THE METHOD OF CENTERED SYSTEM OF SMOOTH FUZZY TOPOLOGICAL SPACE VIA t- OPEN SETS

T. Nithiya

Department of Mathematics, Shri Sakthikailassh Women's College, Salem-636003, Tamil Nadu, India E-mail: nithiyaniva@gmail.com

M. K. Uma and E. Roja

Department of Mathematics, Sri Sarada College for Women, Salem-636016, Tamil Nadu, India

(Received on: 03-02-12; Accepted on: 25-02-12)

ABSTRACT

In this paper, we introduce maximal smooth fuzzy t-centered system, the smooth fuzzy space $\theta(R)$. The concept of t-absolute $\omega(R)$ of a smooth fuzzy topological space is studied.

Key Words: Maximal smooth fuzzy t-centered system, the smooth fuzzy space $\theta(R)$ and t-absolute $\phi(R)$.

2000 Mathematics Subject Classification: 54A40-03E72.

INTRODUCTION AND PRELIMINARIES:

The concept of fuzzy set was introduced by Zadeh [11]. Since then the concept has invaded nearly all branches of Mathematics. In 1985, a fuzzy topology on a set X was defined as a fuzzy subset T of the family I^X of fuzzy subsets of X satisfying three axioms, the basic properties of such a topology were represented by Sostak [9]. In 1992, Ramadan [6], studied the concepts of smooth topological spaces. The method of centered systems in the theory of topology was introduced in [5]. In 2007, the above concept was extended to fuzzy topological spaces by Uma, Roja and Balasubramanian [10]. In this paper, t-absolute $\omega(R)$ is studied in the theory of smooth fuzzy topology. The concept of fuzzy compactness was found in [3]. The fundamental theorem on smooth fuzzy t-irreducible* and smooth fuzzy t-perfect mapping is also studied.

Definition 1.1: [9] A function T: $I \to I$ is called a smooth fuzzy topology on X if it satisfies the following conditions:

(a)
$$T(\overline{0}) = T(\overline{1}) = 1$$

(b) $T(\mu_1 \land \mu_2) \ge T(\mu_1) \land T(\mu_2)$ for any $\mu_1, \mu_2 \in I^X$

$$\text{(c)} \ T\bigg(\underset{i \in \Gamma}{\vee} \mu_i \bigg) \geq \underset{i \in \Gamma}{\wedge} T\big(\mu_i \big) \text{ for any } \big\{ \ \mu_i \big\}_{i \in \Gamma} \in I^X$$

The pair (X, T) is called a smooth fuzzy topological space.

Definition 1.2: [10] Let R be a fuzzy Hausdroff space. A system $p = \{\lambda_{\alpha}\}$ of fuzzy open sets of R is called fuzzy centered system if any finite collection of fuzzy sets of the system has a non-zero intersection. The system p is called maximal fuzzy centered system or a fuzzy end if it cannot be included in any larger fuzzy centered system.

Definition 1.3: [10] Let $\theta(R)$ denote the collection of all fuzzy ends belonging to R. We introduce a fuzzy topology in $\theta(R)$ in the following way: Let P_{λ} be the set of all fuzzy ends that include λ as an element, where λ is a fuzzy open set of R. Now P_{λ} is a fuzzy neighbourhood of each fuzzy end contained in P_{λ} . Thus to each fuzzy open set of R, there corresponds a fuzzy neighbourhood P_{λ} in $\theta(R)$.

Definition 1.4: [10] A fuzzy Hausdroff space R is extremally disconnected if the closure of an open set is open.

Definition 1.5: [3] The fuzzy real line R (L) is the set of all monotone decreasing elements $\lambda \in L^R$ satisfying $\vee \{ \lambda(t)/t \in R \} = 1$ and $\wedge \{ \lambda(t)/t \in R \} = 0$, after the identification of λ , $\mu \in L^R$ iff $\lambda(t-) = \mu(t-)$ and $\lambda(t+) = \mu(t+)$ for all $t \in R$,

T. Nithiya, M. K. Uma and E. Roja/ THE METHOD OF CENTERED SYSTEM OF SMOOTH FUZZY TOPOLOGICAL SPACE VIA t- OPEN SETS / IJMA- 3(3), Mar.-2012, Page: 1187-1192

where $\lambda(t-) = \Lambda \{ \lambda(s) : s < t \}$ and $\lambda(t+) = V \{ \lambda(s) : s > t \}$. The natural L-fuzzy topology on R (L) is generated from the sub-basis $\{L_t, R_t\}$ where $L_t(\lambda) = \lambda(t-)'$ and $R_t(\lambda) = \lambda(t+)$.

Definition 1.6: [4] The L-fuzzy unit interval I(L) is a subset of R(L) such that $[\lambda] \in I(L)$ if $\lambda(t) = 1$ for t < 0 and $\lambda(t) = 0$ for t > 1.

Definition 1.7: [6] A fuzzy set λ is quasi-coincident with a fuzzy set μ , denoted by λ q μ , if there exists $x \in X$ such that $\lambda(x) + \mu(x) > 1$. Otherwise $\lambda Q \mu$.

2. THE SPACES OF MAXIMAL SMOOTH FUZZY t-centered SYSTEMS

Definition 2.1: A smooth fuzzy topological space (X,T) is said to be smooth fuzzy t-Hausdorff iff for any two distinct fuzzy points x_{t_1} , x_{t_2} in X, there exists r-fuzzy t-open sets λ , $\mu \in I^X$ such that, $x_{t_1} \in \lambda$ and $x_{t_2} \in \mu$ with λ q μ .

Notation 2.1: A smooth fuzzy t-Hausdorff space is denoted by R.

Definition 2.2: Let R be a smooth fuzzy t-Hausdorff space. A system $p = \{\lambda_i\}$ of r-fuzzy t-open sets of R is called a smooth fuzzy t-centered system if any finite collection of $\{\lambda_i\}$ is such that $\lambda_I \not Q \lambda_j$ for $i \neq j$. The system p is called maximal smooth fuzzy t-centered system or a smooth fuzzy t-end if it cannot be included in any larger smooth fuzzy t-centered system of r-fuzzy t-open sets.

Definition 2.3: Let (X,T) be a smooth fuzzy topological space. Its Q^* t-neighbourhood structure is a mapping Q^* : $X \times I \xrightarrow{X} \to I$ (X denotes the totality of all fuzzy points in X), defined by $Q^*(x_0^t, \lambda) = \sup\{ \mu : \mu \text{ is an r-fuzzy t-open set, } \mu \leq \lambda, \ x_0^t \in \mu \}$ and $\lambda = \inf_{x_0^t \neq \lambda} Q^*(x_0^t, \lambda)$ is r-fuzzy t-open set.

We note the following properties of maximal smooth fuzzy t-centered system.

(1) If
$$\lambda_i \in p$$
 ($i = 1, 2, 3...n$), then $\bigwedge_{i=1}^n \lambda_i \in p$.

Proof: If $\lambda_i \in p$ (i=1,2,3...n), then $\lambda_i \not\in p$ (i=1,2,3...n).

(2) If $0 \neq \lambda < \mu, \lambda \in p$ and μ is an r-fuzzy t-open set, then $\mu \in p$.

Proof: If $\mu \notin p$, then $p \cup \{\mu\}$ will be a larger smooth fuzzy t-end than p. This contradicts the maximality of p.

(3) If λ is r-fuzzy t-open set, then $\lambda \notin p$ iff there exists $\mu \in p$ such that $\lambda \neq \mu$.

Proof: Let us suppose that $\lambda \notin p$ for each r-fuzzy t-open set. If there exists no $\mu \in p$ such that $\lambda \neq \mu$, then $\lambda \neq \mu$ for all $\mu \in p$. That is, $p \cup \{\lambda\}$ will be a larger smooth fuzzy t-end than p. This contradicts the maximality of p.

Conversely, suppose that there exists $\mu \in p$ such that $\lambda \neq \mu$. If $\lambda \in p$, then $\lambda \neq \mu$, which is a contradiction. Hence $\lambda \notin p$.

(4) If $\lambda_1 \vee \lambda_2 = \lambda_3 \in p$, λ_1 and λ_2 are r-fuzzy t-open sets with $\lambda_1 \neq \lambda_2$, then either $\lambda_1 \in p$ or $\lambda_2 \in p$.

Proof: Let us suppose that both $\lambda_1 \in p$ and $\lambda_2 \in p$. Then $\lambda_1 \not q \lambda_2$, which is a contradiction. Hence either $\lambda_1 \in p$ or $\lambda_2 \in p$.

Note 2.1: Every smooth fuzzy t-centered system of r-fuzzy t-open sets can be extended in atleast one way to a maximum one.

3. THE SMOOTH FUZZY MAXIMAL STRUCTURE IN $\theta(R)$

Let $\theta(R)$ denote the collection of all smooth fuzzy t-ends belonging to R. We introduce a smooth fuzzy maximal structure in $\theta(R)$ in the following way:

T. Nithiya, M. K. Uma and E. Roja/ THE METHOD OF CENTERED SYSTEM OF SMOOTH FUZZY TOPOLOGICAL SPACE VIA t- OPEN SETS / IJMA- 3(3), Mar.-2012, Page: 1187-1192

Let P_{λ} be the set of all smooth fuzzy t-ends that include λ as an element, where λ is a r-fuzzy t-open set of R. Now, P_{λ} is a smooth fuzzy Q*t-neighbourhood structure of each smooth fuzzy t-end contained in P_{λ} . Thus to each r-fuzzy t-open set λ of R corresponds to a smooth fuzzy Q*t-neighbourhood structure P_{λ} in $\theta(R)$.

Proposition 3.1: If λ and μ are r-fuzzy t-open sets, then

(a)
$$P_{\lambda \vee \mu} = P_{\lambda} \cup P_{\mu}$$
.

$$\text{(b) } P_{\lambda} \cup \ P_{\overline{1} - C_{T(R)}(\lambda,r)} = \theta(R).$$

Proof:

(a) Let $p \in P_{\lambda}$. That is, $\lambda \in p$. Then by property (2), $\lambda \vee \mu \in p$. That is, $p \in P_{\lambda \vee \mu}$. Hence $P_{\lambda} \cup P_{\mu} \subseteq P_{\lambda \vee \mu}$. Let $p \in P_{\lambda \vee \mu}$. That is, $\lambda \vee \mu \in p$. By the definition of P_{λ} , $\lambda \in p$ or $\mu \in p$. That is, $p \in P_{\lambda}$ or $p \in P_{\mu}$, therefore, $p \in P_{\lambda} \cup P_{\mu}$. This shows that $P_{\lambda} \cup P_{\mu} \supseteq P_{\lambda \vee \mu}$. Hence, $P_{\lambda \vee \mu} = P_{\lambda} \cup P_{\mu}$.

$$\text{(b) If } p \not\in \ P_{\overline{1} - C_{T(R)}(\lambda,r)} \text{, then } \overline{1} - C_{T(R)}(\lambda,r) \not\in \text{p. That is, } \lambda \in \text{p and } p \in P_{\lambda}. \text{ Hence,}$$

$$\theta(R) - \quad P_{\overline{1} - C_{T(R)}(\lambda, r)} \subset P_{\lambda}. \text{ If } p \in P_{\lambda}, \text{ then } \lambda \in p. \text{ That is, } \quad \overline{1} - C_{T(R)}(\lambda, r) \not \in p, p \not \in P_{\overline{1} - C_{T(R)}(\lambda, r)}.$$

Therefore,

$$p \in \theta(R) - P_{\overline{1} - C_{T(R)}(\lambda,r)} \text{ . That is, } \ P_{\lambda} \subset \theta(R) - P_{\overline{1} - C_{T(R)}(\lambda,r)} \text{ . Hence, } P_{\lambda} \cup \ P_{\overline{1} - C_{T(R)}(\lambda,r)} = \theta(R).$$

Proposition 3.2: $\theta(R)$ with the smooth fuzzy maximal structure described above is a smooth fuzzy t-compact space and has a base of smooth fuzzy Q*t-neighbourhoods $\{P_{\lambda}\}$ that are both smooth fuzzy t-open and smooth fuzzy t-closed ends.

Proof: It follows from the definition above that $\theta(R)$ is a smooth fuzzy T_1 space. Each P_{λ} in $\theta(R)$ is smooth fuzzy t-open end by definition and by (b) of Proposition 3.1. it follows that it is smooth fuzzy t-closed. Thus $\theta(R)$ has Q^* t-neighbourhoods $\{P_{\lambda}\}$ that are both smooth fuzzy t-open and smooth fuzzy t-closed. We now show that $\theta(R)$ is smooth fuzzy t-compact. Let $\{P_{\lambda_{\alpha}}\}$ be a covering of $\theta(R)$ where each $P_{\lambda_{\alpha}}$ is smooth fuzzy t-open. If it is impossible to

pick a finite subcovering from the covering, then no set of the form $\bar{1} - \bigvee_{i=1}^{n} t\text{-}C_{T(R)}(\lambda_{\alpha_i}, r)$ is $\bar{0}$, since otherwise the sets

 $P_{\lambda_{\alpha_{\hat{i}}}} \text{ would form a finite covering of } \theta(R). \text{ Hence the sets } \bar{1} - \bigvee_{i=1}^n t\text{-}C_{T(R)}(\lambda_{\alpha_{\hat{i}}}, r) \text{ form a smooth fuzzy t-centered system.}$

It may be extended to a maximal smooth fuzzy t-centered system p. This maximal smooth fuzzy t-centered system is not contained in $\{P_{\lambda_{\alpha}}\}$ since it contains in particular, all the $\bar{1}$ – t- $C_{T(R)}(\lambda_{\alpha},r)$. This contradiction proves that $\theta(R)$ is smooth fuzzy t-compact.

4. THE ABSOLUTE $\omega(R)$ OF A SMOOTH FUZZY TOPOLOGICAL SPACE R.

The maximal smooth fuzzy t-centered system of r-fuzzy t-open sets of R regarded as elements of the space $\theta(R)$, fall into two classes, those smooth fuzzy t-ends each of which contain all r-fuzzy t-open sets containing a fuzzy point of R and the smooth fuzzy t-ends not containing such smooth fuzzy t-system of r-fuzzy t-open sets. The space of all smooth fuzzy t-ends of first type of $\theta(R)$ is called the smooth fuzzy t-absolute of R and is denoted by $\omega(R)$. In $\omega(R)$ each fuzzy point α of R is represented by smooth fuzzy t-ends containing all r-fuzzy t-open sets containing α .

Now $\omega(R) = \bigcup \{\lambda(\alpha) / \alpha \text{ is a fuzzy point of } R$, where $\lambda(\alpha)$ denotes the set of all smooth fuzzy t-ends containing all r-fuzzy t-open sets containing $\alpha\}$. The smooth fuzzy t-absolute space $\omega(R)$ is mapped in a natural way onto R. If $p \in \omega(R)$, then we define $\pi_R(p) = \alpha$, where α is the fuzzy point such that all r-fuzzy t-open sets containing α belongs to p. π_R is called smooth fuzzy natural mapping of $\omega(R)$ onto R.

Definition 4.1: Let R_1 and R_2 be any two smooth fuzzy t-Hausdorff spaces. A mapping $f: R_1 \to R_2$ is called smooth fuzzy t-irreducible* if there is no proper r-fuzzy t-closed set λ of R_1 such that $f(\lambda) = \overline{1}_{R_2}$

Definition 4.2: Let R_1 and R_2 be any two smooth fuzzy t-Hausdorff spaces. A mapping $f: R_1 \to R_2$ is called smooth fuzzy t-perfect if the image of a r-fuzzy t-closed set is r-fuzzy t-closed and the inverse image of each fuzzy point is smooth fuzzy t-compact.

T. Nithiya, M. K. Uma and E. Roja/ THE METHOD OF CENTERED SYSTEM OF SMOOTH FUZZY TOPOLOGICAL SPACE VIA t- OPEN SETS / IJMA- 3(3), Mar.-2012, Page: 1187-1192

Definition 4.3: Let R_1 and R_2 be any two smooth fuzzy t-Hausdorff spaces. A mapping $f: R_1 \to R_2$ is called smooth fuzzy t-compact if the inverse image of each λ is smooth fuzzy t-compact.

Proposition 4.1: The natural mapping π_R of $\omega(R)$ onto R is smooth fuzzy t-irreducible* and smooth fuzzy t-compact.

Proof: Let β be a fuzzy point of R. If $\pi_R(P) = \beta$, $\pi^{-1}_R(\beta)$ is a set of all smooth fuzzy t-ends p which contain all the r-fuzzy t-open sets containing β . Since $\theta(R)$ has a base of smooth fuzzy Q*t-neighbourhood structure $\{P_\lambda\}$ that are both smooth fuzzy t-open and smooth fuzzy t-closed, $\pi_R^{-1}(\beta)$ is a r-fuzzy t-closed set in $\theta(R)$. Since $\theta(R)$ is smooth fuzzy t-compact, $\pi_R^{-1}(\beta)$ is smooth fuzzy t-compact. Therefore π_R is smooth fuzzy t-irreducible* it is enough to show that every r-fuzzy t-open set in $\omega(R)$ contains whole of some set $\pi_R^{-1}(\beta)$, where β is a fuzzy point of R. But this follows, because each P_λ contains the whole of $\pi^{-1}_R(\beta)$, where $\beta \leq \lambda$, and because $\{P_\lambda\}$ is a Q^* t-neighbourhood in $\theta(R)$.

Proposition 4.2: If $f: R_1 \to R_2$ is a smooth fuzzy t-irreducible* and t-closed, then the image of every r-fuzzy t-open set $\lambda \neq 0$ in R_1 is a r-fuzzy t-open set in R_2 with $f(\lambda) \neq 0$

Proof: Let λ be a r-fuzzy t-open set with $\lambda \neq \overline{0}$ in R_1 . Since f is smooth fuzzy t-closed. $f(\overline{1} - \lambda)$ is also an r-fuzzy t-closed. Since f is onto, $f(\overline{1} - \lambda) = \overline{1} - f(\lambda)$. Therefore $f(\lambda)$ is a r-fuzzy t-open set in R_2 . Since f is smooth fuzzy t-irreducible* $f(\overline{1} - \lambda) \neq \overline{1}$. That is, $\overline{1} - f(\lambda) \neq \overline{1} \Rightarrow f(\lambda) \neq \overline{0}$.

Notation: t-Int_T(λ , r) denotes the interior of an fuzzy set λ .

Proposition 4.3: If f is a smooth fuzzy t-irreducible* mapping of R_1 onto R_2 , $Int_{T_{R_1}}(f^{-1}(\lambda), r) \neq \overline{0}$ for every r-fuzzy t-open set $\lambda \neq \overline{0}$ in R_2 .

Proof: Since f is smooth fuzzy t-closed and smooth fuzzy t-irreducible*, $f(\bar{1} - t\text{-Int}_{R_1}(f^{-1}(\lambda), r)) \neq \bar{1}$. Since f is onto $f(t\text{-Int}_{R_1}(f^{-1}(\lambda), r)) \neq \bar{0}$. By Proposition 4.2 it follows that $t\text{-Int}_{R_1}(f^{-1}(\lambda), r) \neq \bar{0}$.

5. The fundamental theorem on smooth fuzzy t-irreducible* and smooth fuzzy t-perfect mapping.

Theorem 5.1: Let R_1 and R_2 be smooth fuzzy t-Hausdorff spaces. Let f be a smooth fuzzy t-irreducible* and smooth fuzzy t-perfect mapping of R_1 onto R_2 . Then there exists a smooth fuzzy t-homeomorphism ψ of $\omega(R_1)$ onto $\omega(R_2)$ such that f o $\pi_{R_1} = \pi_{R_2}$ o ψ .

Proof: Let $\{\lambda\}$ be a maximal smooth fuzzy t-centered system of r-fuzzy t-open sets in R_1 . In R_2 consider the system $\{t\text{-Int}_{R_2}(f(\lambda),r)\}$, where $t\text{-Int}_{R_2}(f(\lambda),r)$ is an r-fuzzy t-open, by Proposition 4.3 each of its sets is non-zero. Clearly the system is smooth fuzzy t-centered. Extend it to a maximal smooth fuzzy t-centered system of r-fuzzy t-open sets in R_2 and prove that this extension is unique. Suppose that there exist two r-fuzzy t-open sets $\lambda_1, \lambda_2 \in R_2$ with $\lambda_1 \neq 0$ and $\lambda_2 \neq 0$ t-Int $R_2(f(\lambda), r)$ and $\lambda_2 \neq 0$ t-Int $R_2(f(\lambda), r)$ for every λ in $\{\lambda\}$. Now, $t\text{-Int}_{R_1}(f^{-1}(\lambda_1), r) \neq t\text{-Int}_{R_1}(f^{-1}(\lambda_2), r)$. But this is impossible, because $\{\lambda\}$ is maximal smooth fuzzy t-centered system. Thus $\{t\text{-Int}_{R_2}(f(\lambda), r)\}$ can be extended in only one way to a maximal smooth fuzzy t-centered system $\{\gamma_i\}$ where γ_i is an r-fuzzy t-open set.

T. Nithiya, M. K. Uma and E. Roja/ THE METHOD OF CENTERED SYSTEM OF SMOOTH FUZZY TOPOLOGICAL SPACE VIA t- OPEN SETS / IJMA- 3(3), Mar.-2012, Page: 1187-1192

Assume that $\{\lambda\}$ contains all r-fuzzy t-open sets λ_i , containing the fuzzy point α in R_1 and show that $\{\gamma\}$ contains all r-fuzzy t-open sets λ_i in R_2 containing the fuzzy point β in R_2 such that $\beta = f(\alpha)$. Let δ_β be r-fuzzy t-open set containing the fuzzy point β . Because f is smooth fuzzy t-irreducible* and smooth fuzzy t-closed, t-Int $_{R_1}(f^1(\delta_\beta), r)$ is r-fuzzy t-open set containing the fuzzy point α , t-Int $_{R_1}(f^1(\delta_\beta), r) \in \{\lambda\}$.

The set $t\text{-Int}_{R_2}(f(t\text{-Int}_{R_1}(f^{-1}(\delta_\beta), r), r)) \le \delta_\beta$ and belongs to $\{\gamma\}$. Hence $q = \{\gamma\}$ is a point of $\omega(R_2)$. Let $\psi(p) = q$, to show that ψ is a mapping of $\omega(R_1)$ onto $\omega(R_2)$. Let $q = \{\gamma\} \in \omega(R_2)$.

Consider the system $\{t-Int_{R_1}(f^{-1}(\gamma), r)\}\$ of r-fuzzy t-open sets in R_1 . The system is smooth fuzzy t-centered. We extend it to a maximal smooth fuzzy t-centered system of r-fuzzy t-open sets $p = \{\lambda\}$ and consider the point $\psi(p)$. As we have shown, t-Int_{R₂}($f(\lambda)$, r) may be extended in a unique way to a maximal system $\{\gamma_1\}$. To show that $\psi(p) = q$, it is sufficient to show that $\{\gamma\} < \{\gamma_1\}$ and for this, it is enough to show that $\gamma \not\in \{\gamma\}$ t-Int_{R2}(f(λ),r) for each $\gamma \in \{\gamma\}$ and each $t-Int_{R_2}(f(\lambda), r) \in \{t-Int_{R_2}(f(\lambda), r)\}$. Clearly λQ $t-Int_{R_1}(f^{-1}(\gamma), r)$. Let $\eta \neq \overline{0}$ be r-fuzzy t-open set such that $\eta \leq \lambda \wedge t\text{-}Int_{R_{\gamma}}(f^{-1}(\gamma), \ r \) \ \text{and let} \ \alpha \leq \eta \ \text{be such that} \ f(\alpha) \leq \gamma. \ t\text{-}Int_{R_{\gamma}}(f(\eta), \ r) \ q \ \gamma \ \text{and} \ t\text{-}Int_{R_{\gamma}}(f(\eta), \ r) \leq t\text{-}Int_{R_{\gamma}}(f(\lambda), r). \ \text{On the property of the property$ the other hand, t-Int_{R2}(f (η), r) \mathcal{Q}_1 γ . That is t-Int_{R2}(f(λ), r) \mathcal{Q}_1 γ . Therefore $\psi(p) = q$. ψ is onto. The mapping ψ is one to one. For if $p_1 \neq p_2$ then there are r-fuzzy t-open sets λ_1 and λ_2 , $\lambda_1 \in p_1$ and $\lambda_2 \in p_2$ such that $\lambda_1 \neq \lambda_2$, but then $f(\lambda_1) \neq f(\lambda_1)$ $f(\lambda_2)$. That is t-Int_{R₂} $(f(\lambda_1), r)$ q t-Int_{R₂} $(f(\lambda_2), r)$. Hence $\psi(p_1) \neq \psi(p_2)$. The mapping ψ is one - one of $\theta(R_1)$ into $\theta(R_2)$ taking $\omega(R_1)$ onto $\omega(R_2)$. Let $p = \{\lambda\}$ be an arbitrary smooth fuzzy t-end in R_1 , that is an element of $\theta(R_1)$ and let $q = \{\lambda\}$ $\psi \; (p^{'}) = \{ \; \gamma \; \}. \; \text{Now prove} \; \psi \; (p_{\lambda}) \subset \; p_{\gamma} = P_{t\text{-}Int_{R_{\lambda}}(f(\lambda), \, r)}. \; \text{If} \; p^{''} \in P_{\lambda}, \; \text{then} \; \lambda \in p^{''}. \; \text{So} \; t\text{-}Int_{R_{\lambda}}(f(\lambda), r) \; \in \psi \; (p^{''}) \; \text{which means that} \; \text{where} \; h_{\lambda} \in P_{\lambda}, \; \text{then} \; \lambda \in P_{\lambda}, \; \lambda \in P_$ $\psi(p^{"}) \subset P_{t\text{-}Int_{R_{\rightarrow}}(f(\lambda),\,r)}. \text{ This proves that } \psi \text{ is a smooth fuzzy } t\text{-}homeomorphism.} \text{ To prove the theorem we have to show } the provest of the provent of th$ that f o $\pi_{R_1} = \pi_{R_2}$ o ψ . Consider the mapping ψ only on $\omega(R_1) \subset \theta(R_1)$. From the construction of ψ it follows that every smooth fuzzy t-end containing all r-fuzzy t-open sets λ_i containing α is mapped by ψ into a smooth fuzzy t-end containing λ_i with r-fuzzy t-open sets containing fuzzy point β , ψ $(\pi^{-1}_{R_1}(\alpha)) \subset (\pi^{-1}_{R_2}(\beta))$. Hence f o $\pi_{R_1} = \pi_{R_2}$ o ψ . Thus the theorem proved.

Corollary 5.2: The smooth fuzzy t-absolute of R_1 and R_2 are smooth fuzzy t-homeomorphism if there exists a smooth fuzzy topological space R such that R can be mapped onto both R_1 and R_2 by smooth fuzzy t-irreducible* and smooth fuzzy t-perfect mapping.

Proof: Let f_1 be a smooth fuzzy t-irreducible* and smooth fuzzy t-perfect mapping from R onto R_1 and let f_2 be smooth fuzzy t-irreducible* and smooth fuzzy t-perfect mapping from R into R_2 . By theorem 5.1 there exists a smooth fuzzy t-homeomorphism ψ of $\omega(R)$ onto $\omega(R_1)$ such that $f_1 \circ \pi_{R_1} = \pi_{R_1} \circ \psi_1$ and there exists a smooth fuzzy t-homeomorphism ψ_2 of $\omega(R)$ onto $\omega(R_2)$ such that $f_2 \circ \pi_{R_1} = \pi_{R_1} \circ \psi_2$. Therefore $\omega(R_1)$ and $\omega(R_2)$ are smooth fuzzy t-homeomorphic.

REFERENCE

[1] Anitha Devi D., Roja E., Uma M.K., On Contra G_{δ} - continuity in smooth fuzzy topological spaces, Mathematica Bohemica, 134(2009), 285 – 300.

[2] Bin Shahna A.S., on fuzzy compactness and fuzzy Lindelofness, Bull.cal. Math. Soc., 83 (1991), 146-150.

T. Nithiya, M. K. Uma and E. Roja/ THE METHOD OF CENTERED SYSTEM OF SMOOTH FUZZY TOPOLOGICAL SPACE VIA t- OPEN SETS / IJMA- 3(3), Mar.-2012, Page: 1187-1192

- [3] GANTNER.T.E., STEINLAGE.R.C and WARREN.R.H. Compactness in fuzzy topological; spaces, J. Math. Anal. Appl., 62 (1978), 547-562.
- [4] HUTTON.B.: Normality in fuzzy topological spaces, J. Math. Anal. Appl., 43 (1973), 734-742.
- [5] Iliadis.S. S. Fomin, The method of centered system in the theory of topological spaces, UMN, 21 (1996), 47-66.
- [6] Ramadan A.A., Smooth Topological Spaces, Fuzzy sets and systems, 48, (1992), 371.
- [7] RAMADAN A.A, ABBAS. S.E. and ABD EL LATIF A.A.: On fuzzy bitopological spaces in Sostak's sense, Commun. Korean Math. Soc., 21[2006), 865 877.
- [8] Rekha Srivastava, S.N. Lal & Arun. K. Srivastava, Fuzzy hausdorff Topological spaces, J. Math. Anal. Appl., 81 (1981), 497-506.
- [9] Sostak A.P., on a fuzzy Topological structure, Rend cir. Matern Palermo (Sem II), 11, (1985), 89-103.
- [10] Uma. M.K, Roja. E and Balasubramanian.G., The method of Centred Systems in Fuzzy Topological spaces, The Journals of Fuzzy Mathematics Vol.15, No.4, 2007.

[11] Zadeh L.A, Fuzzy sets, Information & control, 8(1965), 338-353.
