International Journal of Mathematical Archive-3(3), 2012, Page: 1222-1230 MAAvailable online through <u>www.ijma.info</u> ISSN 2229 - 5046

 δg^* - Closed sets in topological spaces

R. Sudha* & K. Sivakamasundari

Department of Mathematics, SNS College of Technology, Coimbatore – 35, India

*E-mail: dhanasudha18@gmail.com

Department of Mathematics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore – 43, India

E-mail: sivanath2011@gmail.com

(Received on: 27-02-12; Accepted on: 21-03-12)

ABSTRACT

In this paper a new class of sets, namely δg^* -closed sets and δg^* -open sets are introduced and studied in topological spaces. We prove that the class of δg^* -closed sets lies between the class of δ -closed sets and the class of δg -closed sets. Also we find some relations between δg^* -closed sets and already existing closed sets.

Keywords and phrases: generalized closed sets, δ-closure, δg-closed sets and g-open sets.

Mathematics Subject classification: 54A05.

1. INTRODUCTION:

The concept of generalized closed sets plays a significant role in topology. There are many research papers which deal with different types of generalized closed sets. Levine [10] introduced generalized closed (briefly g-closed) sets and studied their basic properties. Bhattacharya and Lahiri [3], Arya and Nour [2], Maki et al [12,13], Dontchev and Ganster [5], Maragathavalli et al [16] and VeeraKumar [28] introduced semi-generalized closed sets, generalized semi-closed sets, generalized a-closed sets, a-generalized closed sets, δ -generalized closed sets, sag*-closed sets and g[#]s-closed sets respectively. VeeraKumar [30] introduced g*-closed sets in topological spaces. The purpose of this present paper is to define a new class of closed sets called δ g*-closed sets and also we obtain the basic properties of δ g*-closed sets in topological spaces. Applying this set, we obtain the new spaces which are called T_{δ g}*-spaces and #T_{δ g}*-spaces.

2. PRELIMINARIES:

Throughout this paper (X,τ) (or simple X) represents topological space on which no separation axioms are assumed unless otherwise mentioned. For a subset A of X, cl(A), int(A) and A^c denote the closure of A, the interior of A and the complement of A respectively. Let us recall the following definitions, which are useful in the sequel.

Definition: 2.1. A subset A of a space (X,τ) is called a

- (i) semi-open set [9] if $A \subseteq cl(int(A))$.
- (ii) α -open set [18] if A \subseteq int(cl(int(A))).
- (iii) regular open set [22] if A = int (cl(A)).
- (iv) Pre-open set [15] if $A \subseteq int(cl(A))$.

The complement of a semi open (resp. α -open, regular open, pre-open) set is called semi-closed (resp. α -closed, regular closed, pre-closed).

The semi-closure [4] (resp. α -closure [18], pre-closure [15]) of a subset A of (X, τ), denoted by scl(A) (resp. cl_{α}(A), pcl(A)) is defined to be the intersection of all semi-closed (resp. α -closed, pre-closed) sets containing A. It is known that scl(A) (resp. cl_{α}(A), pcl(A)) is a semi-closed (resp. α -closed, pre-closed) set.

Definition: 2.2. The δ -interior [31] of a subset A of X is the union of all regular open sets of X contained in A and is denoted by $\operatorname{int}_{\delta}(A)$. The subset A is called δ -open [31] if $A = \operatorname{int}_{\delta}(A)$. i.e., a set is δ -open if it is the union of regular open sets, the complement of a δ -open is called δ -closed. Alternatively, a set $A \subseteq X$ is called δ -closed [29] if $A = \operatorname{cl}_{\delta}(A)$, where $\operatorname{cl}_{\delta}(A) = \{x \in X ; \operatorname{int}(\operatorname{cl}(U) \cap A \neq \emptyset, U \in \tau \text{ and } x \in U\}$. Every δ -closed set is closed [31].

Definition: 2.3. A subset A of (X, τ) is called

- 1) δ -generalized closed (briefly δ g-closed) [5] if $cl_{\delta}(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) .
- 2) \hat{g} -closed [27] if cl(A) \subseteq U whenever A \subseteq U and U is semi-open in (X, τ).
- 3) g^* closed [30] if cl(A) \subseteq U whenever A \subseteq U and U is g-open in (X, τ).
- 4) generalized closed (briefly g-closed) [10] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) .
- 5) semi-generalized closed (briefly sg-closed) [3] if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is semi-open in (X, τ) .
- 6) generalized semi-closed (briefly gs-closed) [2] if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) .
- 7) α -generalized closed (briefly α g-closed) [13] if α cl(A) \subseteq U whenever A \subseteq U and U is open in (X, τ).
- 8) generalized a closed (briefly ga-closed) [12] if $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is a-open in (X, τ) .
- 9) αg^* -closed [17] if cl(A) $\subseteq U$ whenever A $\subseteq U$ and U is α open in (X, τ).
- 10) $\alpha \hat{g}$ -closed [1] if $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is \hat{g} open in (X, τ) .
- 11) $g^{\#}$ s-closed [28] if scl(A) \subseteq U whenever A \subseteq U and U is α g-open in (X, τ).
- 12) sag^{*}-closed [16] if $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is g^{*}-open in (X, τ) .
- 13) $\begin{subarray}{ll} \begin{subarray}{ll} 13 g-closed [21] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is sg-open in (X, t). \end{subarray}$
- 14) g["]-closed [19] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is gs-open in (X,τ) .
- 15) gp- closed [14] if $pcl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) .
- 16) g^*p closed [26] if pcl(A) $\subseteq U$ whenever A $\subseteq U$ and U is g-open in (X, τ).
- 17) ^{*}g- closed [30] if cl(A) \subseteq U whenever A \subseteq U and U is \hat{g} -open in (X, τ).
- 18) [#]gs-closed [29] if scl(A) \subseteq U whenever A \subseteq U and U is ^{*}g-open in (X, τ).
- 19) \tilde{g} closed [6] if cl(A) \subseteq U whenever A \subseteq U and U is [#]gs-open in (X, τ).
- 20) \tilde{g}_{α} closed [7] if $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is [#]gs-open in (X, τ) .
- 21) \tilde{g}_s closed [24] if scl(A) \subseteq U whenever A \subseteq U and U is [#]gs-open in (X, τ).
- 22) \tilde{g}_p closed [8] if pcl(A) \subseteq U whenever A \subseteq U and U is [#]gs-open in (X, τ).
- 23) g^* s-closed [20] if scl(A) \subseteq U whenever A \subseteq U and U is gs-open in (X, τ).
- 24) $\delta \hat{g}$ -closed [11] if $cl_{\delta}(A) \subseteq U$ whenever $A \subseteq U$ and U is \hat{g} -open in (X, τ) .
- 25) $s\delta g^*$ closed [23] if $cl_{\delta}(A) \subseteq U$ whenever $A \subseteq U$ and U is g^* -open in (X, τ) .

The complements of the above mentioned sets are called their respective open sets.

Definition: 2.4. A space X is called

- 1) a $T_{1/2}$ -space [10] if every g-closed set in it is closed.
- 2) a $T_{3/4}$ -space [5] if every δg -closed set in it is δ -closed.

3. δg^{*}-CLOSED SETS

We now introduce δg^* - closed sets in topological spaces and study some relations between δg^* - closed sets and other existing closed sets.

Definition: 3.1. A subset A of a space X is called δg^* - closed if $cl_{\delta}(A) \subseteq U$ whenever $A \subseteq U$ and U is a g-open set in X.

Proposition: 3.2. Every δ -closed set is δg^* -closed

Proof: Let A be an δ -closed set and U be any g-open set containing A. Since A is δ -closed, $cl_{\delta}(A) = A$. Therefore $cl_{\delta}(A) = A \subseteq U$ and hence A is δg^* -closed.

Remark: 3.3. The converse of the above theorem is not true as shown in the following example.

Example: 3.4. Let $X = \{a, b, c\}$, $\tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}, \{a, c\}\}$. Here, g-open sets with respect to τ are open sets. Then the set $\{b, c\}$ is δg^* -closed but not δ -closed, since the only non-trivial δ -closed sets are $\{a, c\}$ and $\{b\}$.

Proposition: 3.5. Every δg^* -closed set is g-closed.

Proof: Let A be a δg^* -closed set and U be an any open set containing A in X. Since every open set is g-open and A is δg^* -closed, $cl_{\delta}(A) \subseteq U$. Since $cl(A) \subseteq cl_{\delta}(A) \subseteq U$, we have $cl(A) \subseteq U$ and hence A is g-closed.

Remark: 3.6. A g-closed set need not be δg^* -closed as shown in the following example.

Example: 3.7. Let $X = \{a, b, c\}, \tau = \{X, \phi, \{a\}, \{a, b\}, \{a, c\}\}$. Then the set $\{b\}$ is g-closed but not δg^* -closed.

Proposition: 3.8. Every δg^* -closed set is g^* -closed.

Proof: Let A be a δg^* -closed set and U be an any g-open set containing A in X. Since A is δg^* -closed, $cl_{\delta}(A) \subseteq U$. But $cl(A) \subseteq cl_{\delta}(A) \subseteq U$, we have $cl(A) \subseteq U$ and hence A is g^* -closed.

Remark: 3.9. A g^{*}-closed set need not be δg^* -closed as shown in the following example.

Example: 3.10. Let $X = \{a, b, c\}, \tau = \{X, \phi, \{a\}, \{a, b\}, \{a, c\}\}$. Then the set $\{b\}$ is g^* -closed but not δg^* -closed.

Proposition: 3.11. Every δg^* -closed set is gs-closed.

Proof: Let A be δg^* -closed and U be any open set containing A in X. Since every open set is g-open, $cl_{\delta}(A) \subseteq U$ for every subset A of X. Since $scl(A) \subseteq cl_{\delta}(A) = U$, we have $scl(A) \subseteq U$ and hence A is gs-closed.

Remark: 3.12. A gs-closed set need not be δg^* -closed as shown in the following example.

Example: 3.13. Let $X = \{a, b, c\}, \tau = \{X, \phi, \{a\}, \{a, b\}\}$. Then the set $\{b\}$ is gs-closed but not δg^* -closed.

Proposition: 3.14. Every δg^* -closed set is αg -closed.

Proof: It is true from the fact that $\alpha cl(A) \subseteq cl_{\delta}(A)$ for every subset A of X.

Remark: 3.15. A α g-closed set need not be δg^* -closed as shown in the following example.

Example: 3.16. Let $X = \{a, b, c\}, \tau = \{X, \phi, \{a\}, \{a, b\}, \{a, c\}\}$. Then the set $\{c\}$ is α g-closed but not δ g^{*}-closed.

Proposition: 3.17. Every δg^* -closed set is $s \alpha g^*$ -closed.

Proof: Let A be δg^* -closed and U be any g^* -open set containing A in X. Since every g^* -open set is g-open and A is δg^* -closed, $cl_{\delta}(A) \subseteq U$, for every subset A of X. Since $\alpha cl(A) \subseteq cl_{\delta}(A) \subseteq U$, we have $\alpha cl(A) \subseteq U$ and hence A is sag*-closed.

Remark: 3.18. A sag^{*}-closed set need not be δg^* -closed as shown in the following example.

Example: 3.19. Let $X = \{a, b, c\}$, $\tau = \{X, \phi, \{a\}, \{a, b\}, \{a, c\}\}$. Then the set $\{c\}$ is sag^{*}-closed but not δg^* -closed.

Proposition: 3.20. Every δg^* -closed set is $\delta \hat{g}$ -closed.

Proof: Let A be δg^* -closed and U be any \hat{g} -open set containing A in X. Since every \hat{g} -open set is g-open and A is δg^* -closed, $cl_{\delta}(A) \subseteq U$. Hence A is $\delta \hat{g}$ -closed.

Remark: 3.21. A $\delta \hat{g}$ -closed set need not be δg^* -closed as shown in the following example.

Example: 3.22. Let $X = \{a, b, c\}, \tau = \{X, \phi, \{a\}\}$. Then the set $\{a, b\}$ is $\delta \hat{g}$ -closed but not δg^* -closed.

Proposition: 3.23. Every δg^* -closed set is $\alpha \hat{g}$ -closed.

Proof: Let A be δg^* -closed and U be any \hat{g} -open set containing A in X. Since every \hat{g} -open set is g-open and A is δg^* -closed, $cl_{\delta}(A) \subseteq U$. Since $\alpha cl(A) \subseteq cl_{\delta}(A) \subseteq A$, we have $\alpha cl(A) \subseteq U$ and hence A is $\alpha \hat{g}$ -closed.

Remark: 3.24. $\alpha \hat{g}$ -closed set need not be δg^* -closed as shown in the following example.

Example: 3.25. Let $X = \{a, b, c\}, \tau = \{X, \phi, \{a\}, \{a, b\}\}$. Then the set $\{b\}$ is $\alpha \hat{g}$ -closed but not δg^* -closed.

Proposition: 3.26. Every δg^* -closed set is $s \delta g^*$ -closed.

Proof: Let A be δg^* -closed and U be any g^* -open set containing A in X. Since every g^* -open set is g-open and A is δg^* -closed, $cl_{\delta}(A) \subseteq U$, for every subset A of X. Hence A is $s\delta g^*$ -closed.

Remark: 3.27. A s δg^* -closed set need not be δg^* -closed as shown in the following example.

Example: 3.28. Let $X = \{a, b, c\}, \tau = \{X, \phi, \{a\}, \{b, c\}\}$. Then the set $\{a, c\}$ is $s\delta g^*$ -closed but not δg^* -closed.

Proposition: 3.29. Every δg^* -closed set is δg -closed.

Proof: Let A be δg^* -closed and U be any open set containing A in X. Since every open set is g-open and A is δg^* -closed, $cl_{\delta}(A) \subseteq U$, for every subset A of X. Hence A is δg -closed.

Remark: 3.30. A δg -closed set need not be δg^* -closed as shown in the following example.

Example: 3.31. Let $X = \{a, b, c\}, \tau = \{X, \phi, \{a\}\}$. Then the set $\{c\}$ is δg -closed but not δg^* -closed.

Proposition: 3.32. Every δg^* -closed set is [#]gs-closed.

Proof: Let A be δg^* -closed and U be any *g-open set containing A in X. Since every *g-open set is g-open and A is δg^* -closed, $cl_{\delta}(A) \subseteq U$, for every subset A of X. But $scl(A) \subseteq cl_{\delta}(A) \subseteq A$, we have $scl(A) \subseteq U$ Hence A is *gs-closed.

Remark: 3.33. A [#]gs-closed set need not be δg^* -closed as shown in the following example.

Example: 3.34. Let $X = \{a, b, c\}, \tau = \{X, \phi, \{a\}, \{b, c\}\}$. Then the set $\{a, b\}$ is [#]gs-closed but not δg^* -closed.

Proposition: 3.35. Every δg^* -closed set is *g-closed.

Proof: Let A be δg^* -closed and U be any \hat{g} -open set containing A in X. Since every \hat{g} -open set is g-open and A is δg^* -closed, $cl_{\delta}(A) \subseteq U$ for every subset A of X. Since $cl(A) \subseteq cl_{\delta}(A) \subseteq A$, we have $cl(A) \subseteq U$ and hence A is *g -closed.

Remark: 3.36. A *g-closed set need not be δg^* -closed as shown in the following example.

Example: 3.37. Let $X = \{a, b, c\}, \tau = \{X, \phi, \{a\}\}$. Then the set $\{a, c\}$ is ^{*}g-closed but not δg^* -closed.

Proposition: 3.38. Every δg^* -closed set is g^*p -closed.

Proof: Let A be δg^* -closed and U be any g-open set containing A in X. Since A is δg^* -closed, $cl_{\delta}(A) \subseteq U$ for every subset A of X. Since $pcl(A) \subseteq cl_{\delta}(A) \subseteq A$, we have $pcl(A) \subseteq U$ and hence A is g^*p -closed.

Remark: 3.39. A g^*p -closed set need not be δg^* -closed as shown in the following example.

Example: 3.40. Let $X = \{a, b, c\}, \tau = \{X, \phi, \{a\}, \{a, b\}\}$. Then the set $\{b\}$ is g^*p -closed but not δg^* -closed.

Proposition: 3.41. Every δg^* -closed set is gp-closed.

Proof: It follows from the fact that every open set is g-open.

Remark: 3.42. A gp-closed set need not be δg^* -closed as shown in the following example.

Example: 3.43. Let $X = \{a, b, c\}, \tau = \{X, \phi, \{a, b\}\}$. Then the set $\{a\}$ is gp-closed but not δg^* -closed.

Remark: 3.44. The following examples show that δg^* -closeness is independent from \tilde{g} - closeness, \tilde{g}_{α} - closeness and \tilde{g}_s - closeness.

Example: 3.45. Let $X = \{a, b, c\}, \tau = \{X, \phi, \{a, b\}\}$. In this topology the set $\{b, c\}$ is δg^* -closed but not \tilde{g} -closed, \tilde{g}_{α} -closed and \tilde{g}_s - closed.

Example: 3.46. Let $X = \{a, b, c\}, \tau = \{X, \phi, \{a\}, \{a, b\}, \{a, c\}\}$. In this topology the set $\{b\}$ is \tilde{g} -closed, \tilde{g}_{α} - closed and \tilde{g}_{s} - closed but not δg^{*} -closed.

Remark: 3.47. The following examples show that δg^* -closeness is independent from ga-closeness, g^* s-closeness and α -closeness

Example: 3.48. Let $X = \{a, b, c\}, \tau = \{X, \phi, \{a\}, \{a, b\}\}$. In this topology the set $\{b\}$ is ga-closed, $g^{\#}$ s-closed, $g^{\#}$ s-closed and α -closed but not $\delta g^{\#}$ -closed. The set $\{a, c\}$ is $\delta g^{\#}$ -closed but not $g\alpha$ -closed, $g^{\#}$ s-closed and α -closed.

Remark: 3.49. The following examples show that δg^* -closeness is independent from αg^* -closeness.

Example: 3.50. Let $X = \{a, b, c\}, \tau = \{X, \phi, \{a\}, \{a, b\}, \{a, c\}\}$. In this topology the set $\{b\}$ is αg^* - closed but not δg^* - closed.

Example: 3.51. Let $X = \{a, b, c\}, \tau = \{X, \phi, \{a\}, \{a, b\}\}$. In this topology the set $\{a, c\}$ is δg^* -closed but not αg^* -closed.

Remark: 3.52. The following diagram has shown the relationship of δg^* -closed sets with other known existing sets. A \longrightarrow B represents A implies B but not conversely and A \longleftrightarrow B represents A and B are independent to each other,

1. δg^* -closed 2.g["]-closed 3. g-closed 4. g*closed 5. g*p-closed 6. \tilde{g}_s -closed 7. \tilde{g} -closed 8. g[#]s-closed 9. gs-closed 10. g*s-closed 11. ga-closed 12. a \hat{g} -closed 13. δ -closed 14. s δg^* -closed 15. ag*-closed 16. closed 17. g-closed 18. \hat{g} -closed 19. *g- closed 20. gp-closed 21. \tilde{g}_{α} - closed 22. \tilde{g}_p - closed 23. #gs-closed 24. sg-closed 25 $\delta \hat{g}$ -closed 26. ag-closed 27. a-closed 28. δg -closed 29. sag*-closed.

4. CHARACTERISATION

Theorem: 4.1. The finite union of δg^* -closed sets is δg^* -closed.

Proof: Let $\{A_i \mid i = 1, 2, 3, ..., n\}$ be a finite class of δg^* -closed subsets of X. Let $A = \bigcup_{i=1}^n A_i$. Let V be a g-open set containing A which implies $\bigcup_{i=1}^n A_i \subseteq V$. This implies $A_i \subseteq V$, for every i. By assumption $cl_{\delta}(A_i) \subseteq V$, for every i. Which implies $\bigcup_{i=1}^n cl_{\delta}(A_i) \subseteq V$. Then $cl_{\delta}(\bigcup_{i=1}^n A_i) \subseteq V$. Thus $cl_{\delta}(A) \subseteq V$. Hence finite union of δg^* -closed sets is δg^* -closed.

Remark: 4.2. The following example shows that intersection of any two δg^* -closed sets in X need not be δg^* -closed.

Example: 4.3. Let $X = \{a, b, c\}, \tau = \{X, \phi, \{a\}\}$. Then the set $\{a, b\}$ and $\{a, c\}$ are δg^* -closed but their intersection $\{a\}$ is not δg^* - closed.

Proposition: 4.4. Let A be a δg^* -closed set of X. Then $cl_{\delta}(A)$ - A does not contain a non empty g-closed set.

Proof: Suppose that A is δg^* -closed, let F be a g-closed set contained in $cl_{\delta}(A) - A$. Now F^c is a g-open set in X such that $A \subseteq F^c$. Since A is a δg^* -closed set of X, then $cl_{\delta}(A) \subseteq F^c$. Thus $F \subseteq (cl_{\delta}(A))^c$. Also $F \subseteq cl_{\delta}(A) - A$. Therefore $F \subseteq (cl_{\delta}(A))^c \cap cl_{\delta}(A) = \emptyset$. Hence $F = \phi$.

Proposition: 4.5. If A is a g-open set and δg^* -closed subset of X then A is an δ -closed subset of X.

Proof: Since A is g-open and δg^* -closed, $cl_{\delta}(A) \subseteq A$. Hence A is δ -closed.

Theorem: 4.6. The intersection of a δg^* -closed set and a δ -closed set is always δg^* -closed.

Proof: Let A be δg^* -closed and F be δ -closed. Let $V = A \cap F$. Let U be g-open such that $V \subseteq U$ implies $A \cap F \subseteq U$ which implies $A \subseteq U \cap F^c$. Here F^c is δ -open, so F^c is open. Thus F^c is g-open. Hence $U \cup F^c$ is g-open and by assumption $A \subseteq U \cap F^c \Rightarrow cl_{\delta}(A) \subseteq U \cap F^c$, $cl_{\delta}(V) = cl_{\delta}(A \cap F) \subseteq cl_{\delta}(A) \cap cl_{\delta}(F) = cl_{\delta}(A) \cap F$ which is contained in U. Therefore $cl_{\delta}(V) \subseteq V$. Hence $A \cap F$ is δg^* -closed.

Theorem: 4.7. In a $T_{3/4}$ -space every δg^* -closed set is δ -closed.

Proof: Let X be a $T_{3/4}$ -space. Let A be a δg^* -closed set of x. We know that every δg^* -closed set is δg -closed. Since X is $T_{3/4}$ -space, A is δ -closed.

Proposition: 4.8. If A is an δg^* -closed set in a space X and $A \subseteq B \subseteq cl_{\delta}(A)$, then B is also a δg^* -closed.

Proof: Let U be a g-open set of X such that $B \subseteq U$. Then $A \subseteq U$. Since A is δg^* -closed set, $cl_{\delta}(A) \subseteq U$. Also since $B \subseteq cl_{\delta}(A)$, $cl_{\delta}(B) \subseteq cl_{\delta}(cl_{\delta}(A)) = cl_{\delta}(A)$. Hence $cl_{\delta}(B) \subseteq U$. Therefore B is also a δg^* -closed set.

Theorem: 4.9. Let A be a δg^* -closed set of X. Then A is δ -closed iff $cl_{\delta}(A)$ - A is g-closed.

Proof: Necessity. Let A be a δ -closed subset of X. Then $cl_{\delta}(A) = A$ and so $cl_{\delta}(A) - A = \emptyset$, which is g-closed.

Sufficiency. Let $cl_{\delta}(A) - A$ be g-closed. Since A is δg^* -closed, by Proposition 4.4., $cl_{\delta}(A) - A$ does not contain a non empty g-closed set which implies $cl_{\delta}(A) - A = \emptyset$. That is $cl_{\delta}(A) = A$. Hence A is δ -closed.

Proposition: 4.10. For each $a \in X$ either {a} is g-closed or {a}^c is δg^* -closed in X.

Proof: Suppose that $\{a\}$ is not g-closed in X, then $\{a\}^c$ is not g-open and the only g-open set containing $\{a\}^c$ is the space X itself. That is $\{a\}^c \subseteq X$. Therefore $cl_{\delta}(\{a\}^c) \subseteq X$ and so $\{a\}^c$ is δg^* -closed.

DEFINTION: 4.11. The intersection of all g-open subsets of X containing A is called the g-kernel of A and is denoted by g-ker(A).

Lemma: 4.12. A subset A of X is δg^* -closed if and only if $cl_{\delta}(A) \subseteq g$ -ker(A).

Proof: Suppose that A is δg^* -closed in X, then $cl_{\delta}(A) \subseteq U$, whenever $A \subseteq U$ and U is g-open on X. Let $x \in cl_{\delta}(A)$. If $x \notin g$ -ker(A), then there is a g-open set U such that $x \notin U$. Since U is a g-open set containing A, $x \notin cl_{\delta}(A)$ a contradiction.

Conversely let $cl_{\delta}(A) \subseteq g$ -ker(A). If U is any g-open set containing A, then $cl_{\delta}(A) \subseteq g$ -ker(A) \subseteq U. Then A is δg^* -closed.

5. δg^* -OPEN SETS IN TOPOLOGICAL SPACES:

In this section we introduce the concept of δg^* -open sets in topological spaces and study some of their properties.

Definition: 5.1. A subset A of a topological space (X, τ) is called δg^* -open if its complement A^c is δg^* -closed in (X, τ) .

Theorem: 5.2. If a subset A of a topological space (X,τ) is δ -open, then it is δg^* -open in X.

Proof: Let A be an δ -open set in a topological space (X, τ) . Then A^c is δ -closed in X. By Theorem 3.2, A^c is δg^* -closed in (X, τ) . Hence A is δg^* -open in (X, τ) .

The converse of Theorem 5.2 need not be true as seen in the following example.

Example: 5.3. Let $X = \{a, b, c\} \& \tau = \{X, \phi, \{a, b\}\}$, then the subset $\{a\}$ is δg^* -open but not δ -open in (X, τ) .

Proposition: 5.4. Every δg^* -open set is

1. g-open, 2. g*-open, 3. gs-open, 4. αg-open, 5. sαg*-open, 6. sδg*-open, 7. δĝ-closed, 8. αĝ-closed, 9. δg-open, 10.#gs-open, 11. *g-open, 12. gp-open, 13. g*p-open.

Theorem: 5.5. A subset A of a topological space (X,τ) is δg^* -open if and only if $G \subseteq int_{\delta}(A)$ whenever $A \supseteq G \& G$ is g-closed.

Proof: Assume that A is δg^* -open. Then A^c is δg^* -closed. Let G be a g-closed set in (X,τ) contained in A. Then G^c is a g-open set in (X,τ) containing A^c . Since A^c is δg^* -closed, $cl_{\delta}(A^c) \subseteq G^c$, equivalently $G \subseteq int_{\delta}(A)$.

Conversely assume that G is contained in $\operatorname{int}_{\delta}(A)$, whenever G is contained in A & G is g-closed in (X, τ) . Let A^c be contained in F, where F is g-open. Then $F^c \subseteq A$. By criteria, $F^c \subseteq \operatorname{int}_{\delta}(A)$. This implies $\operatorname{cl}_{\delta}(A^c) \subseteq F$. Thus A^c is δg^* -closed. Hence A is δg^* -open.

Remark: 5.6. For a subset A of X, $cl_{\delta}(X - A) = X - int_{\delta}(A)$.

Proposition: 5.7. If $int_{\delta}(A) \subseteq B \subseteq A$ and A is δg^* -open in (X, τ) , then B is δg^* -open in (X, τ) .

Proof: Let $\operatorname{int}_{\delta}(A) \subseteq B \subseteq A$ which implies that $X - A \subseteq X - B \subseteq X - \operatorname{int}_{\delta}(A)$ By Remark 5.6., $X - A \subseteq X - B \subseteq \operatorname{cl}_{\delta}(X - A)$. Since X - A is δg^* -closed, by Proposition 4.8, X - B is δg^* -closed and hence B is δg^* -open in (X, τ) .

Theorem: 5.8. If A and B are δg^* -open sets in X then $A \cap B$ is δg^* -open in X.

Theorem: 5.9. If A and B are δg^* -open in X if and only if G = X whenever G is g-open and $X - A \subseteq X - B \subseteq int_{\delta}(A) \cup A^c \subseteq G$.

Proof: Necessity. Let A be a δg^* -open set and G be g-open and $\operatorname{int}_{\delta}(A) \cup A^c \subseteq G$. This gives $G^c \subseteq (\operatorname{int}_{\delta}(A) \cup A^c)^c = (\operatorname{int}_{\delta}(A))^c \cap A = (\operatorname{int}_{\delta}(A))^c - A^c = \operatorname{cl}_{\delta}(A^c) - A^c$. Since A^c is δg^* -closed and G^c is g-closed, it follows that $G^c = \emptyset$. Therefore G = X.

Sufficiency. Suppose that F is δg^* -closed and $F \subseteq A$. Then $int_{\delta}(A) \cup A^c \subseteq int_{\delta}(A) \cup F^c$. It follows by hypothesis that $int_{\delta}(A) \cup F^c = \emptyset$ and hence $F \subseteq int_{\delta}(A)$. Therefore by Theorem 5.5., A is δg^* -closed in X.

6. APPLICATIONS:

Definition: 6.1. A space X is called

- 1) a $T_{\delta g^*}$ -space if every δg^* -closed set in it is δ -closed.
- 2) a $\#T_{\delta g^*}$ -space if every δg^* -closed set in it is closed.

Theorem: 6.2. For a space X the following conditions are equivalent

- (i) X is a $T_{\delta g^*}$ -space.
- (ii) Every singleton of X is either g-closed or δ -open.

Proof: (i) \Rightarrow (ii) Let $x \in X$. Suppose that $\{x\}$ is not a g-closed set of X. Then X - $\{x\}$ is not a g-open set. So X is the only g-open set containing X - $\{x\}$. Then X - $\{x\}$ is an δg^* -closed set of X. Since X is a $T_{\delta g^*}$ -space, X - $\{x\}$ is an δ -closed set of X and hence $\{x\}$ is an δ -open set of X.

(ii) \Rightarrow (i) Let A be an δg^* -closed set of X, A \subseteq cl_{δ}(A). Let x \in cl_{δ}(A). By (ii) {x} is either g-closed or δ -open.

Case (a) Suppose that $\{x\}$ is g-closed. If $x \in cl_{\delta}(A) - A$ then by Theorem 4.4., we arrive at a contradiction. Thus $x \in A$.

Case (b) Suppose that $\{x\}$ is δ -open. Since $x \in cl_{\delta}(A)$, $\{x\} \cap A \neq \phi$. This implies $x \in A$.

Thus in any case $x \in A$, so $cl_{\delta}(A) \subseteq A$. Therefore $cl_{\delta}(A) = A$. The or equivalently A is δ -closed.

Theorem: 6.3. Every $T_{\delta g}^*$ -space is $\#T_{\delta g}^*$ -space.

Proof: Let X be a $T_{\delta g^*}$ -space. Let A be a δg^* -closed set in X. By hypothesis, A is δ -closed. Since every δ -closed set is closed, $\#T_{\delta g^*}$ -space.

Remark: 6.4. A $\#T_{\delta g^*}$ -space need not be $T_{\delta g^*}$ -space as shown in the following example.

Example: 6.5. Let $X = \{a, b, c\}, \tau = \{X, \phi, \{a\}, \{b\}, \{a, c\}, \{a, b\}\}$. Then the space (X, τ) is $\#T_{\delta g}^*$ -space but not cosed but not a $T_{\delta g}^*$ -space.

Remark: 6.6. The following examples show that $T_{\delta g^*}$ -space is independent from $T_{1/2}$ space.

Example: 6.7. Let $X = \{a, b, c\}, \tau = \{X, \phi, \{a\}, \{b, c\}\}$. Then the space (X, τ) is $T_{\delta g}^*$ -space but not $T_{1/2}$ space.

Example: 6.8. Let $X = \{a, b, c\}, \tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}, \{a, c\}\}$. Then the space (X,τ) is $T_{1/2}$ space but not $T_{\delta g^*}$ -space.

Theorem: 6.9. Every $T_{3/4}$ -space is $T_{\delta g^*}$ -space.

Proof: Let X be a $T_{\delta g^*}$ -space. Let A be a δg^* -closed set in X. Since every δg^* -closed set is δg -closed, A is δg -closed. By hypothesis, A is δ -closed. Hence X is $T_{\delta g^*}$ -space.

Remark: 6.10. A $T_{\delta g^*}$ -space need not be $T_{3/4}$ -space as shown in the following example.

Example: 6.11. Let $X = \{a, b, c\}, \tau = \{X, \phi, \{a\}, \{b, c\}\}$. Then the space (X, τ) is $T_{\delta g}^*$ -space but not T_{3_A} -space.

Remark: 6.12. The following diagram shows the relationships between $T_{\delta g}^*$ -space and $\#T_{\delta g}^*$ -space with other known existing sets. A \longrightarrow B represents A implies B but not conversely and A \longleftarrow B represents A and B are independent to each other.

REFERENCES

- [1] Abd El-Monsef.M.E., Rose Mary.S ad Lellis Thivagar.M., On $\alpha \hat{g}$ -closed sets in topological spaces, Assiut University Journal of Mathematics and Computer Science, Vol 36(1) (2007), 43 51.
- [2] Arya.S.P. and Nour.T., Characterizations of S-normal spaces, Indian J. Pure. Appl. Math., 21(8) (1990), 717-719.
- [3] Bhattacharya.P. and Lahiri.B.K., Semi-generalized closed sets in topology, Indian J. Math., 29(1987), 375 382.
- [4] Crossley.S.G. and Hildebrand.S.K., Semi-closure, Texas J.Sci., 22, 99-112 (1971).
- [5] Dontchev.J and Ganster.M., On δ -generalized closed sets and $T_{3/4}$ -spaces, Mem. Fac. Sci. Kochi Univ. Ser. A, Math., 17 (1996), 15 31.

- [6] Jafari.S., Noiri.T., Rajesh.N. and Thivagar.M.L., Another generalization of closed sets, Kochi J. Math., Vol(3) (2008), 25 38.
- [7] Jafari.s., Thivagar.M.L., and Nirmala Rebeca Paul., Remarks on \tilde{g}_{α} -closed sets in topological spaces, International Mathematical Forum, 5(2010), 24, 1167 1178.
- [8] Ganesan.S., Ravi.O., and Chandrasekar.S., \tilde{g} -pre closed sets in topology, International Journal of Mtahematical Archive, 2(2) 2011, 294 299.
- [9] Levine.N., Semi-open sets and semi-continuity in topological spaces, Amer Math. Monthly, 70 (1963), 36-41.
- [10] Levine.N., Generalized closed sets in topology, Rend. Circ. Mat. Palermo, 19(1970) 89 96.
- [11] Lellis Thivagar.M., Meera Devi.B. Hatir.E., δĝ-closed sets in topological spaces, Gem.Math.Notes, Vol1, No. 2, December 2010, pp. 17 – 25.
- [12] Maki.K., Devi.R and Balachandran.K., Generalized α-closed sets in topology, Bull. Fukuoka Uni. Ed part III, 42(1993), 13 – 21.
- [13] Maki.K., Devi.R and Balachandran.K., Associated topologies of generalized α-closed sets and α-generalized closed sets, Mem. Fac. Sci. Kochi Univ. Ser.A. Math., 15(1994), 57 – 63.
- [14] Maki.H., Umehara.J. and Noiri.T., Every topological space is pre-T_{1/2}, Mem.Fac.Sci.Kochi.Univ.(Math), 17 (1996), 33-42.
- [15] Mashhour.A.S. and Abd El-Monsef.M.E. and El-Dedd.S.N., On pre continuous and weak pre continuous mappings, Proc. Math and Phys. Soc. Egypt 55(1982),47 – 53.
- [16] Maragathavalli.S. and Sheikh John.M., On sαg*-closed sets in topological spaces, ACTA CIENCIA INDICA, Vol XXXI 2005 No.3, (2005), 805 – 814.
- [17] Murugalingam.M., Somasundaram.S and Palanoiammal.S., A generalized star sets, Bullin of Pure and Applied Science, 24 (2) (2005), 233 238.
- [18] Njastad.O., On some classes of nearly open sets, Pacific J Math., 15(1965), 961 970.
- [19] Pious Missier, RAVI.O., Jeyashri.S. and Herin Wise Bell.P., g["]-closed sets in topology (submitted).
- [20] Pushpalatha.A., Anitha.K., g*s-closed sets in topological spaces, Int.J.contemp.Math.Sciences, Vol.6., 2011, 19, 917 929.
- [21] Ravi.o. and Ganesan.S., *g*-closed sets in topology, International Journal of computer science and emerging technologies, 2(3), 2001, 330 337.
- [22] Stone. M., Application of the theory of Boolean rings to general topology, Trans. Amer. Math. Soc., 41(1937), 374 481.
- [23] Sivakamasudari.K. and Sudha.R., Strongly δg^* -closed sets in topological spaces, Research High Lights, JADU (Communicated).
- [24] Sundaram.P., Rajesh.N., Thivagar.M.L. and Duszynski.Z., ğ-semi-closed sets in topological spaces, Mathematica Pannonica, 18 (2007), 51 61.
- [25] Veera Kumar. M.K.R.S., Between closed sets and g-closed sets, Mem. Fac. Sci. Kochi Univ. Ser. A. Math, 21, 1-19 (2000).
- [26] Veera Kumar. M.K.R.S., g*-pre closed sets, Acta Ciencia India, Vol XXVIII M, No 1, (2002), 51 60.
- [27] Veera Kumar M.K.R.S., ĝ-closed sets in topological spaces, Bull. Allah. Math. Soc., 18 (2003), 99 112.
- [28] Veera Kumar. M.K.R.S., g[#]s-closed sets in topological spaces, Mem. Fac. Sci. Kochi Univ. Ser. A. Math, 24, 1-13 (2003).
- [29] Veera Kumar. M.K.R.S., #g semi-closed sets in topological spaces, Antarctica J. Math, Vol(2) (2) (2005), 201 222.
- [30] Veera Kumar. M.K.R.S., Between g*-closed sets and g-closed sets, Antarctica J. Math.Vol(3)(1)(2006), 43 65.
- [31] Velicko.N.V, H-closed topological spaces, Amer. Math. Soc. Transl., 78 (1968), 103 118.
