fuzzy t-centered system of r-fuzzy t-open sets in R_1. In R_2 consider the system $\{t$-$\text{Int}_{R_2}(f(\lambda), r)\}$, where t-$\text{Int}_{R_2}(f(\lambda), r)$ is an r-fuzzy t-open, by Proposition 4.3 each of its sets is non-zero. Clearly the system is smooth fuzzy t-centered. Extend it to a maximal smooth fuzzy t-centered system of r-fuzzy t-open sets in R_2, and prove that this extension is unique. Suppose that there exist two r-fuzzy t-open sets $\lambda_1, \lambda_2 \in R_2$ with $\lambda_1 \leq \lambda_2$, such that $\lambda_1 \leq \lambda_2$ t-$\text{Int}_{R_2}(f(\lambda), r)$ and $\lambda_2 \leq \lambda_2$ t-$\text{Int}_{R_2}(f(\lambda), r)$ for every λ in $\{\lambda\}$. Now, t-$\text{Int}_{R_2}(f^{-1}(\lambda_1), r) \leq t$-$\text{Int}_{R_2}(f^{-1}(\lambda_2), r)$. But this is impossible, because $\{\lambda\}$ is maximal smooth fuzzy t-centered system. Thus $\{t$-$\text{Int}_{R_2}(f(\lambda), r)\}$ can be extended in only one way to a maximal smooth fuzzy t-centered system $\{\gamma_i\}$ where γ_i is an r-fuzzy t-open set.
Assume that \(\{ \lambda \} \) contains all r-fuzzy t-open sets \(\lambda_\alpha \) containing the fuzzy point \(\alpha \) in \(R_1 \) and show that \(\{ \gamma \} \) contains all r-fuzzy t-open sets \(\gamma_\beta \) containing the fuzzy point \(\beta \) in \(R_2 \) such that \(\beta = f(\alpha) \). Let \(\delta_\beta \) be r-fuzzy t-open set containing the fuzzy point \(\beta \). Because \(f \) is smooth fuzzy t-irreducible* and smooth fuzzy t-closed, t-Int_{f^{-1}(\delta_\beta)}(r) is r-fuzzy t-open set containing the fuzzy point \(\alpha \), \(t-\text{Int}_{f^{-1}(\delta_\beta)}(r) \in \{ \lambda \} \).

The set \(t-\text{Int}_{f^{-1}(\delta_\beta)}(r) \) is r-fuzzy t-open set such that \(\gamma = \{ \gamma \} \) is a point of \(o(R_2) \). Let \(\psi(p) = q \), to show that \(\psi \) is a mapping of \(o(R_1) \) onto \(o(R_2) \). Let \(q = \{ \gamma \} \in o(R_2) \).

Consider the system \(\{ t-\text{Int}_{f^{-1}(\delta_\beta)}(r) \} \) of r-fuzzy t-open sets in \(R_1 \). The system is smooth fuzzy t-centered. We extend it to a maximal smooth fuzzy t-centered system of r-fuzzy t-open sets \(p = \{ \lambda \} \) and consider the point \(\psi(p) \). As we have shown, \(t-\text{Int}_{f^{-1}(\lambda)}(r) \) may be extended in a unique way to a maximal system \(\{ \gamma \} \). To show that \(\psi(p) = q \), it is sufficient to show that \(\{ \gamma \} < \{ \gamma \} \) and for this, it is enough to show that \(\gamma \) \(t-\text{Int}_{f^{-1}(\lambda)}(r) \) for each \(\gamma \in \{ \gamma \} \) and each \(t-\text{Int}_{f^{-1}(\lambda)}(r) \in \{ t-\text{Int}_{f^{-1}(\lambda)}(r) \} \). Clearly \(\gamma \in t-\text{Int}_{f^{-1}(\lambda)}(r) \). Let \(\eta = \emptyset \) be r-fuzzy t-open set such that \(\eta \leq \lambda \) \(t-\text{Int}_{f^{-1}(\lambda)}(r) \) and let \(\alpha \leq \eta \) be such that \(f(\alpha) \leq \gamma \). Then \(t-\text{Int}_{f^{-1}(\lambda)}(r) \) is r-fuzzy t-open set containing the fuzzy point \(\beta \), \(f(\alpha) \in \{ \lambda \} \) and \(t-\text{Int}_{f^{-1}(\lambda)}(r) \leq t-\text{Int}_{f^{-1}(\lambda)}(r) \). On the other hand, \(t-\text{Int}_{f^{-1}(\lambda)}(r) \subseteq t-\text{Int}_{f^{-1}(\lambda)}(r) \). Therefore \(\psi(p) = q \). It is onto. The mapping \(\psi \) is one to one. For \(p_1 \neq p_2 \) then there are r-fuzzy t-open sets \(\lambda_1 \) and \(\lambda_2 \) such that \(\lambda_1 \leq \lambda_2 \) and \(f(\lambda_1) \neq f(\lambda_2) \). Thus \(\psi(p_1) \neq \psi(p_2) \). The mapping \(\psi \) is one to one of \(R_1 \) into \(R_2 \) taking \(o(R_1) \) onto \(o(R_2) \). Let \(\rho = \{ \lambda \} \) be an arbitrary smooth fuzzy t-end in \(R_1 \), that is an element of \(o(R_1) \) and let \(q = \psi(p) = \{ \gamma \} \). Now prove \(\psi(p) = \{ \gamma \} \) and \(p = o(R_1) \). Then \(\lambda = \gamma \). So \(t-\text{Int}_{f^{-1}(\lambda)}(r) \in \psi(p) \) which means that \(\psi(p) \subseteq \psi(t-\text{Int}_{f^{-1}(\lambda)}(r)) \). This proves that \(\psi \) is a smooth fuzzy t-homeomorphism. To prove the theorem we have to show that \(f \circ o_{\pi_{R_1}} = \pi_{R_2} \circ o \psi \). Consider the mapping \(\psi \) only on \(o(R_1) \) \(\subseteq o(R_1) \). From the construction of \(\psi \) it follows that every smooth fuzzy t-end containing all r-fuzzy t-open sets \(\lambda_1 \) containing \(\alpha \) is mapped by \(\psi \) into a smooth fuzzy t-end containing \(\lambda_1 \) with r-fuzzy t-open sets containing fuzzy point \(\beta \), \(\psi \in (\pi_{R_1}^{-1}(\alpha)) \subseteq (\pi_{R_2}^{-1}(\beta)) \). Hence \(f \circ o_{\pi_{R_1}} = \pi_{R_2} \circ o \psi \). Thus the theorem proved.

Corollary 5.2: The smooth fuzzy t-absolute of \(R_1 \) and \(R_2 \) are smooth fuzzy t-homeomorphism if there exists a smooth fuzzy topological space \(R \) such that \(R \) can be mapped onto both \(R_1 \) and \(R_2 \) by smooth fuzzy t-irreducible* and smooth fuzzy t-perfect mapping.

Proof: Let \(f_1 \) be a smooth fuzzy t-irreducible* and smooth fuzzy t-perfect mapping from \(R \) onto \(R_1 \) and let \(f_2 \) be smooth fuzzy t-irreducible* and smooth fuzzy t-perfect mapping from \(R \) into \(R_2 \). By theorem 5.1 there exists a smooth fuzzy t-homeomorphism \(\psi \) of \(o(R) \) onto \(o(R_2) \) such that \(f_1 \circ o_{\pi_{R_1}} = \pi_{R_1} \circ o \psi \) and there exists a smooth fuzzy t-homeomorphism \(\pi_2 \) of \(o(R) \) onto \(o(R_2) \) such that \(f_2 \circ o_{\pi_{R_1}} = \pi_{R_2} \circ o \psi \). Therefore \(o(R_1) \) and \(o(R_2) \) are smooth fuzzy t-homeomorphic.

REFERENCE
