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ABSTRACT 
Inclines are additively idempotent semirings in which products are less than (or) equal to either factor. In this paper, 
we discuss the consistency of incline relational equations, that is, equations of the form xA=b where A is a matrix and b 
is a vector over an incline. We apply our results for incline relational equations involving matrices over special types 
of inclines such as incline whose elements are all linearly ordered, incline whose idempotent elements are all linearly 
ordered, a regular incline whose elements are all linearly ordered and a distributive lattice whose elements are all 
linearly ordered. We deduce the solution set of a fuzzy relational equation as a special case.   
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1. INTRODUCTION 
 
Inclines are a generalization of Boolean and Fuzzy algebra. The notion of inclines and their applications were described 
in Cao, Kim and Roush [1]. Kim and Roush have surveyed and outlined algebraic properties of inclines and incline 
matrices [4]. Recently in [6], it is proved that an element in an incline is regular if and only if it is idempotent, further 
some characterization of regular elements in an incline are discussed and exhibited that every commutative regular 
incline is a distributive lattice. 
 
Sanchez [7] initiated the study on fuzzy relational equations of the form xA=b, based on the max-min composition. A 
method of determining minimum solutions of fuzzy relational equations are provided in [3]. In [2], Cho has proved that 
xA=b is consistent when A is regular, that is, the matrix equation AXA = A has a solution. 
 
In this paper, we discuss the consistency of the equation xA=b where A is a matrix and b is a vector over an incline £. 
We have determined the existence of the maximum solution of  xA=b under the condition that each column of A is 
comparable with the corresponding component of the vector b in £. This leads to the structure of the solution set  
Ω(A,b),  where A is a matrix over special types of inclines such as incline whose elements are all linearly ordered, 
incline whose idempotent elements are all linearly ordered, a regular incline whose elements are all linearly ordered 
and a distributive lattice whose elements are all linearly ordered. This includes the result found in [7] as a special case 
for fuzzy relational equations. In section 2, we present the basic definitions, notations and required results on inclines. 
In  section 3, the consistency of incline relational equations are discussed. The results in the present paper are the 
generalization of the results on fuzzy relational equation available in the literature [2, 3,7]. 
 
2. PRELIMINARIES 
 
In this section, we present some basic definitions, notations and required results on inclines. 
 
Definition 2.1: An incline is a nonempty set £ with binary operations addition and multiplication denoted as (+,·) (We 
usually suppress the ‘dot’ in a·b and write as ab) satisfying the following axioms:  for a, b, c ε £  
 
(i) a + b = b + a 
(ii) a+ (b + c) = (a + b) + c: a(bc) = (ab) c 
(iii) a(b + c) = ab +ac: (b +c)a = ba + ca 
(iv) a + a =a 
(v) a +ac =a: c +ac = c 
________________________________________________________________________________________________ 
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Throughout we consider an incline (£, +, ·) with the order relation “≤” defined as x ≤ y <=> x + y = y. This incline 
order relation has the following properties: 
 
x + y ≥ x and x + y ≥ y for any x, y ε £                                                           (2.1) 
 
xy ≤ x and xy ≤ y for any x, y ε £                                                                          (2.2) 
 
Definition 2.2: S is said to be a comparable subset of an incline £ if and only if x and y are comparable elements, that is 
either x≤ y (or) y≤ x for each x, y ε S. 
 
Definition 2.3: a ε £ is said to be regular if there exists an elements x ε £ such that a x a = a. Then x is called a g-
inverse of a and a{1} denotes the set of all g-inverses of a. 
 
An incline £ is regular if and only if each element of £ is regular. 
 
Definition 2.4: [6] An element a ε £ is regular if and only if a is idempotent. 
 
Proposition 2.1: [6] A commutative incline £ is regular <=> £ is a distributive lattice. 
 
Let £mn and £n denotes the set of all m x n matrices and the set of all n vectors over £ respectively. Let DL be the set of  
all idempotent elements in £. DLmn and DLn be the set of all m x n matrices and the set of all vectors in DL. For A ε £mn, 
Ai* and A*j denotes the ith row and jth column of A respectively. Throughout the matrix operations in £mn are induced 
by the incline operations in £. 
 
Definition 2.5: Let A= (aik) ε £mn and B= (bkj) є £nl then AB =R is defined as ∑ a𝑖𝑖𝑖𝑖𝑛𝑛

𝑖𝑖=1 𝑏𝑏𝑖𝑖𝑘𝑘 = 𝑟𝑟𝑖𝑖𝑘𝑘  for all i and j.  
Where ‘Σ’ denotes the addition operation on £. 
 
Definition 2.6: Let A= (aij) ε £mn and B= (bij) є £mn. We write A ≥ B if  aij  ≥ bij  for all i and j. 
 
3. INCLINE RELATIONAL EQUATIONS 
 
In this section, we discuss the consistency of the equation of the form  
  

   x 𝐴𝐴 = 𝑏𝑏                                                            (3.1) 
 

with  x = [x𝑘𝑘/𝑘𝑘εNm ] , b = [𝑏𝑏𝑖𝑖/𝑖𝑖ε Nn]  and A= (aij) ε £ mn;  where Nr denotes the set of all positive integers 1 to r. Let Ω 
(A,b) denotes the set of all solutions of (3.1). 
 
Definition 3.1: If Ω (A, b) is a comparable set then any element x� of Ω (A, b) is called a maximal solution of x A=b if 
for all xε Ω (a,b), x  > x� implies x= x�. 
 
Definition 3.2: If Ω (A,b) is a comparable set then any element x� of Ω (A,b) is called a minimal solution of x A=b if 
for all x ε Ω (A, b), x < x� implies x = x�. 
 
Lemma 3.1: Let x A=b be as in equation (3.1).  If ∑ (a𝑘𝑘𝑖𝑖𝑘𝑘 ) < bk for some k ε Nn, then Ω (A, b) = φ. 
 
Proof: If ∑ (a𝑘𝑘𝑖𝑖𝑘𝑘 )  < bk, then by using incline properties (2.2) and (2.1), we have 
 

x𝑘𝑘a𝑘𝑘𝑖𝑖 ≤  a𝑘𝑘𝑖𝑖 ≤ ∑ (a𝑘𝑘𝑖𝑖𝑘𝑘 )  
 

∑ (x𝑘𝑘a𝑘𝑘𝑖𝑖𝑘𝑘 )  ≤  ∑ (a𝑘𝑘𝑖𝑖𝑘𝑘 ) < bk 
 
Hence no values of xj  ε £ satisfies the equation x A=b. Therefore Ω (A,b) = φ. 
 
Remark 3.1: The condition ∑ (a𝑘𝑘𝑖𝑖𝑘𝑘 )  < bk in Lemma (3.1) is essential. This is illustrated in the following: 
 
Illustration 3.1: £ = ([0,1], sup (x, y), ×), ‘×’ denotes the usual multiplication. £ is an incline. 
 
Let us consider the equation x A=b,  
 
where  A=�0.4 0.7

0.6 0.3� ε £22  and b=(0.9 0.1)  𝜀𝜀 £2 are given. 
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Since 0.6 < 0.9, the condition ∑ (a𝑘𝑘𝑖𝑖 )𝑘𝑘  < bk holds for the 1st column and 0.7 ≮ 0.1, the condition ∑ (a𝑘𝑘𝑖𝑖 )𝑘𝑘  < bk fails for 
the 2nd column. 
 
Hence Ω (A, b) = φ. 
 
Theorem 3.1: Let xA =b be as in (3.1), such that A*k and bk are comparable for each k. Then Ω (A,b) ≠ φ if and only if 
x� = [x�𝑘𝑘  /𝑘𝑘𝜀𝜀 Nm] defined as  
 
                       x�𝑘𝑘  = min σ (ajk, bk)                                                                                        (3.2)  
 

Where σ (ajk, bk) = �𝑏𝑏𝑖𝑖 𝑖𝑖𝑖𝑖 a𝑘𝑘𝑖𝑖 > 𝑏𝑏𝑖𝑖
1 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑟𝑟𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒

� is the maximum solution. 

 
Proof: If Ω (A, b) ≠ φ then x� is a solution of equation (3.2). For if x� is not a solution, then x� A≠ b. Hence  ∑ x�𝑘𝑘  j ajk0 ≠ 
bko for atleast one ko εNn. By definition of x�, since x�j < bk for each k, x�j < bko. By our assumption,∑ (a𝑘𝑘𝑖𝑖0𝑘𝑘 ) < bko for 
some ko εNn and by Lemma (3.1), Ω (A,b) = φ which is a contradiction. Hence x� is a solution of equation (3.2). Next, 
let us to prove that x� is the maximum solution. If possible let us assume that y be a solution of equation (3.2) such that y 
> x�, by using definition (2.6), yj > x�j  for each j ε Nm, that is yjo > x�jo for jo ε Nm. Since A*k  is comparable with bk, for 
each k ε Nn, σ (ajk,bk) can be determined. Therefore, by definition of x�, we have yjo > x�j0 = min σ (ajk,bk).  
Since Ω (A,b) ≠ φ by Lemma (3.1), ∑ (a𝑘𝑘𝑖𝑖 )𝑘𝑘  > bk for each k ε Nn. Hence bko ≠ Σ(yj ajko), for k0 ε Nn which contradicts 
our assumption y ε Ω (A,b). Therefore x� is the maximum solution of equation (3.2). Converse is trivial. 
 
Remark 3.2: In the above Theorem (3.1), the condition that the kth column of A and the kth component of b to be 
comparable is essential in determining the maximum solution. This is illustrated in the following example. 
 
Example 3.2: Let us consider the incline £ = {0, a, b, c, d, 1}, lattice ordered by the following Hasse graph. 
 
Define £x£  £ as follows  
 
 xy = �𝑑𝑑 𝑖𝑖𝑖𝑖 x,𝑦𝑦𝜀𝜀 {1, 𝑏𝑏, 𝑐𝑐,𝑑𝑑}

0 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑟𝑟𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒
�   

 
Let us consider the equation xA=b,     
 
where A=�1 𝑐𝑐

𝑏𝑏 0�  𝜀𝜀£22 and b = [d 0]  ε £2 are given. 
 
Since 1 > d, the condition ∑ (a𝑘𝑘𝑖𝑖 )𝑘𝑘  < bk in Lemma (3.1) fails for the  
 
 
 
1st column. Since c > 0, the condition  ∑ (a𝑘𝑘𝑖𝑖 )𝑘𝑘  < bk in Lemma (3.1) fails for the 2nd column. Therefore,  Ω (A, b) ≠ φ.  
Next to determine the solution set Ω (A,b). 
 

[x1 x2] �1 𝑐𝑐
𝑏𝑏 0� = [𝑑𝑑 0] 

 
x11 + x2 𝑏𝑏 = 𝑑𝑑 and x1 𝑐𝑐 = 0. Since x1 𝑐𝑐 = 0, for every x1𝜀𝜀 {0, a} 𝑎𝑎𝑛𝑛𝑑𝑑 x11 + x2 𝑏𝑏 = 𝑑𝑑, 𝑖𝑖𝑜𝑜𝑟𝑟 𝑒𝑒𝑒𝑒𝑒𝑒𝑟𝑟𝑦𝑦 x1, x2𝜀𝜀 {1,𝑏𝑏, 𝑐𝑐,𝑑𝑑}.   
 
Therefore Ω (A, b)  = { (0,1) (0,b) (0,c), (0,d), (a,1) (a, b) (a,c ) (a, d)}. 
 
In Ω (A,b), the elements (a, b) and (a, c) are not comparable. Therefore Ω (A,  b) is not a comparable set. Hence by 
definition (3.1), it has no maximum element. Thus  xA=b has no maximum solution. However, Ω (A, b) ≠ φ. 
 
Thus Theorem (3.1) fails. 
 
Remark 3.3: If the elements of £ are linearly ordered then the comparability of A*k and bk, for k ε Nn automatically 
holds. Hence Theorem (3.1) reduces to the following:  
 
Corollary 3.1: Let £ be an incline whose elements are all linearly ordered and the equation xA=b be as in (3.1). Then 
Ω (A,b) ≠ φ if and only if x �defined as in (3.2) is the maximum solution. 
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Theorem 3.2: Let £ be an incline whose idempotent elements are all linearly ordered and the equation xA=b with x=[xj 
/j ε Nm], b=[bk/kεNn] εDLn and A ε DLmn. Then Ω (A,  b) ≠ φ if and  only if x �defined as in (3.2), is the maximum 
solution. 
 
Proof: Since idempotent elements are all linearly ordered, for A ε DLmn, b ε DLn, the comparability of A*k and bk 
automatically holds for each k ε Nn. Then the theorem can be proved in a similar manner as that of Theorem (3.1). 
 
Corollary 3.2: Let £ be a regular incline whose elements are all linearly ordered and the equation xA=b be as in (3.1). 
Then Ω (A,b) ≠φ if and only if x �defined as in (3.2), is the maximum solution. 
 
Proof: Since £ is a regular incline by definition (2.4) each element of £ is idempotent and therefore DL=£. Then the 
rest follows from Theorem (3.2). 
 
Remark 3.4: Since by Proposition (2.1), a commutative regular incline is a distributive lattice and DL=£, Theorem 
(3.2) reduces to the following:    
 
Corollary 3.3: Let £ be a distributive lattice whose elements are all linearly ordered and the equation xA=b be as in 
(3.1). Then Ω (A,b) ≠ φ if and only if x �defined as in (3.2), is the maximum solution. 
 
Remark 3.5: The condition that A 𝜀𝜀 DLmn in Theorem (3.2) is essential. The condition that the elements are to be 
linearly ordered cannot be relaxed in the above Corollaries (3.1), (3.2) and (3.3). These are illustrated in the following.   
 
Example 3.3: Let us consider the incline £ in Example (3.2), whose idempotent elements 0 and d are linearly ordered. 
For the equation xA=b, 
 
Where A= �1 𝑐𝑐

𝑑𝑑 0�  𝜀𝜀  DL22 and b = [d 0] ∉ DL2. 
 
In Example (3.2), we have seen that Ω (A, b) ≠ φ but xA=b has no maximum solution. 
 
Thus Theorem (3.2) fails. 
 
Example 3.4: Let us consider the set D = {a, b, c} and the incline £ = (P (D),∪, ∩),  where P(D) is the power set of D 
with set inclusion ‘⊆’ as the order relation ‘<’. Here, £ is a commutative regular incline hence by proposition (2.1), £ is 
a distributive lattice whose elements are all idempotent but not linearly ordered. For instance, {a}, {b} and {c} are not 
comparable. 
 
Let us consider the equation x A=b,  
 

where A= �{a, 𝑐𝑐} {𝑐𝑐}
{a} {a,𝑏𝑏, 𝑐𝑐}� ε £22 and b = [{c} {b, c}] ε£2 

 are given. 

 
Here the condition ∑ (a𝑘𝑘𝑖𝑖 )𝑘𝑘  < bk fails for both the columns. Therefore by Lemma (3.1), Ω (A, b) ≠ φ. 
 
Next to determine the solution set Ω (A, b)  
 

 [x1 x2]   �{a, 𝑐𝑐} {𝑐𝑐}
{a} {a,𝑏𝑏, 𝑐𝑐}� = [{𝑐𝑐} {𝑏𝑏, 𝑐𝑐}]    

 
On computation we get,  
 
 x1 ε {{c} {b, c}} and x2 ε {{b} {b, c}} 
 
Therefore Ω (A, b) = {({c}, {b}) ({c}, {b, c}) ({b, c}, {b}) ({b, c}, {b, c})}.  
 
In Ω (A, b), the elements ({c}, {b, c}) and ({b, c}, {b}) are not comparable. Hence by definition (3.1), xA=b has  
no maximum solution. However Ω (A, b) ≠ φ.  
 
Thus corollaries (3.1), (3.2) and (3.3) fail.  
 
Remarks 3.6: It is well known that (p.2 [1]), every Fuzzy algebra is an incline. However, the converse not true. This 
can be seen from the incline  
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£ = {[0, 1], sup(x, y),×} where ‘×’ is the ordinary multiplication. £ is an incline whose elements are all linearly ordered. 
Here, for any x, y ε£ if x < y then x + y = y but xy ≠ x. Therefore £ is not the max-min fuzzy algebra. 
 
If the equation (3.1) is a fuzzy relational equation that is, A is a matrix over the max-min fuzzy algebra then Theorem 
(3.1) reduces to the following result of Sanchez [7] (Quoted in [5] p.70). 
 
Corollary 3.4: Let xA=b be the fuzzy relational equation as in (3.1). Then Ω (A, b) ≠ φ if and only if x� defined as in 
(3.2), is the maximum solution. 
 
CONCLUSION  
 
In this paper, we have discussed the consistency of the equation of the form xA=b. We have determined the condition 
for the existence of the maximum solution of xA=b. Further, in xA=b, if A is regular then as in [2] it can be seen that 
Xb is a solution for all X satisfying the equation AXA=A. Thus the main results in the present paper are the 
generalization of the results shown in the references [2], [3] and [7]. 
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