International Journal of Mathematical Archive-3(4), 2012, Page: 1524-1532

On Continued Fractions of Period Five and Real Quadratic Fields of Class Number Even

Özen ÖZER*

Köyceğiz Vocational High School, Muğla University, Muğla, 48800, Turkey E-mail: ozenozer@mu.edu.tr

(Received on: 11-04-12; Accepted on: 27-04-12)

ABSTRACT

In this paper, by using the methods of T. Azuhata in [1] and K. Tomita in [6], in the case of $k_d = l(w_d) = 5$ for $d = a^2 + b \equiv 2 \pmod{4}$ where $(a, b \in Z^+, 0 \langle b \leq 2a)$ that is not investigated in the papers of R.A. Mollin in [2] and K. Tomita in [6], the general forms of the continued fraction expansions of $w_d = \sqrt{d}$ and t_d , u_d explicitly in the fundamental unit $\varepsilon_d = (t_d + u_d \sqrt{d}) > 1$ of $Q(\sqrt{d})$ are determined. Furthermore, the necessary and sufficient conditions are given for Yokoi's invariant value of n_d which is defined in terms of coefficient of fundamental unit. Also, it is denoted that the class number h_d is always even. Finally, the real quadratic fields $Q(\sqrt{d})$ with $d \equiv 2 \pmod{4}$ and $h_d = 2$ are given in the Table 3.1.

Mathematics Subject Classification: 11A55, 11R11, 11R27,11R29.

Keywords: Continued Fraction, Fundamental Unit, Quadratic Extension, Class Number.

1. INTRODUCTION AND NOTATIONS:

K. Tomita in [6], for all real quadratic fields $Q(\sqrt{d})$ such that the period k_d of continued fraction expansions $w_d = \frac{1+\sqrt{d}}{2}$ is equal to 5 (*i.e*; *in the case of* $d \equiv 1 \pmod{4}$), determined t_d , u_d explicitly and uniformily in the fundamental unit $\varepsilon_d = (t_d + u_d \sqrt{d}) > 1$ of $Q(\sqrt{d})$ and general forms of continued fraction expansions of $w_d = \frac{1+\sqrt{d}}{2}$. Also, he described *d* itself by using at most four parameters appering in the continued fraction expansions and gived some results on Yokoi's invariant value of n_d , m_d by connected with class number one problem.

Furthermore, R. A. Mollin in [2], in the case of $k_d = l(w_d) = 5$ for $d \equiv 1 \pmod{4}$, described some results on all real quadratic fields $Q(\sqrt{d})$ of class number one by using a specific Rabinowitch polynomial.

In this article, by using the methods of T. Azuhata in [1] and K. Tomita in [6], in the case of $k_d = l(w_d) = 5$ for $d = a^2 + b \equiv 2 \pmod{4}$ where $a, b \in Z^+$, $0 \langle b \leq 2a \rangle$ (Since $k_d = 5$ odd integer, d is not equal to 3 modulo 4 which is showed in section 3 of this article) that is not investigated in the papers of R.A. Mollin in [2] and K. Tomita in [6], the general forms of the continued fraction expansions of $w_d = \sqrt{d}$ and t_d , u_d explicitly in the fundamental unit $\varepsilon_d = (t_d + u_d \sqrt{d}) \rangle 1$ of $Q(\sqrt{d})$ are determined, and some results are obtained on Yokoi's invariant value of n_d which is defined in terms of coefficient of fundamental unit of real quadratic fields $Q(\sqrt{d})$

Corresponding author: Özen ÖZER, *E-mail: ozenozer@mu.edu.tr

with period $k_d = 5$. Furthermore, it is denoted that the class number h_d is always even and the real quadratic fields $Q(\sqrt{d})$ with $d \equiv 2 \pmod{4}$ and $h_d = 2$ are given in the Table 3.1.

Throughout this paper, Let d be a positive square - free integer and put $d = a^2 + b$ where $a, b \in Z^+$, $0 \langle b \leq 2a$. Here a, b are the integers uniquely determined by d such that $\sqrt{d} - 1 \langle a \langle \sqrt{d} \rangle$. Also, Δ , $\mathcal{E}_d = \left(t_d + u_d \sqrt{d}\right) > 1$, h_d , k_d be the diskriminant, the fundamental unit, the class number of real quadratic fields $Q(\sqrt{d})$ and the period of continued fraction expansion of $w_d = \sqrt{d}$, respectively.

Let I(d) be the set of all quadratic irrationals with discriminant Δ . An element w_d of I(d) is called "reduced" if $w_d \rangle 1, -1 \langle w'_d \rangle 0$ where w'_d is conjugate of w_d with respect to Q.

Let R(d) be the set of all reduced quadratic irrationals with discriminant Δ and continued fraction with period k_d is generally denoted by $w_d = [q_0; \overline{q_1, \dots, q_{k_d}}]$ and $\lfloor x \rfloor$ means the greatest integer not greater than x.

2. LEMMAS AND THEOREMS:

We need the following Lemmas nad Theorems in order to prove our main results.

Lemma 2.1: ([6]) For a square-free integer
$$d = a^2 + b \equiv 2 \pmod{4}$$
 where $a, b \in Z^+$, $0 \langle b \leq 2a$ we put $w_d = \sqrt{d}$, $q_0 = \lfloor w_d \rfloor$, $w_R = \sqrt{d} + a = w_d + \lfloor w_d \rfloor$

Then $w_d \notin R(d)$ and $w_R \in R(d)$ holds. Moreover, for the period k of w_R we get

$$w_{R} = \left[\overline{2q_{0}, q_{1}, \dots, q_{k-1}} \right]$$
 and $w_{d} = \left[q_{0}; \overline{q_{1}, \dots, q_{k-1}, 2q_{0}} \right]$

Furthermore, let $w_R = \frac{P_k \cdot w_R + P_{k-1}}{Q_k \cdot w_R + Q_{k-1}} = [2q_0; q_1, \dots, q_{k-1}, w_R]$ be a modular otomorphism of w_R , then the

fundamental unit \mathcal{E}_d of $Q(\sqrt{d})$ is given by the following formula :

$$\begin{split} \varepsilon_d =& \left(t_d + u_d \sqrt{d}\right) \rangle 1 \\ & t_d = q_0 Q_k + Q_{k-1} \quad , \quad u_d = Q_k \\ \text{is determined by } Q_0 = 0 \quad , \quad Q_1 = 1 \quad \text{and} \quad Q_{i+1} = q_i \cdot Q_i + Q_{i-1} \quad , \quad i \geq 1 \end{split}$$

Proof:. it is easy to see that the proof of this Lemma is from Lemma 1 in ([6]).

Lemma 2.2: ([1]) Let d be a square free integer and put $d = a^2 + b$ where $a, b \in Z^+$, $0 \langle b \leq 2a$ we put $w_d \in R(d)$. Let $w_i = l_i + \frac{1}{w_{i+1}}$ $(k_{i+1} = l_i = \lfloor w_i \rfloor, i \ge 0)$ be the continued fraction expansion of $w_d = w_0$. Then

each w_i is expressed in the form $w_i = \frac{a - r_i + \sqrt{D}}{c_i}$ $(c_i, r_i \in Z^+)$ and l_i, c_i, r_i can be obtained from the following recurrence formula :

where Q_i

$$w_{0} = \frac{a - r_{0} + \sqrt{D}}{c_{0}}$$

2a - r_{i} = c_{i} l_{i} + r_{i+1}
c_{i+1} = c_{i-1} + (r_{i+1} - r_{i}) l_{i} (i \ge 0)

© 2012, IJMA. All Rights Reserved

where $0 \le r_{i+1} \langle c_i \rangle$, $c_{-1} = \frac{(b + 2ar_0 - r_0^2)}{c_0}$. Moreover, for the period $k_d \ge 1$ of w_d , we get $l_i = l_{k_d - i} \ (1 \le i \le k_d - 1)$ $r_i = r_{k_d - i+1} \ (1 \le i \le k_d)$ $c_i = c_{k_d - i} \ (1 \le i \le k_d)$

Furthermore if $w_d = w_R$ and $d \equiv 2,3 \pmod{4}$ then we have

$$r_0 = r_1 = 0$$
, $c_0 = 1$, $c_1 = b$, $l_0 = k_1 = 2a$

Proof: it is easy to see that the proof of this Lemma is from Proposition 1 and Proposition 2 in ([1]).

Theorem 2.3: ([5]) If l(N) is odd, then the following two (equivalent) conditions hold: (a) $N = u^2 + v^2$ where (u, v) = 1

(b) N has no prime factors of the form 4k+3 and is not divisible by 4.

Here, N is a positive integer which is not perfect – square. The continued fraction for \sqrt{N} has periodic form $\sqrt{N} = \left[a_0; \overline{a_1, \dots, a_{l-1}, 2a_0}\right]$ where a_1, a_2, \dots, a_{l-1} is palindrome and the period l(N) is minimal length.

Proof: For the proof of this theorem, see Theorem C in ([5]).

Corollary 2.4: ([4]) Let Δ be the fundamental diskriminant where $\Delta = d$ if $d \equiv 1 \pmod{4}$ otherwise $\Delta = 4d$. If $\Delta \rangle 0$ then the class number h_d is odd if and only if d = p, $2p_1$ or $p_1 \cdot p_2$ where p is prime, $p_1 \equiv p_2 \equiv 3 \pmod{4}$ are primes.

Proof: For the proof of this corollary, see Corollary 1.3.2. in ([4]).

3. MAIN RESULTS AND APPLICATIONS:

Theorem 3.1:(MainTheorem) For a positive square – free integer $d = a^2 + b \equiv 2 \pmod{4}$ where $a, b \in Z^+$, $0 \langle b \leq 2a$, we assume that $k_d = 5$. Then, we get

$$w_{d} = \begin{bmatrix} a, \overline{l_{1}, l_{2}, l_{2}, l_{1}, 2a} \end{bmatrix} = \begin{cases} \begin{bmatrix} a, \overline{l_{1}, 2k+1, 2k+1, l_{2}, 2a} \end{bmatrix} & \text{for an odd integer} & \text{if a is even} \\ & l_{2} \ge 1 \\ \begin{bmatrix} a, \overline{2l, 2v, 2v, 2l, 2a} \end{bmatrix} & \text{for two even integer} & \text{if a is odd} \\ & l_{1}, l_{2} \ge 2 \end{cases}$$

and then

$$(t_{d}, u_{d}) = \begin{cases} \left((Ar+tl_{1})(A^{2}+l_{1}^{2}) + (Al_{2}+l_{1}), A^{2}+l_{1}^{2} \right) & \text{if a is even} \\ \left(\left(Ar+s\frac{l_{1}}{2}\right)(A^{2}+l_{1}^{2}) + (Al_{2}+l_{1}), A^{2}+l_{1}^{2} \right) & \text{if a is odd} \end{cases}$$

and

$$d = A^2 r^2 + 2Br + C$$

holds where A, B, C and r are determined uniquely as follows :

(i) In the case where a is even ;

$$A = l_1 l_2 + 1, \ B = At l_1 + l_2, \ C = t \left(2 + t l_1^2 \right),$$

r is the non-negative integer determined uniquely by $a = Ar + tl_1$.

(ii) In the case where *a* is odd;

$$A = l_1 l_2 + 1, B = Asl + l_2, C = s(1+sl),$$

r is the non-negative integer determined uniquely by a = Ar + sl.

Now, we define generally the set

$$S_{\beta}^{\alpha} = \left\{ d \in Z^{+} \mid d \equiv \alpha \pmod{8} , b \equiv \beta \pmod{8} \right\}$$

where Z^+ is the set of all positive integers.

Remark 3.2: For four parameters l, v, r and s in Theorem 3.1. satisfy the following conditions :

(i) In the case where a is even ;

$$l_1 \equiv r \pmod{2}, \ l_2 \equiv 1 \pmod{2}, \ s \equiv 0 \pmod{2}$$

(ii) In the case where *a* is odd;

$$\left(\frac{l_1}{2},r\right) \equiv (0,1), (1,0) \pmod{2}$$

Remark 3.3: The set of all positive square-free integers congruent to 2 modulo 8 is union of S_2^2 , S_6^2 and S_1^2 . The sets are represented as follows:

$$S_{2}^{2} = \left\{ d \in Z^{+} \mid d = a^{2} + 8m + 2, \ a \equiv 0 \pmod{4}, \ 0 \langle 4m \langle a \rangle \right\}$$

$$S_{6}^{2} = \left\{ d \in Z^{+} \mid d = a^{2} + 8m + 2, \ a \equiv 2 \pmod{4}, \ 0 \langle 4m \langle a - 2 \rangle \right\}$$

$$S_{1}^{2} = \left\{ d \in Z^{+} \mid d = a^{2} + 8m + 1, \ a \equiv 1 \pmod{2}, \ 0 \langle 4m \langle a \rangle \right\}.$$

Moreover, because of the Theorem 2.3, there is not any set S_5^2 .

Remark 3.4: For $k_d = l(w_d) = 5$, there is not any real quadratic field $Q(\sqrt{d})$ where $d \equiv 6 \pmod{8}$ or $d \equiv 3 \pmod{8}$.

Because of the Theorem 2.3., d is no prime factors of the form $p \equiv 3 \pmod{4}$ and not divisible by 4. Therefore, there is not any real quadratic field $d \equiv 6 \pmod{8}$. Also, again using the Theorem 2.3., $d = u^2 + v^2$ where (u, v) = 1 implies d is not congruent to 3 modulo 8.

Remark 3.5: Since Remark 3.4., for $k_d = l(w_d) = 5$, S_{β}^{α} is not defined where $\alpha \equiv 6 \pmod{8}$ and $\beta \equiv 1, 2, 5 \text{ or } 6 \pmod{8}$.

Remark 3.6: For $k_d = l(w_d) = 5$, in the case of $w_d = \sqrt{d}$, the class number h_d of real quadratic field $Q(\sqrt{d})$ is always even.

Since $d \neq 2$, $d \equiv 2 \pmod{4}$ implies $d \neq p$, $2p_1$ and $p_1 \cdot p_2$ where p is prime, $p_1 \equiv p_2 \equiv 3 \pmod{4}$ are primes, it holds that h_d is always even because of Corollary 2.4.

For the set S of all square-free positive integers, we define the set

$$\Gamma_{k_d}(S) = \left\{ w_d \mid d \in S \text{ and } k_d \text{ is the period of } w_d = \sqrt{d} \right\}$$

and we put $w_0 = q_0 + w_d$ for $w_d = \left[q_0; \overline{q_1, \dots, q_{k-1}, q_{k_d}}\right]$ in $\Gamma_{k_d}(S)$, then $w_0 \in R(d)$. For w_0 in

R(d), let $w_i = l_i + \frac{1}{w_{i+1}}$, $(k_{i+1} = l_i = \lfloor w_i \rfloor$, $i \ge 0$) be the continued fraction expansion of w_0 . Also, each w_0 is

expressed in the form $w_i = \frac{a - r_i + \sqrt{D}}{c_i}$ $(c_i, r_i \in Z^+)$ in Lemma 2.2.

Proof of Main Theorem: .

(a) In the case where a is even, we first assume that d in $S_2^2 \cup S_6^2$. It follows from $q_0 = \lfloor w_d \rfloor = a$ and Lemma 2.2. implies

$$c_0 = r_1 = 0$$
, $c_0 = 1$, $c_1 = b$, $l_0 = k_1 = 2a$.

(*i*) We assume that w_d belongs to $\Gamma_5(S_2^2)$. Then $c_1 = 8m+2$, $m \in Z^+$ holds and Lemma 2.2. implies $2a = (8m+2)l_1 + r_2$. Hence, we can put $r_2 = 2r$, $r \in Z^+$ and get $a = (4m+1)l_1 + r$. Moreover, from Lemma 2.2. we get $c_2 = 1 + r_2 \cdot l_1$ and $2a = c_2 \cdot l_2 + r_2 + r_3$ Hence, we get

$$(8m+2)l_1 = (1+2rl_1)l_2 + r_3 \tag{1}$$

On the other hand, $c_2 = 1 + r_2 l_1$ and $c_3 = c_1 + (r_3 - r_2)l_2$ imply

$$(8m+2) = 2rl_1 + (2r - r_3)l_2 + 1$$
⁽²⁾

because of $c_3 = c_2$.

If we assume $l_2 \equiv 0 \pmod{2}$, then in all case of integer l_1 , we get $r_3 \equiv 0 \pmod{2}$ from (1). Hence, $0 \equiv 1 \pmod{2}$ holds in (2), which is a contradiction. Therefore, we have $l_2 \equiv 1 \pmod{2}$ and from (1) and (2), we can determine $r_3 \equiv 1 \pmod{2}$ for in all case of integer l_1 . Moreover, from (1), $l_2 + r_3 \equiv 0 \pmod{l_1}$ holds. Thus, there exists a positive even integer s such that $r_3 = sl_1 - l_2$ because of $r_3 \equiv 1 \pmod{2}$. By substitution of this r_3 in (1), we get $4m+1=rl_2+t$ and because of $a=(4m+1)l_1+r$, we get $a=Ar+tl_1$ where $A=l_1l_2+1$ and s=2t, $t \in Z^+$.

On the other hand, (2) implies $2(rl_2 + t) = 2rl_1 + (2r - 2tl_1 + l_2)l_2 + 1$ and hence we get $2rl_1 - sA = -l_2^2 - 1$. Therefore, because of $A^2 - l_1^2 \neq 0$ such integers r, s are uniquely determined.

Now, we consider $A = l_1 l_2 + 1$. Then, since $w_d = \left[a, \overline{l_1, l_2, l_2, l_1, 2a}\right]$, $Q_3 = A$, $Q_4 = A l_2 + l_1$, $Q_5 = A^2 + l_1^2$

hold in Lemma 2.1. Therefore, we have that (4 - 2 + 1)(4 - 2)

$$t_d = (Ar + tl_1)(A^2 + l_1^2) + (Al_2 + l_1)$$
 and $u_d = A^2 + l_1^2$

Moreover, if we put $B = Atl_1 + l_2$, $C = t(2+tl_1^2)$, then $d = A^2r^2 + 2Br + C$ holds.

(*ii*) Next, we assume that w_d belongs to $\Gamma_5(S_6^2)$, then we have only to replace (8m+2) with (8m+6) in the case that w_d belongs to $\Gamma_5(S_6^2)$. Hence, (1) and (2) are replaced by

$$(8m+6)l_1 = (1+2rl_1)l_2 + r_3$$
 and $(8m+6) = 2rl_1 + (2r-r_3)l_2 + 1$

respectively. Then, there exists a positive even integer s = 2t, $t \in Z^+$ such that $r_3 = sl_1 - l_2$. The proof of this case is obtained as the proof of previous case.

© 2012, IJMA. All Rights Reserved

As an application of the first part of the case *a* is even integer of this theorem we get $d = 74 = 8^2 + 8.1 + 2$, since $a = (4m+1)l_1 + r$ and $s = (8m+2)-2rl_2$, we have $l_1 = 1$, $l_2 = 1$, r = 3, s = 4, t = 2 and A = 2. Hence w_d is easily determined as follows:

$$w_d = \sqrt{74} = \left[8, \overline{1, 1, 1, 1, 16}\right]$$

Moreover, the fundamental unit of $Q(\sqrt{74})$ is immediately seen as $\varepsilon_d = 43 + 5\sqrt{74}$ by using $t_d = 43$ and $u_d = 5$.

As an application of the second part of the case a is even integer of this theorem we get $d=218=14^2+8.2+6$, since $a = (4m+3)l_1 + r$ and $s = (8m+6)-2rl_2$, we have $l_1=1$, $l_2=3$, r=3, s=4, t=2 and A=4.

Hence W_d is easily determined as follows:

$$w_d = \sqrt{218} = \left[14, \overline{1, 3, 3, 1, 28}\right].$$

Moreover, the fundamental unit of $Q(\sqrt{74})$ is immediately seen as $\varepsilon_d = 251 + 17\sqrt{218}$ by using $t_d = 251$ and $u_d = 17$.

(b) In the case where a is odd integer, we have only to consider d in S_1^2 and w_d belongs to $\Gamma_5(S_1^2)$. Then $q_0 = \lfloor w_d \rfloor = a$ holds and Lemma 2.2. implies $r_0 = r_1 = 0$, $c_0 = 1$, $c_1 = b = 8m + 1$, $m \in Z^+$, $l_0 = k_1 = 2a$. By using Lemma 2.2., we get $2a = (8m + 1)l_1 + r_2$.

If we assume $l_1 \equiv 1 \pmod{2}$ *i.e.* $l_1 = 2l+1$, $l \in Z^+$, then $r_2 = 2r+1$, $r \in Z^+$ holds. Hence, we can put $r_2 = 2r+1$ and $a = 4ml_1 + l + r + 1$. Moreover, from Lemma 2.2. we get $c_2 = 1 + r_2 \cdot l_1$ and $2a = (8m+1)l_1 + r_2$ and so

$$(8m+1)l_1 = (1+r_2l_1)l_2 \tag{3}$$

holds. If we consider $l_1 \equiv 1 \pmod{2}$ and $r_2 \equiv 1 \pmod{2}$, then $0 \equiv 1 \pmod{2}$ holds in (3), which is a contradiction. Hence, we have $l_1 \equiv r_2 \equiv 0 \pmod{2}$. Therefore, from (3), we can determine $l_1 \equiv 2l$, $r_2 \equiv 2r$, $l, r \in Z^+$ and Lemma 2.2. implies $a \equiv (8m+1)l + r$. Moreover, from Lemma 2.2. we get $c_2 \equiv 1 + r_2 \cdot l_1$ and $2a \equiv (8m+1)l_1 + r_2$. Hence, we get

$$(8m+1)2l = (1+4rl)l_2 + r_3 \tag{4}$$

On the other hand, $c_2 = 1 + r_2 l_1$ and $c_3 = c_1 + (r_3 - r_2)l_2$ imply

$$(8m+1)=4rl+(2r-r_3)l_2+1$$
 (5)

because of $c_3 = c_2$.

If we assume $l_2 \equiv 1 \pmod{2}$, then we get $r_3 = (8m+1)2l - (1+4rl)l_2$ is odd integer from (4). Hence, $0 \equiv 1 \pmod{2}$ holds in (5), which is a contradiction. Hence, we have $l_2 \equiv 0 \pmod{2}$ *i.e.* $l_2 = 2v$, $v \in Z^+$. Therefore, from (4) and (5), we can determine $r_3 \equiv 0 \pmod{2}$. Moreover, from (4), $l_2 + r_3 \equiv 0 \pmod{l_1}$ holds. Thus, there exists a positive odd integer s such that $r_3 = sl_1 - l_2 = 2(sl - v)$. By substitution of this r_3 in (4), we get 8m+1=4rv+s and because of a = (4rv+s)l+r, we get a = Ar+slwhere $A = l_1l_2 + 1 = 4vl+1$. On the other hand, (5) implies $4rl - sA = -4v^2 - 1$. Therefore, because of $A^2 - 4l^2 \neq 0$ such integers r, s are uniquely determined.

Now, we consider A = 4vl + 1. Then, since $w_d = \left[a, \overline{2l, 2v, 2v, 2l, 2a}\right], q_0 = a = (4vl + 1)r + sl$ $Q_3 = A, Q_4 = Al_2 + l_1 = 2(Av + l), Q_5 = A^2 + l_1^2 = A^2 + 4l^2$

hold in Lemma 2.1. Therefore, we have that

$$t_d = (Ar + sl)(A^2 + 4l^2) + (2Av + 2l)$$
 and $u_d = A^2 + l_1^2 = A^2 + 4l^2$

Moreover, if we put A = 4vl+1 B = Asl+2v, $C = s(1+sl^2)$, then $d = A^2r^2 + 2Br + C$ holds.

As an application of the case a is odd integer of this theorem we get $d = 1378 = 37^2 + 8.1 + 1$,

since
$$a = (8m+1)l + r$$
 and $s = (8m+1) - 4rv$,

we have

 $l_1 = 8, l_2 = 4, r = 1, s = 1, \text{ and } A = 33$. Hence w_d is easily determined as follows: $w_d = \sqrt{1378} = \left[37, \overline{8, 4, 4, 8, 74}\right].$

Moreover, the fundamental unit of $Q(\sqrt{1378})$ is immediately seen as $\varepsilon_d = 85602 + 2306\sqrt{1378}$ by using $t_d = 85602$ and $u_d = 2306$.

For any square-free integer d in [7], Yokoi defined some new invariants by taking the fundamental unit of $Q(\sqrt{d})$ as

$$n_d = \left\lfloor \frac{t_d}{u_d^2} \right\rfloor, \ m_d = \left\lfloor \frac{u_d^2}{t_d} \right\rfloor$$

etc...and studied relationship between these new invariants and class number of real quadratic fields $Q(\sqrt{d})$.

In this section, we apply our results to these invariants, and consider the class number h_d of real quadratic fields $Q(\sqrt{d})$ for d in S^2 where S^2 is the set of all positive square-free integers congruent to 2 modulo 8.

Now, we apply Yokos's invariant $n_d = \left\lfloor \frac{t_d}{u_d^2} \right\rfloor$ to main theorem above, see [7]. Then, we get following theorem.

Theorem 3.2: Let $d = a^2 + b \equiv 2 \pmod{4}$ where $a, b \in Z^+$, $0 \langle b \leq 2a$ be a square free integer, $k_d = 5$ and $\varepsilon_d = (t_d + u_d \sqrt{d}) \rangle 1$ be a the fundamental unit of $Q(\sqrt{d})$. Then, for the obtained values t_d , u_d in Theorem 3.1. the following statements are hold:

$$\begin{array}{l} (a) \quad a \langle u_d \iff n_d = 0 \\ (b) \quad w_d = \sqrt{d} = \left[a, \overline{1, 1, 1, 1, 2a} \right] \iff u_d = 5 \quad and \quad n_d = \frac{a-3}{5} \quad (i.e. \quad m_d = 0) \\ (c) \quad w_d = \sqrt{d} = \left[a, \overline{2, 1, 1, 2, 2a} \right] \iff u_d = 13 \quad and \quad n_d = \frac{a-5}{13} \quad (i.e. \quad m_d = 0) \\ \end{array}$$

Proof: We note that $n_d = \left\lfloor \frac{t_d}{u_d^2} \right\rfloor = 0 \iff u_d^2 - t_d > 0$.

(a) Firstly, we assume that d belongs to $S_2^2 \cup S_6^2$. In this case, for $\varepsilon_d = (t_d + u_d \sqrt{d}) > 1$, $t_d = a \cdot (A^2 + l_1^2) + (Al_2 + l_1)$ and $u_d = A^2 + l_1^2$ hold.

© 2012, IJMA. All Rights Reserved

 (\Rightarrow) We assume that $a \langle u_d$. Since

$$u_{d} - (Al_{2} + l_{1}) = (A^{2} + l_{1}^{2}) - (Al_{2} + l_{1}) \ge 2(2l_{2} + 1)(l_{2} + 1)$$

and $l_2 \ge 1$,we get $u_d \ge A l_2 + l_1$. Hence, we get also

$$n_{d} = \left\lfloor \frac{t_{d}}{u_{d}^{2}} \right\rfloor = \left\lfloor \frac{a\left(A^{2} + l_{1}^{2}\right) + \left(Al_{2} + l_{1}\right)}{\left(A^{2} + l_{1}^{2}\right)^{2}} \right\rfloor$$
$$= \left\lfloor \frac{a}{A^{2} + l_{1}^{2}} \right\rfloor = 0$$

by using the $a \langle u_d$.

(\Leftarrow :)Conversely, we suppose that $n_d = 0$. By using the $u_d^2 - t_d > 0$, we get $(A^2 + l_1^2) > a$ and so $a < u_d$.

Next, we assume that d belongs to S_1^2 . In this case is proved in the same way as previous case. Therefore, $a \langle u_d \rangle$ is necessary and sufficient condition for $n_d = 0$.

(b) (:=>)We assume that the continued fraction expansion of w_d is the form of $w_d = \sqrt{d} = \left[a, \overline{1, 1, 1, 1, 2a}\right]$.

Then, we get A=2 and $u_d = 5$ because of $A = l_1 l_2 + 1$ and $u_d = (A^2 + l_1^2)$. Since $l_1 = 1$ is odd, d does not belong to S_1^2 and so

$$t_d = a.u_d + (Al_2 + l_1) \text{ and } u_d = 5$$

hold. By using the equivalent

$$t_{d} = a.u_{d}^{2} + (Al_{2} + l_{1})u_{d} + (Al_{2} + l_{1})$$

we get $n_d = \frac{a-3}{5}$.

(\Leftarrow :)Conversely, we assume that $u_d = 5$ and $n_d = \frac{a-3}{5}$. Using the values $u_d = (A^2 + l_1^2)$ and $A = l_1 l_2 + 1$, we have $l_1 = l_2 = 1$. Hence, we get

$$w_d = \sqrt{d} = \left[a, \overline{1, 1, 1, 1, 2a} \right].$$

As an application of this case, we get $d = 74 = 8^2 + 8.1 + 2$. By using the Theorem 3.1. it is easily seen that a = 8, $l_1 = l_2 = 1$, and A = 2. Therefore, we have $u_d = 5$ and $n_d = 1$.

(c) The proof of this case is obtained as the proof of (b).

As an application of this case, we get $d=1970=44^2+8.4+2$. By using the Theorem 3.1. it is easily seen that a=44, $l_1=2$, $l_2=1$, and A=3. Therefore, we have $u_d=13$ and $n_d=3$.

Corollary 3.3: Let $d = a^2 + b \equiv 2 \pmod{4}$ where $a, b \in Z^+$, $0 \langle b \leq 2a$ be a square free integer and $k_d = 5$. If a is even integer, then there exist exactly three real quadratic fields $Q(\sqrt{d})$ with class number $h_d = 2$ which are

given in Table 3.1. (with one possible exeption of d)Moreover, there is not any real quadratic field $Q(\sqrt{d})$ with class number $h_d = 2$ where a is odd integer.

d	a	т	n _d	h_d	W _d
$74 \in S_2^2$	8	1	1	2	$\sqrt{74} = \left[8, \overline{1, 1, 1, 1, 16}\right]$
$218 \in S_6^2$	14	2	0	2	$\sqrt{218} = \left[14, \overline{1, 3, 3, 1, 28}\right]$
$2138 \in S_6^2$	46	2	0	2	$\sqrt{2138} = \left[46, \overline{4, 5, 5, 4, 92}\right]$

Table 3.1

Proof: It is easy to see that the proof of this corollary is from Corollary 2.4. All of the fields with class number two in Table 2.1. in ([4]) are obtained from Corollary 3.3.

REFERENCES

[1] T.Azuhata, On the Fundamental Units and The class Numbers of Real Quadratic Fields, Nagoya Math. J., 95, 1984, 125–135.

[2] R. A. Mollin and H. C. Williams, Continued fraction of period five and real quadratic fields of class number one, Acta Arithmetica, LVI, 1990, 55-62.

[3] R. A. Mollin and H. C. Williams, On Real Quadratic Fields of Class Number Two, Mathematics of computation, Vol. 59, No 200, 1992, 625- 632.

[4] R. A. Mollin, Quadratics, CRC Press, 1996.

[5] P.J. Rippon and H. Taylor, Even and Odd Periods in Continued Fractions of Square Roots, Fibonacci Quaterly, 2004, 170-180.

[6] K. Tomita, Explicit Representation Of Fundamental Units Of Some Quadratic Fields, II, Journal of Number Theory, 63, 1997, 275-285.

[7] H. Yokoi, New invariants and Class Number Problem in Real Quadratic Fields, Nagoya Math. J., 132, 1993,175-197.
