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ABSTRACT 
This paper shows the solution of non-linear equation describing the transient flow of power law fluids through porous 
medium. The solution is obtained by infinitesimal group transformation group method. At first, the one parameter lie 
group transformation in terms of characteristics function W is taken. Then the solution of the characteristics function 
W for the infinitesimals was obtained. The next step is to find the absolute invariants. Using these similarity variables 
the partial differential equation can be transformed into an ordinary differential equation. Analytical solution of 
Ordinary Differential Equation is presented.  
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1 INTRODUCTION: 
 
The solution of the nonlinear equation describing the transient flow of power law fluids through a porous medium is 
presented in this paper. These are obtained by infinitesimal group transformations for several cases of practical interest 
in interpretation of well flow test of short duration, used currently in oil reservoir engineering for obtaining the 
reservoir properties. Obviously, from an oil reservoir engineering point of view, it is essential to have an adequate 
understanding of the flow behavior of non-Newtonian fluids, in particular of the pseudo-plastic type, through a porous 
medium. In Pascal, H.[4], on this subject has shown the rheological effects of non-Newtonian displacing fluids of 
power law with yield stress on the dynamics of a moving interface separating oil from water. Several relevant 
conclusions, obtained there, indicated the conditions in which the viscous fingering effect in oil displacement could be 
eliminated and a piston-like displacement may be possible. 
 
To adequately describe the flow of non-Newtonian fluids in porous media, a modified Darcy’s law is required. In 
Pascal, H. [3], this basic relationship between the flow rate and the pressure drop for power law fluids with yields stress 
has been shown. However, a basic requirement for understanding is knowledge of the coefficients occurring in the 
modified Darcy’s law for this class of non-Newtonian fluids. While for an unrealistic geometrical model, for examples 
the capillary tube model, these coefficients may be determined and expressed in terms of rheological parameters and 
geometrical properties of the porous medium, in the case of real porous media the appropriate approach, as it was 
shown in Pascal, H. [5], remains the determination of the coefficients from in situ measurements on the pressure or 
flow rate behavior in time,  recorded in wells during the transient flow of short duration. Knowledge of this behavior 
may permit us the obtaining of useful information regarding the permeability of the porous medium, provided the oil is 
Newtonian, in which case Darcy’s law holds (Refer. Matthews at el [2], Earloughes, R.C. [1]).  
 
The main object of this paper is to find the solution for the problem in terms of infinitesimal transformation. 
 
The basic equations describing the steady and unsteady flow of power law fluids with yield stress were derived in our 
(Refer. Pascal, H. [3] & [4]). According to the results obtained there, the basic equations for power law fluids in the 
absence of yield stress may be written as 
 

                                    (1) 
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for one dimensional flow and for a plane redial flow. 
 

The coefficient 2a  in (1) is given by the relation 
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Once the pressure distributions are determined from previous equations, the velocity distributions may be obtained 
from the modified Darcy’s law and expressed as   
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2. MATHEMATICAL FORMULATION:  
 
The problems considered in this paper will be designed by means of a pair of symbols describing the oil reservoir 
boundary conditions. The first symbol will describe the condition at the outface flow, i.e. in wells, while the second 
will describe that at the inlet end. For example, the case where the pressure at both ends of the reservoir is specified 
will be termed the eP - Pα  problem. The case in which the flow rates are specified at both ends will be termed the 

ew Q - Q  problem, while the case where the pressure is specified at one end and the flow rate at the other end will be 

termed the ew P - Q  problem. The eP - Pα  problem corresponds to the first boundary value problem, the 

ew Q - Q  problem represents the second boundary value problem, and the ew P - Q  problem is a mixed problem. 
 
3 THE Pα  – eP PROBLEM (ONE DIMENSIONAL FLOW): 
 
The flow system to be analyzed is a linear oil reservoir having a closed outer boundary. It is assumed that at the initial 
moment t = 0 the pressure in the reservoir is constant, say eP , and for t > 0 the reservoir is depleted by a constant 

pressure of production, say wP , at the outface flow. As result, the flow is initiated and maintained in the reservoir 

provided that wP  < eP . This case corresponds to a reservoir producing by natural depletion. I.e. by elastic 
decompression, in which transient flow response appears in reservoir for t > 0. 
 
It should be pointed out that during the depletion period we have two phases concerning the reservoir behavior from a 
fluid mechanics point of view. For example, by reducing the pressure at the outface flow from eP  to wP , a 
decompression front will be generated in the reservoir, which requires a certain time to reach the closed boundary of 
the reservoir. Obviously, this time depends, as we will see further on, on the reservoir permeability, fluid 
compressibility, and rheological parameters of the reservoir fluids. The time interval required for the front to reach the 
closed boundary will be denoted by mt  and referred to as the duration of the first phase.  
 
At any moment m t t  0 <<  the decompression front will be located at a certain position denoted in the article by the 
equation x = l(t). Taking into account these notations, we can state that the pressure distribution p(x, t) in the reservoir 
will be, for m t t  0 <<  and l(t)  x  0 ≤≤ , the solution of the basic equation (1) satisfying the double inequality 

ew P   t)p(x,  P ≤≤ , while for l(t) x ≥  it has a constant value, namely eP     t)p(x, = . For m tt > , the 
pressure at the closed boundary starts to decline in time and after a certain time of production, termed as the depletion 
time, the pressure tends to equalize its value at the outface flow. This is the second phase and the corresponding 
pressure distribution for m tt >  will be  t)p(x,  Pw <  in the range 0 < x < L, where L is the length of the reservoir. 
The reservoir is considered to be completely depleted when its energy is insufficient to maintain the production at an 
imposed economical flow rate. 
 
From an oil reservoir engineering point of view, the first phase is of particular interest in well-test analysis, since 
information obtained in this phase, i.e. prior to when the decompression front reaches the closed boundary, may provide 
the reservoir properties, which are used in predicting the reservoir performance for a long period of time. Consequently, 
in well-test analysis the knowledge of the flow parameters in wells for a very short period of time, i.e. m tt < , is  
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required. In these circumstances, the solution of equation (1) may be determined by assuming that the reservoir is of 
infinite extent, in which case the following boundary and initial conditions may be used for m tt <  

  eP    0) p(x,          0 t ==  

  me  t t  0    ;P      t)p(x,          0 t <<=>  

  wP      t)p(0,          0 t =>                                   (4) 
 
However, it may be shown that, for m tt <  and n < 1, the pressure distribution p(x,t) corresponding to the conditions  
will be identical with that obtained when it is determined from consideration of a moving boundary problem, since 

eP     t)p(x, =  for l(t) x ≥ . 

On the other hand, the pressure p(x,t) and its derivative 
x
p
∂
∂  should be continuous functions of x and t for any x > 0 and 

t > 0, but because p(x, t) is constant for l(t) x ≥ , then 0     
x
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Specially, the pressure distribution p(x,t) for l(t)  x  0 <<  is the solution of equation (1), satisfying the conditions 
specified in (5). The nature of these conditions is motivated by the physical reality of the flow mechanism appearing in 
oil reservoirs producing by natural depletion, i.e. by elastic decompression, where for ∞<<   x  l(t)  the pressure 
remains constant to its value corresponding to the initial moment t = 0. As a result, no flow occurs in the reservoir 
behind the decompression front. 
 
4 SOLUTION OF THE EQUATION USING INFINITESIMAL GROUP TRANSFORMATIONS: 
 
The basic equation for Power law fluids 
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Using the notation 
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The equation can be written as 

  
1-n

2n
2 22 1(p ) . p na . p=                                                                (8) 

 
We define the infinite group of transformation as follows. 
  ∑ ++= )o(      u)  x,(t,     t    t 2εξ  

  ∑ ++= )o(      u)  x,(t,   x    x 2εη  

  ∑ ++= )o(      u)  x,(t,   p     p 2ες  

  ∑ ++= )o(      )p ,p u,  x,(t,   p    p 2
2111 1 επ  

  ∑ ++= )o(      )p ,p u,  x,(t,   p    p 2
2122 2 επ    
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                             ∑ ++= )o(      ) ,p ,p ,p ,p ,p p, u,  x,(t,   p    p 2

221211212222 22 επ                               (9)
 

 
The transformation function 2221  , , , , πππηξ  can be expressed in terms of characteristic function W as, 
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The expanded form  
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From (8), we have 
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This equation is solved for W. 
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The coefficient of  2
1p  gives 
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n 1 n 1 n 1W W [2C t C C x C x ] u [2C t C 2 C t C ]p [ C t C t C ] p

n n n
+ + +     = + + + + + + + + + +     

     

          
ζηξ
du    dx    dt ==                                                               (44)

- n
n 1 x tη +∴ =                                                                              (45)           
p f( )
tα

η∴ =          Where    𝛼𝛼 = � 𝑛𝑛
𝑛𝑛+1

� �𝑐𝑐3

𝑐𝑐5
�                                                                         (46) 

 
Using this transformation the basic equation (1) is reduced, for l(t)  x  0 << , to the nonlinear ordinary differential 
equation  

              0    
d
dp   

1 n 
an   

d
pd 1)/n -(2n 22

2

2
=








+

+
η

η
η

                               (47) 

 

for 1    0 ηη <<  where   
1) n/(n 1 t

l(t)    +=η
                                 

(48)  

 
The boundary conditions (5) now become 

  
1

1 e w
  

dpp( ) P ; 0 and p(0) P
d η η

η
η =

= = =                                                            (49)  



Dr.  Heenaben A. Raj* & Dr. M. G. Timol/ LIE GROUP TREATMENT FOR THE FLOW OF NON-NEWTOWNION FLUID 
THROUGH POROUS MEDIA/ IJMA- 3(4), April-2012, Page: 1354-1364 

© 2012, IJMA. All Rights Reserved                                                                                                                                                                    1361   

 
These three conditions determine, along with the solution of equation (47), the front location l(t) and pressure 
distribution p(x, t) in the range l(t)  x  0 << , as it will be shown further on. 
And its solution may be written as follows: 
 

  e
n- n+1e w

P  -  p(x, t) xa1-Erf
P  -  P 2t

 
=  

 
                

where  

n- n +1

2
xa / 2t

- 
n- n+1 0

xa 2Erf e d
2t

ξ ξ
π

 
= 

 
∫                 

 
For a Newtonian fluid, we have n = 1 in (47), and in this particular case equation (47) becomes 

  0        
d
dp  a 

2
1     

d
pd 2
2

2
=+

η
η

η                                 

(50) 

 
and its solution may be written as follows: 

  e

e w

P  -  p(x, t) xa    1 -  Erf
P  -  P 2 t

 
=  

                                  
(51) 

where  
2

xa / 2 t
- 

0

xa 2Erf        e d
2 t

ξ ξ
π

 
= 

  ∫
                              

(52) 

 
For n < 1, from (47) we obtains  

  
n/(1 - n)2

2
1

dp na 1 - nC  -
d 2 1  n

η
η

 
=  + 

                                              (53) 

And from (9) we have 0    
d
dp  

1  
=

=ηηη
, so that 1C  in (53) is expressed as 2

2

1  
n  1
n - 1 

2
na     C η

+
=  . Integration of 

equation (53) with condition wP    p(0) =  yields a relation for determining the pressure distribution in the range
l(t)  x  0 << . This may be written as 

  
n/(1 - n)2

(1  n)/(1 - n)
w 1 n

na 1 - np( ) -P J ( )
2 1  n

η η η+ 
=  + 

                                                          (54) 

where  
1/

2 n/(1 - n)
n

10

J ( ) (1 - ) d ;  0 1
η η ηη ξ ξ

η
= < <∫                                              (55) 

 
To determine 1η , one can use the condition e1 P    )p( =η . As a result, from (54) we have 

  
n/(1 - n)2

(1  n)/(1 - n)
e w 1 n 1

na 1 - nP -P J ( )
2 1  n

η η+ 
=  +                                              

(56) 

in which  
1

2 n/(1 - n)
n 1

0

J ( ) (1- ) dη ξ ξ= ∫                                                 (57) 

 
Does not depend on 1η .   Using the following notations 

  
p e wP -P∆ =     and 

1
2 n/(1 - n)

n
0

L (1 - ) dξ ξ= ∫                                                           (58) 

 
From (56) one obtains 

  constant    
n  1
n - 1 

2
na 

L
    

n) - n/(1 - 2n) - n)/(1  (1

n

p
1 =









+






∆
=

+

η
                            

(59) 
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Where as from (45), l (t) is 

  n)  n(1
n) - n/(1 - 2n) - n)/(1  (1

n

p  t
n  1
n - 1 

2
na 

L
    l(t) +

+










+






∆
=

                             

(60) 

 
Relation (60) determines the front location at any time t, nL  may be obtained from (58) exactly for certain values of n, 
as it will be shown further , or approximately for any n, using some numerical integration formulas. 
 

As equation (60) indicates, the front location depends strongly on the rheological parameters n and  2a  i.e. on efk/η  
 
For the capillary tube model  efk/η  is related to n and H by relation (2). 

  
1)/2 (n n

ef

8k 
3n  1

n 
2H
1    k +
















+

=
φ

φ
µ                                

(61) 

 
in which the rheological parameter H denotes the consistency index, k denotes the permeability , and φ  denotes the 
porosity. 
 
As is well known, for power law fluids the apparent viscosity is shear rate dependent. Consequently, the rheological 
effects on the front location will depend on the pressure drop p∆ . We again find this dependence by the relation (60).  
 
The following relations illustrate how these effects appear on l(t), for some particular cases. 

  

1/2
1/4

1/42

2 p  t
1n ;   l(t)
3 a

24

π
∆ 

 
 = =
 
 
 

 

  

1/3
1/3

1/32

3 p  t
1 2n ;   l(t)
2 a

12

∆ 
 
 = =

 
 
 

 

  
1/7

3/7

3/72

35 p  t
3 16n ;  l(t)
4 3a

56

∆ 
 
 = =

 
 
 

             

 
For a Newtonian fluid, i.e. n = 1, from (51) we have   

  2
0 p2

4tl(t)  ;  a  (C C )
a k

µ ϕ= = +           

 
This relation shows that the front location is independent of p∆ . Once 1η  is determined by relation (59), the pressure 
distribution may be obtained and expressed as 
 
  w n

e w n 1 1

p( )  -  P  J ( ) ;  0 1
p     -  P  J ( )
η η η

η η
= < <

                                              

(62) 

 
in which )(Jn η , given by relation (55), may be calculated for any n and η , using an adequate numerical integral 
formula, but for certain values of n an exact solution in closed form can be obtained. 
 
For example, using the transformation αξ sin     =  in (55), we have 

  
1arcsin /

(1  n)/(1 - n)
n

0

J ( ) (cos ) d
η η

η α α+= ∫
                                              

(63) 
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Where as one can see that )(Jn η  may be determined by means of the formulas

 
k -1

2k
2k 2k - 1

m  0

2k 2k1 1 sin(2k - 2m)(cos ) d
 k  m2 2 2k - 2m

αα α α
=

   
= +   

   
∑∫

 
 
for 1 n 2k -12k or n , k 1, 2, ..... 

1 - n 2k  1
+

= = =
+

                                                            (64) 

 

and 
k

2k 1
2k

m  0

2k  11 sin(2k - 2m  1)(cos ) d
    m2 2k - 2m  1

αα α+

=

+  +
=   + 

∑∫
 

 

for 1 n k2k 1  or n , k  1, 2, 3, ..... 
1 - n k  1
+

= + = =
+

                                                           (65) 

 
In order to illustrate the flow deviations from Newtonian behavior, where n = 1, several illustrative examples of 

practical interest will be considered, namely
7
5  and  ,

5
3 ,

4
3 ,

2
1 ,

3
1  n  = . For these cases, the function )(Jn η  defined 

by (63) may be expressed as 
 

 
1/22

1/3 2
1 1 1

1J ( ) arcsin 1 -  
2

η η ηη
η η η

  
 = +  
   

                                                            (66) 

 

 
1/22

1/2 2
1 1

1J ( ) 1-  
3

η ηη
η η

 
=  

 
                                                (67) 

 

               

2 33 2 2

3/4 3 2 2
1 1 1 1 1 1

24 8 6J ( )  - 1 -  5 1-
35 35 35

η η η η η ηη
η η η η η η

   
= + +   

                                                              

(68) 

 

             

1/2 3/22 2

3/5 2 2
1 1 1 1 1

3 1J ( ) arcsin 1 - 1 -   
8 4

η η η η ηη
η η η η η

   
= + +   

                                               

(69) 

                              

1/2 22 2 2

5/7 2 2 2
1 1 1 1 1

5 5 5 1J ( ) arcsin 1 - 1 - 1 - 
16 16 24 6

η η η η ηη
η η η η η

      
 = + + +     
       

                                          (70) 

 
From these relation for 1  ηη = , we have the values of )(J   L 1nn η=  as : 
 
    

1/3 1/2 3/4 3/5 5/7
2 16 3 5L ; L ; L ; L ; and L  

4 3 35 16 32
π π π

= = = = =
                                                          

(71) 

 
A problem of special interest in oil reservoir engineering is the prediction of the flow-rate decline in time at the outface 
flow, i.e. at x = 0, during the natural depletion mechanism under constant pressure. Since the pressure distribution is 
known from (54), then the modified Darcy’s law allows the knowledge of the flow-rate variation expressed in terms of 
variables x and t. This variation may be written as 
 

 
1/(1 - n)1/n 2 2

-1/(1  n) 2
1 2n/(1  n)

ef

k n(1 - n)a xQ (x, t)  F t  - 
2(1  n) t

η
µ

+
+

    
=     +                                                  

(72) 

 
in which 1η  is known from (59). At the outface flow, i.e. at x = 0, the relation (72) determines the flow-rate decline in 
time. 
 
5. CONCLUSION:

 

 
 
The transformation η = x-n/n+1 is used to find the non-linear ordinary differential equation  for the power law fluids 
associated with the interpretation of the well-known flow test of short duration. This transformation is obtained by 
infinitesimal group method. The analytical solution of the equation is given in the form of complimentary error  
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function. Also the flow deviations from Newtonian behavior are illustrated with several cases in terms of Bessel’s 
function and the flow variation is expressed in equation (72). 
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