International Journal of Mathematical Archive-3(4), 2012, Page: 1524-1532 (c) IMA Available online through www.ijma.info ISSN 2229-5046

On Continued Fractions of Period Five and Real Quadratic Fields of Class Number Even

Özen ÖZER*

Köyceğiz Vocational High School, Muğla University, Muğla, 48800, Turkey
E-mail: ozenozer@mu.edu.tr
(Received on: 11-04-12; Accepted on: 27-04-12)

Abstract

In this paper, by using the methods of T. Azuhata in [1] and K. Tomita in [6], in the case of $k_{d}=l\left(w_{d}\right)=5$ for $d=a^{2}+b \equiv 2(\bmod 4)$ where $\left(a, b \in Z^{+}, 0\langle b \leq 2 a)\right.$ that is not investigated in the papers of R.A. Mollin in [2] and K. Tomita in [6], the general forms of the continued fraction expansions of $w_{d}=\sqrt{d}$ and t_{d}, u_{d} explicitly in the fundamental unit $\left.\varepsilon_{d}=\left(t_{d}+u_{d} \sqrt{d}\right)\right\rangle 1$ of $Q(\sqrt{d})$ are determined.Furthermore, the necessary and sufficent conditions are given for Yokoi's invariant value of n_{d} which is defined in terms of coefficent of fundamental unit. Also, it is denoted that the class number h_{d} is always even.Finally, the real quadratic fields $Q(\sqrt{d})$ with $d \equiv 2(\bmod 4)$ and $h_{d}=2$ are given in the Table 3.1.

Mathematics Subject Classification: 11A55, 11R11, 11R27,11R29.
Keywords: Continued Fraction, Fundamental Unit, Quadratic Extension, Class Number.

1. INTRODUCTION AND NOTATIOONS:

K. Tomita in [6] , for all real quadratic fields $Q(\sqrt{d})$ such that the period k_{d} of continued fraction expansions $w_{d}=\frac{1+\sqrt{d}}{2}$ is equal to $5(i . e$; inthe caseof $d \equiv 1(\bmod 4))$, determined t_{d}, u_{d} explicity and uniformily in the fundamental unit $\left.\varepsilon_{d}=\left(t_{d}+u_{d} \sqrt{d}\right)\right\rangle 1$ of $Q(\sqrt{d})$ and general forms of continued fraction expansions of $w_{d}=\frac{1+\sqrt{d}}{2}$.Also, he described d itself by using at most four parameters appering in the continued fraction expansions and gived some results on Yokoi's invariant value of n_{d}, m_{d} by connected with class number one problem.

Furthermore, R. A. Mollin in [2], in the case of $k_{d}=l\left(w_{d}\right)=5$ for $d \equiv 1(\bmod 4)$, described some results on all real quadratic fields $Q(\sqrt{d})$ of class number one by using a specific Rabinowitch polynomial.

In this article, by using the methods of T. Azuhata in [1] and K. Tomita in [6], in the case of $k_{d}=l\left(w_{d}\right)=5$ for $d=a^{2}+b \equiv 2(\bmod 4)$ where $a, b \in Z^{+}, 0\left\langle b \leq 2 a\right.$ (Since $k_{d}=5$ odd integer, d is not equal to 3 modulo 4 which is showed in section 3 of this article) that is not investigated in the papers of R.A. Mollin in [2] and K. Tomita in [6], the general forms of the continued fraction expansions of $w_{d}=\sqrt{d}$ and t_{d}, u_{d} explicitly in the fundamental unit $\left.\varepsilon_{d}=\left(t_{d}+u_{d} \sqrt{d}\right)\right\rangle 1$ of $Q(\sqrt{d})$ are determined, and some results are obtained on Yokoi's invariant value of n_{d} which is defined in terms of coefficent of fundamental unit of real quadratic fields $Q(\sqrt{d})$
with period $k_{d}=5$. Furthermore, it is denoted that the class number h_{d} is always even and the real quadratic fields $Q(\sqrt{d})$ with $d \equiv 2(\bmod 4)$ and $h_{d}=2$ are given in the Table 3.1.

Throughout this paper, Let d be a positive square - free integer and put $d=a^{2}+b$ where $a, b \in Z^{+}, 0\langle b \leq 2 a$. Here a, b are the integers uniquely determined by d such that $\sqrt{d}-1<a<\sqrt{d}$.Also, Δ, $\left.\varepsilon_{d}=\left(t_{d}+u_{d} \sqrt{d}\right)\right\rangle 1, h_{d}, k_{d}$ be the diskriminant, the fundamental unit, the class number of real quadratic fields $Q(\sqrt{d})$ and the period of continued fraction expansion of $w_{d}=\sqrt{d}$, respectively.

Let $I(d)$ be the set of all quadratic irrationals with discriminant Δ. An element w_{d} of $I(d)$ is called "reduced" if $\left.w_{d}\right\rangle 1,-1\left\langle w_{d}^{\prime}\left\langle 0\right.\right.$ where w_{d}^{\prime} is conjugate of w_{d} with respect to Q.

Let $R(d)$ be the set of all reduced quadratic irrationals with discriminant Δ and continued fraction with period k_{d} is generally denoted by $w_{d}=\left[q_{0} ; \overline{q_{1}, \ldots \ldots ., q_{k_{d}}}\right]$ and $\lfloor x\rfloor$ means the greatest integer not greater than x .

2. LEMMAS AND THEOREMS:

We need the following Lemmas nad Theorems in order to prove our main results.
Lemma 2.1: $([6])$ For a square-free integer $d=a^{2}+b \equiv 2(\bmod 4)$ where $a, b \in Z^{+}, 0<b \leq 2 a$ we put

$$
w_{d}=\sqrt{d}, q_{0}=\left\lfloor w_{d}\right\rfloor, w_{R}=\sqrt{d}+a=w_{d}+\left\lfloor w_{d}\right\rfloor
$$

Then $w_{d} \notin R(d)$ and $w_{R} \in R(d)$ holds. Moreover , for the period k of w_{R} we get

$$
w_{R}=\left\lfloor\overline{2 q_{0}, q_{1}, \ldots \ldots ., q_{k-1}}\right\rfloor \text { and } w_{d}=\left\lfloor q_{0} ; \overline{q_{1}, \ldots \ldots . ., q_{k-1}, 2 q_{0}}\right\rfloor
$$

Furthermore, let $w_{R}=\frac{P_{k} \cdot w_{R}+P_{k-1}}{Q_{k} \cdot w_{R}+Q_{k-1}}=\left[2 q_{0} ; q_{1}, \ldots, q_{k-1}, w_{R}\right]$ be a modular otomorphism of w_{R}, then the fundamental unit ε_{d} of $Q(\sqrt{d})$ is given by the following formula :

$$
\begin{aligned}
\varepsilon_{d} & =\left(t_{d}+u_{d} \sqrt{d}\right)>1 \\
t_{d} & =q_{0} Q_{k}+Q_{k-1}, u_{d}=Q_{k}
\end{aligned}
$$

where Q_{i} is determined by $Q_{0}=0, Q_{1}=1$ and $Q_{i+1}=q_{i} \cdot Q_{i}+Q_{i-1} \quad, i \geq 1$
Proof:. it is easy to see that the proof of this Lemma is from Lemma 1 in ([6]).
Lemma 2.2: $([1])$ Let d be a square free integer and put $d=a^{2}+b$ where $a, b \in Z^{+}, 0\langle b \leq 2 a$ we put $w_{d} \in R(d)$.Let $w_{i}=l_{i}+\frac{1}{w_{i+1}}\left(k_{i+1}=l_{i}=\left\lfloor w_{i}\right\rfloor, i \geq 0\right)$ be the continued fraction expansion of $w_{d}=w_{0}$. Then each w_{i} is expressed in the form $w_{i}=\frac{a-r_{i}+\sqrt{D}}{c_{i}}\left(c_{i}, r_{i} \in Z^{+}\right)$and l_{i}, c_{i}, r_{i} can be obtained from the following recurrence formula :

$$
\begin{aligned}
& w_{0}=\frac{a-r_{0}+\sqrt{D}}{c_{0}} \\
& 2 a-r_{i}=c_{i} \cdot l_{i}+r_{i+1} \\
& c_{i+1}=c_{i-1}+\left(r_{i+1}-r_{i}\right) \cdot l_{i}(i \geq 0)
\end{aligned}
$$

where $0 \leq r_{i+1}\left\langle c_{i}, c_{-1}=\frac{\left(b+2 a r_{0}-r_{0}^{2}\right)}{c_{0}}\right.$. Moreover, for the period $k_{d} \geq 1$ of w_{d}, we get

$$
\begin{aligned}
l_{i} & =l_{k_{d}-i}\left(1 \leq i \leq k_{d}-1\right) \\
r_{i} & =r_{k_{d}-i+1}\left(1 \leq i \leq k_{d}\right) \\
c_{i} & =c_{k_{d}-i}\left(1 \leq i \leq k_{d}\right)
\end{aligned}
$$

Furthermore if $w_{d}=w_{R}$ and $d \equiv 2,3(\bmod 4)$ then we have

$$
r_{0}=r_{1}=0, c_{0}=1, c_{1}=b, l_{0}=k_{1}=2 a
$$

Proof: it is easy to see that the proof of this Lemma is from Proposition 1 and Proposition 2 in ([1]).
Theorem 2.3: ([5]) If $l(N)$ is odd, then the following two (equivalent) conditions hold:
(a) $N=u^{2}+v^{2}$ where $(u, v)=1$
(b) N has no prime factors of the form $4 k+3$ and is not divisible by 4 .

Here, N is a positive integer which is not perfect - square. The continued fraction for \sqrt{N} has periodic form $\sqrt{N}=\left\lfloor a_{0} ; \overline{a_{1}, \ldots \ldots, a_{l-1}, 2 a_{0}}\right\rfloor$ where $a_{1}, a_{2}, \ldots . a_{l-1}$ is palindrome and the period $l(N)$ is minimal length.

Proof: For the proof of this theorem, see Theorem C in ([5]).
Corollary 2.4: $([4])$ Let Δ be the fundamental diskriminant where $\Delta=d$ if $d \equiv 1(\bmod 4)$ otherwise $\Delta=4 d$. If $\Delta>0$ then the class number h_{d} is odd if and only if $d=p, 2 p_{1}$ or $p_{1} . p_{2}$ where p is prime , $p_{1} \equiv p_{2} \equiv 3(\bmod 4)$ are primes.

Proof: For the proof of this corollary, see Corollary 1.3.2. in ([4]).

3. MAIN RESULTS AND APPLICATIONS:

Theorem 3.1:(MainTheorem) For a positive square - free integer $d=a^{2}+b \equiv 2(\bmod 4)$ where $a, b \in \mathrm{Z}^{+}, 0\left\langle b \leq 2 a\right.$, we assume that $k_{d}=5$.Then, we get

$$
w_{d}=\left[a, \overline{l_{1}, l_{2}, l_{2}, l_{1}, 2 a}\right]=\left\{\begin{array} { c c }
{ [a , \overline { l , 2 k + 1 , 2 k + 1 , l , 2 a }] } & { \text { for anodd integer } }
\end{array} \text { if a is even } ~ \left(\begin{array}{lc}
l_{2} \geq 1 \\
{[a, \overline{2 l, 2 v, 2 v, 2 l, 2 a}]} & \text { fortwoeven integer } \\
\text { if } a \text { is odd } \\
l_{1}, l_{2} \geq 2
\end{array}\right.\right.
$$

and then

$$
\left(t_{d}, u_{d}\right)=\left\{\begin{array}{l}
\left(\left(A r+t l_{1}\right)\left(A^{2}+l_{1}^{2}\right)+\left(A l_{2}+l_{1}\right), A^{2}+l_{1}^{2}\right) \text { if } a \text { is even } \\
\left(\left(A r+s \frac{l_{1}}{2}\right)\left(A^{2}+l_{1}^{2}\right)+\left(A l_{2}+l_{1}\right), A^{2}+l_{1}^{2}\right) \text { if } a \text { is odd }
\end{array}\right.
$$

and

$$
d=A^{2} r^{2}+2 B r+C
$$

holds where A, B, C and r are determined uniquely as follows :
(i) In the case where a is even ;

$$
A=l_{1} l_{2}+1, \quad B=A t l_{1}+l_{2}, C=t\left(2+t l_{1}^{2}\right)
$$

r is the non-negative integer determined uniquely by $a=A r+t l_{1}$.
(ii) In the case where a is odd ;

$$
A=l_{1} l_{2}+1, \quad B=A s l+l_{2}, C=s(1+s l),
$$

r is the non-negative integer determined uniquely by $a=A r+s l$.
Now, we define generally the set

$$
S_{\beta}^{\alpha}=\left\{d \in Z^{+} \mid d \equiv \alpha(\bmod 8), b \equiv \beta(\bmod 8)\right\}
$$

where Z^{+}is the set of all positive integers.
Remark 3.2: For four parameters l, v, r and s in Theorem 3.1. satisfy the following conditions:
(i) In the case where a is even ;

$$
l_{1} \equiv r(\bmod 2), l_{2} \equiv 1(\bmod 2), s \equiv 0(\bmod 2)
$$

(ii) In the case where a is odd ;

$$
\left(\frac{l_{1}}{2}, r\right) \equiv(0,1),(1,0)(\bmod 2)
$$

Remark 3.3: The set of all positive square-free integers congruent to 2 modulo 8 is union of S_{2}^{2}, S_{6}^{2} and S_{1}^{2}.The sets are represented as follows:

$$
\begin{aligned}
& S_{2}^{2}=\left\{d \in Z^{+} \mid d=a^{2}+8 m+2, a \equiv 0(\bmod 4), 0<4 m\langle a\}\right. \\
& S_{6}^{2}=\left\{d \in Z^{+} \mid d=a^{2}+8 m+2, a \equiv 2(\bmod 4), 0<4 m\langle a-2\}\right. \\
& S_{1}^{2}=\left\{d \in Z^{+} \mid d=a^{2}+8 m+1, a \equiv 1(\bmod 2), 0\langle 4 m\langle a\} .\right.
\end{aligned}
$$

Moreover, because of the Theorem 2.3, there is not any set S_{5}^{2}.
Remark 3.4: For $k_{d}=l\left(w_{d}\right)=5$, there is not any real quadratic field $Q(\sqrt{d})$ where $d \equiv 6(\bmod 8)$ or $d \equiv 3(\bmod 8)$.

Because of the Theorem 2.3. , d is no prime factors of the form $p \equiv 3(\bmod 4)$ and not divisible by 4 . Therefore, there is not any real quadratic field $d \equiv 6(\bmod 8)$.Also, again using the Theorem 2.3.,$d=u^{2}+v^{2}$ where $(u, v)=1$ implies d is not congruent to 3 modulo 8 .

Remark 3.5: Since Remark 3.4., for $k_{d}=l\left(w_{d}\right)=5, S_{\beta}^{\alpha}$ is not defined where $\alpha \equiv 6(\bmod 8)$ and $\beta \equiv 1,2,5$ or $6(\bmod 8)$.

Remark 3.6: For $k_{d}=l\left(w_{d}\right)=5$, in the case of $w_{d}=\sqrt{d}$, the class number h_{d} of real quadratic field $Q(\sqrt{d})$ is always even.

Since $d \neq 2, d \equiv 2(\bmod 4)$ implies $d \neq p, 2 p_{1}$ and $p_{1} . p_{2}$ where p is prime, $p_{1} \equiv p_{2} \equiv 3(\bmod 4)$ are primes, it holds that h_{d} is always even because of Corollary 2.4.

For the set S of all square-free positive integers, we define the set

$$
\Gamma_{k_{d}}(S)=\left\{w_{d} \mid d \in S \text { and } k_{d} \text { is the period of } w_{d}=\sqrt{d}\right\}
$$

and we put $w_{0}=q_{0}+w_{d}$ for $w_{d}=\left[q_{0} ; \overline{q_{1}, \ldots \ldots . ., q_{k-1}, q_{k_{d}}}\right]$ in $\Gamma_{k_{d}}(S)$, then $w_{0} \in R(d)$.For w_{0} in $R(d)$, let $w_{i}=l_{i}+\frac{1}{w_{i+1}},\left(k_{i+1}=l_{i}=\left\lfloor w_{i}\right\rfloor, i \geq 0\right)$ be the continued fraction expansion of w_{0}.Also, each w_{0} is expressed in the form $w_{i}=\frac{a-r_{i}+\sqrt{D}}{c_{i}}\left(c_{i}, r_{i} \in Z^{+}\right)$in Lemma 2.2.

Proof of Main Theorem: .

(a) In the case where a is even, we first assume that d in $S_{2}^{2} \cup S_{6}^{2}$. It follows from $q_{0}=\left\lfloor w_{d}\right\rfloor=a$ and Lemma 2.2. implies

$$
r_{0}=r_{1}=0, c_{0}=1, c_{1}=b, l_{0}=k_{1}=2 a .
$$

(i) We assume that w_{d} belongs to $\Gamma_{5}\left(S_{2}^{2}\right)$. Then $c_{1}=8 m+2, m \in Z^{+}$holds and Lemma 2.2. implies $2 a=(8 m+2) l_{1}+r_{2}$. Hence, we can put $r_{2}=2 r, r \in Z^{+}$and get $a=(4 m+1) l_{1}+r$.Moreover, from Lemma 2.2. we get $c_{2}=1+r_{2} . l_{1}$ and $2 a=c_{2} l_{2}+r_{2}+r_{3}$. Hence, we get

$$
\begin{equation*}
(8 m+2) l_{1}=\left(1+2 r l_{1}\right) l_{2}+r_{3} \tag{1}
\end{equation*}
$$

On the other hand, $c_{2}=1+r_{2} \cdot l_{1}$ and $c_{3}=c_{1}+\left(r_{3}-r_{2}\right) l_{2}$ imply

$$
\begin{equation*}
(8 m+2)=2 r l_{1}+\left(2 r-r_{3}\right) l_{2}+1 \tag{2}
\end{equation*}
$$

because of $c_{3}=c_{2}$.
If we assume $l_{2} \equiv 0(\bmod 2)$, then in all case of integer l_{1}, we get $r_{3} \equiv 0(\bmod 2)$ from (1).Hence, $0 \equiv 1(\bmod 2)$ holds in (2), which is a contradiction. Therefore, we have $l_{2} \equiv 1(\bmod 2)$ and from (1) and (2), we can determine $r_{3} \equiv 1(\bmod 2)$ for in all case of integer l_{1}. Moreover, from $(1), l_{2}+r_{3} \equiv 0\left(\bmod l_{1}\right)$ holds.Thus, there exists a positive even integer s such that $r_{3}=s l_{1}-l_{2}$ because of $r_{3} \equiv 1(\bmod 2)$.By substitution of this r_{3} in (1), we get $4 m+1=r l_{2}+t$ and because of $a=(4 m+1) l_{1}+r$, we get $a=A r+t l_{1}$ where $A=l_{1} l_{2}+1$ and $s=2 t, t \in Z^{+}$.

On the other hand, (2) implies $2\left(r l_{2}+t\right)=2 r l_{1}+\left(2 r-2 t l_{1}+l_{2}\right) l_{2}+1$ and hence we get $2 r l_{1}-s A=-l_{2}^{2}-1$.Therefore, because of $A^{2}-l_{1}^{2} \neq 0$ such integers r, s are uniquely determined.

Now, we consider $A=l_{1} l_{2}+1$.Then, since $w_{d}=\left[a, \overline{l_{1}, l_{2}, l_{2}, l_{1}, 2 a}\right]$,

$$
Q_{3}=A, Q_{4}=A l_{2}+l_{1}, Q_{5}=A^{2}+l_{1}^{2}
$$

hold in Lemma 2.1. Therefore, we have that

$$
t_{d}=\left(A r+t l_{1}\right)\left(A^{2}+l_{1}^{2}\right)+\left(A l_{2}+l_{1}\right) \text { and } u_{d}=A^{2}+l_{1}^{2}
$$

Moreover, if we put $B=A t l_{1}+l_{2}, C=t\left(2+t l_{1}^{2}\right)$, then $d=A^{2} r^{2}+2 B r+C$ holds.
(ii) Next, we assume that w_{d} belongs to $\Gamma_{5}\left(S_{6}^{2}\right)$, then we have only to replace $(8 m+2)$ with $(8 m+6)$ in the case that w_{d} belongs to $\Gamma_{5}\left(S_{6}^{2}\right)$. Hence, (1) and (2) are replaced by

$$
(8 m+6) l_{1}=\left(1+2 r l_{1}\right) l_{2}+r_{3} \quad \text { and } \quad(8 m+6)=2 r l_{1}+\left(2 r-r_{3}\right) l_{2}+1
$$

respectively. Then, there exists a positive even integer $s=2 t, t \in Z^{+}$such that $r_{3}=s l_{1}-l_{2}$. The proof of this case is obtained as the proof of previous case.

As an application of the first part of the case a is even integer of this theorem we get $d=74=8^{2}+8.1+2$, since $a=(4 m+1) l_{1}+r$ and $s=(8 m+2)-2 r l_{2}$, we have $l_{1}=1, l_{2}=1, r=3, s=4, t=2$ and $A=2$. Hence w_{d} is easily determined as follows:

$$
w_{d}=\sqrt{74}=[8, \overline{1,1,1,1,16}] .
$$

Moreover, the fundamental unit of $Q(\sqrt{74})$ is immediately seen as $\varepsilon_{d}=43+5 \sqrt{74}$ by using $t_{d}=43$ and $u_{d}=5$.
As an application of the second part of the case a is even integer of this theorem we get $d=218=14^{2}+8.2+6$, since $a=(4 m+3) l_{1}+r$ and $s=(8 m+6)-2 r l_{2}$, we have $l_{1}=1, l_{2}=3, r=3, s=4, t=2$ and $A=4$.

Hence w_{d} is easily determined as follows:

$$
w_{d}=\sqrt{218}=[14, \overline{1,3,3,1,28}] .
$$

Moreover, the fundamental unit of $Q(\sqrt{74})$ is immediately seen as $\varepsilon_{d}=251+17 \sqrt{218}$ by using $t_{d}=251$ and $u_{d}=17$.
(b) In the case where a is odd integer, we have only to consider d in S_{1}^{2} and w_{d} belongs to $\Gamma_{5}\left(S_{1}^{2}\right)$. Then $q_{0}=\left\lfloor w_{d}\right\rfloor=a$ holds and Lemma 2.2. implies $r_{0}=r_{1}=0, c_{0}=1, c_{1}=b=8 m+1, m \in Z^{+}, l_{0}=k_{1}=2 a$. By using Lemma 2.2., we get $2 a=(8 m+1) l_{1}+r_{2}$.

If we assume $l_{1} \equiv 1(\bmod 2)$ i.e. $l_{1}=2 l+1, l \in Z^{+}$, then $r_{2}=2 r+1, r \in Z^{+}$holds. Hence, we can put $r_{2}=2 r+1$ and $a=4 m l_{1}+l+r+1$. Moreover, from Lemma 2.2. we get $c_{2}=1+r_{2} . l_{1}$ and $2 a=(8 m+1) l_{1}+r_{2}$ and so

$$
\begin{equation*}
(8 m+1) l_{1}=\left(1+r_{2} l_{1}\right) l_{2} \tag{3}
\end{equation*}
$$

holds. If we consider $l_{1} \equiv 1(\bmod 2)$ and $r_{2} \equiv 1(\bmod 2)$, then $0 \equiv 1(\bmod 2)$ holds in (3), which is a contradiction.Hence, we have $l_{1} \equiv r_{2}=0(\bmod 2)$.Therefore, from (3), we can determine $l_{1}=2 l, r_{2}=2 r, l, r \in Z^{+}$and Lemma 2.2. implies $a=(8 m+1) l+r$. Moreover, from Lemma 2.2. we get $c_{2}=1+r_{2} \cdot l_{1}$ and $2 a=(8 m+1) l_{1}+r_{2}$. Hence, we get

$$
\begin{equation*}
(8 m+1) 2 l=(1+4 r l) l_{2}+r_{3} \tag{4}
\end{equation*}
$$

On the other hand, $c_{2}=1+r_{2} \cdot l_{1}$ and $c_{3}=c_{1}+\left(r_{3}-r_{2}\right) l_{2}$ imply

$$
\begin{equation*}
(8 m+1)=4 r l+\left(2 r-r_{3}\right) l_{2}+1 \tag{5}
\end{equation*}
$$

because of $c_{3}=c_{2}$.
If we assume $l_{2} \equiv 1(\bmod 2)$, then we get $r_{3}=(8 m+1) 2 l-(1+4 r l) l_{2}$ is odd integer from (4).Hence, $0 \equiv 1(\bmod 2)$ holds in (5), which is a contradiction. Hence, we have $l_{2} \equiv 0(\bmod 2)$ i.e. $l_{2}=2 v, v \in Z^{+}$.Therefore, from (4) and (5), we can determine $r_{3} \equiv 0(\bmod 2)$. Moreover, from (4), $l_{2}+r_{3} \equiv 0\left(\bmod l_{1}\right)$ holds.Thus, there exists a positive odd integer s such that $r_{3}=s l_{1}-l_{2}=2(s l-v)$. By substitution of this r_{3} in (4), we get $8 m+1=4 r v+s$ and because of $a=(4 r v+s) l+r$, we get $a=A r+s l$ where $A=l_{1} l_{2}+1=4 v l+1$. On the other hand, (5) implies $4 r l-s A=-4 v^{2}-1$..Therefore, because of $A^{2}-4 l^{2} \neq 0$ such integers r, s are uniquely determined.

Now, we consider $A=4 v l+1$.Then, since $w_{d}=[a, \overline{2 l, 2 v, 2 v, 2 l, 2 a}], q_{0}=a=(4 v l+1) r+s l$

$$
Q_{3}=A, Q_{4}=A l_{2}+l_{1}=2(A v+l), Q_{5}=A^{2}+l_{1}^{2}=A^{2}+4 l^{2}
$$

hold in Lemma 2.1. Therefore, we have that

$$
t_{d}=(A r+s l)\left(A^{2}+4 l^{2}\right)+(2 A v+2 l) \text { and } u_{d}=A^{2}+l_{1}^{2}=A^{2}+4 l^{2}
$$

Moreover, if we put $A=4 v l+1 \quad B=A s l+2 v, C=s\left(1+s l^{2}\right)$, then $d=A^{2} r^{2}+2 B r+C$ holds.
As an application of the case a is odd integer of this theorem we get $d=1378=37^{2}+8.1+1$,
since $a=(8 m+1) l+r$ and $s=(8 m+1)-4 r v$,
we have
$l_{1}=8, l_{2}=4, r=1, s=1$, and $A=33$. Hence w_{d} is easily determined as follows:

$$
w_{d}=\sqrt{1378}=[37, \overline{8,4,4,8,74}] .
$$

Moreover, the fundamental unit of $Q(\sqrt{1378})$ is immediately seen as $\varepsilon_{d}=85602+2306 \sqrt{1378}$ by using $t_{d}=85602$ and $u_{d}=2306$.

For any square-free integer d in [7], Yokoi defined some new invariants by taking the fundamental unit of $Q(\sqrt{d})$ as

$$
n_{d}=\left\lfloor\frac{t_{d}}{u_{d}^{2}}\right\rfloor, m_{d}=\left\lfloor\frac{u_{d}^{2}}{t_{d}}\right\rfloor
$$

etc...and studied relationship between these new invariants and class number of real quadratic fields $Q(\sqrt{d})$.
In this section, we apply our results to these invariants, and consider the class number h_{d} of real quadratic fields $Q(\sqrt{d})$ for d in S^{2} where S^{2} is the set of all positive square-free integers congruent to 2 modulo 8 .
Now, we apply Yokos's invariant $n_{d}=\left\lfloor\frac{t_{d}}{u_{d}^{2}}\right\rfloor$ to main theorem above, see [7]. Then, we get following theorem.
Theorem 3.2: Let $d=a^{2}+b \equiv 2(\bmod 4)$ where $a, b \in Z^{+}, 0<b \leq 2 a$ be a square free integer, $k_{d}=5$ and $\varepsilon_{d}=\left(t_{d}+u_{d} \sqrt{d}\right)>1$ be a the fundamental unit of $Q(\sqrt{d})$. Then, for the obtained values t_{d}, u_{d} in Theorem 3.1. the following statements are hold :
(a) $a<u_{d} \Leftrightarrow n_{d}=0$
(b) $w_{d}=\sqrt{d}=[a, \overline{1,1,1,1,2 a}] \Leftrightarrow u_{d}=5$ and $n_{d}=\frac{a-3}{5} \quad$ (i.e. $\left.m_{d}=0\right)$
(c) $w_{d}=\sqrt{d}=[a, \overline{2,1,1,2,2 a}] \Leftrightarrow u_{d}=13$ and $n_{d}=\frac{a-5}{13} \quad$ (i.e. $\left.m_{d}=0\right)$

Proof: We note that $\left.n_{d}=\left\lfloor\frac{t_{d}}{u_{d}^{2}}\right\rfloor=0 \Leftrightarrow u_{d}^{2}-t_{d}\right\rangle 0$.
(a) Firstly, we assume that d belongs to $S_{2}^{2} \cup S_{6}^{2}$. In this case, for $\varepsilon_{d}=\left(t_{d}+u_{d} \sqrt{d}\right)>1$, $t_{d}=a .\left(A^{2}+l_{1}^{2}\right)+\left(A l_{2}+l_{1}\right)$ and $u_{d}=A^{2}+l_{1}^{2}$ hold.
$(: \Rightarrow)$ We assume that $a\left\langle u_{d}\right.$. Since

$$
u_{d}-\left(A l_{2}+l_{1}\right)=\left(A^{2}+l_{1}^{2}\right)-\left(A l_{2}+l_{1}\right) \geq 2\left(2 l_{2}+1\right)\left(l_{2}+1\right)
$$

and $l_{2} \geq 1$, we get $u_{d}>A l_{2}+l_{1}$. Hence, we get also

$$
\begin{aligned}
n_{d} & =\left\lfloor\frac{t_{d}}{u_{d}^{2}}\right\rfloor=\left\lfloor\frac{a\left(A^{2}+l_{1}^{2}\right)+\left(A l_{2}+l_{1}\right)}{\left(A^{2}+l_{1}^{2}\right)^{2}}\right\rfloor \\
& =\left\lfloor\frac{a}{A^{2}+l_{1}^{2}}\right\rfloor=0
\end{aligned}
$$

by using the $a\left\langle u_{d}\right.$.
$\left(\Leftarrow\right.$:) Conversely, we suppose that $n_{d}=0$. By using the $\left.u_{d}^{2}-t_{d}\right\rangle 0$, we get $\left.\left(A^{2}+l_{1}^{2}\right)\right\rangle a$ and so $a\left\langle u_{d}\right.$.
Next, we assume that d belongs to S_{1}^{2}.In this case is proved in the same way as previous case. Therefore, $a\left\langle u_{d}\right.$ is necessary and sufficent condition for $n_{d}=0$.
(b) $(: \Rightarrow)$ We assume that the continued fraction expansion of w_{d} is the form of $w_{d}=\sqrt{d}=[a, \overline{1,1,1,1,2 a}]$.

Then, we get $A=2$ and $u_{d}=5$ because of $A=l_{1} l_{2}+1$ and $u_{d}=\left(A^{2}+l_{1}^{2}\right)$. Since $l_{1}=1$ is odd, d does not belong to S_{1}^{2} and so

$$
t_{d}=a . u_{d}+\left(A l_{2}+l_{1}\right) \text { and } u_{d}=5
$$

hold. By using the equivalent

$$
t_{d}=a \cdot u_{d}^{2}+\left(A l_{2}+l_{1}\right) u_{d}+\left(A l_{2}+l_{1}\right)
$$

we get $n_{d}=\frac{a-3}{5}$.
$\left(\Leftarrow\right.$:) Conversely, we assume that $u_{d}=5$ and $n_{d}=\frac{a-3}{5}$. Using the values $u_{d}=\left(A^{2}+l_{1}^{2}\right)$ and $A=l_{1} l_{2}+1$, we have $l_{1}=l_{2}=1$. Hence, we get

$$
w_{d}=\sqrt{d}=[a, \overline{1,1,1,1,2 a}] .
$$

As an application of this case, we get $d=74=8^{2}+8.1+2$. By using the Theorem 3.1. it is easily seen that $a=8$, $l_{1}=l_{2}=1$, and $A=2$. Therefore, we have $u_{d}=5$ and $n_{d}=1$.
(c) The proof of this case is obtained as the proof of (b).

As an application of this case, we get $d=1970=44^{2}+8.4+2$. By using the Theorem 3.1. it is easily seen that $a=44, l_{1}=2, l_{2}=1$, and $A=3$. Therefore, we have $u_{d}=13$ and $n_{d}=3$.

Corollary 3.3: Let $d=a^{2}+b \equiv 2(\bmod 4)$ where $a, b \in Z^{+}, 0\left\langle b \leq 2 a\right.$ be a square free integer and $k_{d}=5$. If a is even integer, then there exist exactly three real quadratic fields $Q(\sqrt{d})$ with class number $h_{d}=2$ which are
given in Table 3.1. (with one posible exeption of d)Moreover, there is not any real quadratic field $Q(\sqrt{d})$ with class number $h_{d}=2$ where a is odd integer.

d	a	m	n_{d}	h_{d}	w_{d}
$74 \in S_{2}^{2}$	8	1	1	2	$\sqrt{74}=\lfloor 8, \overline{1,1,1,1,16}\rceil$
$218 \in S_{6}^{2}$	14	2	0	2	$\sqrt{218}=\lfloor 14, \overline{1,3,3,1,28}\rfloor$
$2138 \in S_{6}^{2}$	46	2	0	2	$\sqrt{2138}=\lfloor 46, \overline{4,5,5,4,92}\rceil$

Table 3.1
Proof: It is easy to see that the proof of this corollary is from Corollary 2.4. All of the fields with class number two in Table 2.1. in ([4]) are obtained from Corollary 3.3.

REFERENCES

[1] T.Azuhata, On the Fundamental Units and The class Numbers of Real Quadratic Fields, Nagoya Math. J., 95, 1984, 125-135.
[2] R. A. Mollin and H. C. Williams, Continued fraction of period five and real quadratic fields of class number one, Acta Arithmetica, LVI, 1990, 55-62.
[3] R. A. Mollin and H. C. Williams, On Real Quadratic Fields of Class Number Two, Mathematics of computation, Vol. 59, No 200, 1992, 625-632.
[4] R. A. Mollin, Quadratics, CRC Press, 1996.
[5] P.J. Rippon and H. Taylor, Even and Odd Periods in Continued Fractions of Square Roots, Fibonacci Quaterly, 2004, 170-180.
[6] K. Tomita, Explicit Representation Of Fundamental Units Of Some Quadratic Fields, II, Journal of Number Theory, 63, 1997, 275-285.
[7] H. Yokoi, New invariants and Class Number Problem in Real Quadratic Fields, Nagoya Math. J., 132, 1993,175197.

