# International Journal of Mathematical Archive-3(4), 2012, Page: 1544-1553 

 IMA Available online through www.ijma.info ISSN 2229-5046
# INEQUALITIES CONCERNING THE B-OPERATORS 

N. A. Rather, S. H. Ahanger and M. A. Shah*<br>P. G. Department of Mathematics, University of Kashmir, Hazratbal, Srinagar- 190006, India<br>E-mail: dr.narather@gmail.com, ahangarsajad@gmail.com, mushtaqa022@gmail.com

(Received on: 11-04-12; Accepted on: 30-04-12)


#### Abstract

In this paper we consider an operator $B$ which carries a polynomial $P(z)$ of degree $n$ into $B[P(z)]=\lambda_{0} P(z)+$ $\lambda_{1}(n z / 2) P^{\prime}(z) / 1!+\lambda_{2}(n z / 2)^{2} P^{\prime \prime}(z) / 2!$ Where $\lambda_{0}, \lambda_{1}$ and $\lambda_{2}$ are such that all the zeros of $U(z)=\lambda_{0}+C(n, 1) \lambda_{1} z+C(n, 2) \lambda_{2}$ $z^{2}$ lie in the half plane $|z| \leqslant|z-n / 2|$ and investigate the dependence of $|B[P(R z)]-\alpha B[P(r z)]|$ on the minimum and the maximum modulus of $P(z)$ on $|z|=1$ for every real or complex number $\alpha$ with $|\alpha| \leq 1, R>r \geq 1$ with restriction on the zeros of the polynomial $P(z)$ and establish some new operator preserving inequalities between polynomials.


Mathematics subject classification (2000): 30A06, 30C10.
Keywords and phrases: polynomials, $B$-operator, inequalities in the complex domain.

## 1. INTRODUCTION TO THE STATEMENT OF RESULTS.

Let $P_{n}(\mathrm{z})$ denote the space of all complex polynomials $P(z)=\sum_{j=1}^{n} a_{j} Z^{j}$ of degree $n$. If $P \in P_{n}$, then according to a famous result known as Bernstein's inequality (for reference see[4, 7,10]),
(1) $\operatorname{Max}_{|z|=1}\left|P^{\prime}(z)\right| \leq n \underset{|z|=1}{\operatorname{Max}}|P(z)|$
where as concerning the maximum modulus of $\mathrm{P}(\mathrm{z})$ on a larger circle $\mathrm{z} \mid=\mathrm{R}>1$, we have
(2) $\operatorname{Max}_{|z|=R>1}|P(z)| \leq R^{n} \operatorname{Max}_{|z|=1}|P(z)|$
(for reference see [8, p. 158 problem 269] or [11, p. 346]) Equality in (1) and (2) holds for $P(z)=\lambda z^{n}, \lambda \neq 0$.

For the class of polynomials $P \in P_{n}$ having all their zero in $|z| \leq 1$, we have
(3) $\operatorname{Min}_{|z|=1}\left|P^{\prime}(z)\right| \geq n \underset{|z|=1}{\operatorname{Min}}|P(z)|$
and
(4) $\operatorname{Min}_{|z|=R>1}|P(z)| \geq R^{n} \underset{|z|=1}{\operatorname{Min}}|P(z)|$.

Inequalities (3) and (4) are due to A. Aziz and Q. M. Dawood [2 ]. Both the results are sharp and equality in (3) and (4) holds for $P(z)=\lambda z^{n}, \lambda \neq 0$. For the class of polynomials $P \in P_{n}$ having no zero in $|z|<1$, we have
(5) $\operatorname{Max}_{|z|=1}\left|P^{\prime}(z)\right| \leq \frac{n}{2} \underset{|z|=1}{\operatorname{Max}}|P(z)|$
and
(6) $|P(z)| \leq \frac{R^{n}+1}{2} \operatorname{Max}|P(z)|$.

[^0]Equality in (5) and (6) holds for $P(z)=\lambda z^{n}+\mu,|\lambda|=|\mu|=1$. Inequality (5) was conjectured by P. Erdös and later verified by P. D. Lax [5]. Ankeny and Rivilin [1] used (5) to prove (6).
A. Aziz and Q.M. Dawood [2] improved inequalities (5) and (6) by showing that if $P(z) \neq 0$ in $|z|<1$, then
(7) $\underset{|z|=1}{\operatorname{Max}}\left|P^{\prime}(z)\right| \leq \frac{n}{2}(\underset{|z|=1}{\operatorname{Max}}|P(z)|-\underset{|z|=1}{\operatorname{Min}}|P(z)|)$
and
(8) $\operatorname{Max}_{|z|=R>1}|P(z)| \leq \frac{R^{n}+1}{2} \underset{|z|=1}{\operatorname{Max}}|P(z)|-\frac{R^{n}-1}{2} \underset{|z|=1}{\operatorname{Min}}|P(z)|$.

As a compact generalization of inequalities (5) and (6), Aziz and Rather [3] have shown that if $P \in P_{n}$ and $P(z) \neq 0$ for $|z|<1$, then for every real or complex number $\alpha$ with $|\alpha| \leq 1$ and $R \geq 1$,


The result is sharp and equality in (7) holds for $P(z)=a z^{n}+b,|a|=|b|=1$.
Rahman [9] (see also Rahman and Schmeisser[10, p.538]) introduced a class $B_{n}$ of operators $B$ that carries a polynomial $P \in P_{n}$ into
(10) $B[P(z)]:=\lambda_{0} P(z)+\lambda_{1}\left(\frac{n z}{2}\right) \frac{P^{\prime}(z)}{1!}+\lambda_{2}\left(\frac{n z}{2}\right)^{2} \frac{P^{\prime \prime}(z)}{2!}$
where $\lambda_{0}, \lambda_{1}$ and $\lambda_{2}$ are such that all the zeros of
(11) $u(z)=\lambda_{0}+\lambda_{1} C(n, 1) z+\lambda_{2} C(n, 2) z^{2}, C(n, r)=n!/ r!(n-r)!, 0 \leq r \leq n$,
lie in the half plane
(12) $|z| \leq|z-n / 2|$.

As a generalization of the inequalities (1) and (2), Q.I. Rahman [9] proved that if $P \in P_{n}$, then
(13) $|B[P(z)]| \leq\left|B\left[z^{n}\right]\right| \underset{|z|=1}{M a x}|P(z)| \quad$ for $\quad|z| \geq 1$
(see [9], inequality (5.1)) and if $P \in P_{n}, \quad P(z) \neq 0$ for $|z|<1$, then
(14) $|B[P(z)]| \leq \frac{1}{2}\left\{\left|B\left[z^{n}\right]\right|+\left|\lambda_{0}\right|\right\} \underset{|z|=1}{M a x}|P(z)| \quad$ for $\quad|z| \geq 1$,
where $B \in B_{n}$ (see [8], inequality (5.2) and (5.3)).

In this paper we investigate the dependence of $|B[P(R z)]-\alpha B[P(r z)]|$ on the minimum and the maximum of modulus of $\mathrm{P}(\mathrm{z})$ on $|\mathrm{Z}|=1$ for every real or complex number $\alpha$ with $|\alpha| \leq 1, R>r \geq 1$ and obtain certain compact generalizations of some well-known polynomial inequalities. In this direction we first present the following interesting result which is a compact generalization of inequalities (1), (2) and (13).

Theorem 1: If $F \in P_{n}$ has all its zeros in $|z| \leq 1$ and $P(z)$ is a polynomial of degree at most $n$ such that

$$
|P(z)| \leq|F(z)| \quad \text { for } \quad|z|=1
$$

then for every real or complex number $\alpha$ with $|\alpha| \leq 1$ and $R>r \geq 1$

$$
\begin{equation*}
|B[P(R z)]-\alpha B[P(r z)]| \leq|B[F(R z)]-\alpha B[F(r z)]| \quad \text { for } \quad|z| \geq 1 \tag{15}
\end{equation*}
$$

where $B \in B_{n}$.


Corollary 1: If $P \in P_{n}$, then for every real or complex number $\alpha$ with $|\alpha| \leq 1, R>r \geq 1$,

$$
\begin{equation*}
|B[P(R z)]-\alpha B[P(r z)]| \leq\left|R^{n}-\alpha r^{n}\right|\left|B\left[z^{n}\right]\right| \operatorname{Max}_{|z|=1}|P(z)| \quad \text { for } \quad|z| \geq 1 \tag{16}
\end{equation*}
$$

where $B \in B_{n}$.The result is best possible and equality in (16) holds for $P(z)=a z^{n}, a \neq 0$.
Remark 1: For $\alpha=0$, Corollary 1 reduces to the inequality (13). Next if we choose $\lambda_{1}=\lambda_{2}=0$ in (16) and note that in this case all the zeros of $u(z)$ defined by (11) lie in region defined by (12), we obtain for every real or complex number $\alpha$ with $|\alpha| \leq 1, R>r \geq 1$,

$$
\begin{equation*}
|P(R z)-\alpha P(r z)| \leq\left|R^{n}-\alpha r^{n}\right||z|^{n} \underset{|z|=1}{\operatorname{Max}}|P(z)| \quad \text { for } \quad|z| \geq 1 \tag{17}
\end{equation*}
$$

For $\alpha=0$, inequality (17) includes inequality (2) as a special case. Further, if we divide both sides of the inequality (17) by $\mathrm{R}-\mathrm{r}$ with $\alpha=1$ and make $\mathrm{R} \rightarrow \mathrm{r}$, we get

$$
\left|P^{\prime}(r z)\right| \leq n r^{n-1}|z|^{n-1} \operatorname{Max}_{|z|=1}|P(z)| \quad \text { for } \quad|z| \geq 1
$$

which, in particular, yields inequality (1) as a special case.
Next we present the following result, which is a compact generalization of the inequalities (3) and (4) .
Theorem 2:. If $P \in P_{n}$ and $P(z)$ has all its zeros in $|z| \leq 1$, then for every real or complex number $\alpha$ with $|\alpha| \leq 1$ and $R>r \geq 1$
(18) $|B[P(R z)]-\alpha B[P(r z)]| \geq\left|R^{n}-\alpha r^{n}\right|\left|B\left[z^{n}\right]\right| \operatorname{Min}_{|z|=1}|P(z)| \quad$ for $\quad|z| \geq 1$,
where $B \in B_{n}$. The result is best possible and equality in (18) holds for $P(z)=a z^{n}, a \neq 0$.

Remark 2: For $\alpha=0$, from inequality (18), we have for $|z| \geq 1$ and $R>1$,

$$
\begin{equation*}
|B[P(R z)]| \geq R^{n}\left|B\left[z^{n}\right]\right||\underset{|z|=1}{\operatorname{Min}}| P(z)\left|=\left|B\left[R^{n} z^{n}\right]\right| \operatorname{Min}_{|z|=1}\right| P(z) \mid \tag{19}
\end{equation*}
$$

where $B \in B_{n}$. The result is sharp.

Next, taking $\lambda_{0}=\lambda_{2}=0$ in (18) and noting that all the zeros of $u(z)$ defined by (11) lie in the half plane (12), we get

Corollary 2: If $P \in P_{n}$ has all its zeros in $|z| \leq 1$, then for every real or complex number $\alpha$ with $|\alpha| \leq 1, R>r \geq 1$,
(20) $\left|R P^{\prime}(R z)-\alpha r P^{\prime}(r z)\right| \geq n\left|R^{n}-\alpha r^{n}\right||z|^{n} \underset{|z|=1}{\operatorname{Min}}|P(z)| \quad$ for $\quad|z| \geq 1$.

The result is sharp and the extremal polynomial is $P(z)=\lambda z^{n}, \lambda \neq 0$

If we divide the two sides of (20) by $\mathrm{R}-\mathrm{r}$ with $\alpha=1$ and let $\mathrm{R} \rightarrow \mathrm{r}$, we get for $|\mathrm{z}| \geq 1$,

$$
\left|P^{\prime}(r z)+r z P^{\prime \prime}(z)\right| \geq n^{2} r^{n-1}|z|^{n-1} \underset{|z|=1}{\operatorname{Min}}|P(z)| .
$$

The result is sharp.
For the choice $\lambda_{1}=\lambda_{2}=0$ in (18), we obtain for every real or complex number $\alpha$ with $\quad|\alpha| \leq 1, R>r \geq 1$,
(21) $|P(R z)-\alpha P(r z)| \geq\left|R^{n}-\alpha r^{n}\right||z|^{n} \underset{|z|=1}{\operatorname{Min}}|P(z)| \quad$ for $\quad|z| \geq 1$.

For $\alpha=0$, inequality (21) includes inequality (4) as a special case. If we divide both sides of the inequality (21) by $\mathrm{R}-\mathrm{r}$ with $\alpha=1$ and make $\mathrm{R} \rightarrow \mathrm{r}$, we get
(22) $\left|P^{\prime}(r z)\right| \geq n r^{n-1}|z|^{n-1} \underset{|z|=1}{\operatorname{Min}}|P(z)| \quad$ for $\quad|z| \geq 1$,
which, in particular, yields inequality (3) as a special case.
Corollary 1 can be sharpened if we restrict ourselves to the class of polynomials $P \in P_{n}$, having no zero in $|\mathrm{z}|<1$. In this direction, we next present the following compact generalization of the inequalities (7), (8) and (9), which also include refinements of the inequalities (13) and (14) as special cases.

Theorem 3: If $P \in P_{n}$ and $P(z) \neq 0$ for $|z|<1$, then for every real or complex number $\alpha$ with $|\alpha| \leq 1, R>r \geq 1$ and $|z| \geq 1$,
(23)
$|B[P(R z)]-\alpha B[P(r z)]| \leq \frac{1}{2}\left[\left\{\left|R^{n}-\alpha r^{n}\right|\left|B\left[z^{n}\right]\right|+|1-\alpha|\left|\lambda_{0}\right|\right\} \underset{|z|=1}{\operatorname{Max}}|P(z)|-\left\{\begin{array}{l}\left|R^{n}-\alpha r^{n}\right|\left|B\left[z^{n}\right]\right| \\ -|1-\alpha|\left|\lambda_{0}\right|\end{array}\right\} \underset{|z|=1}{\operatorname{Min}|P(z)|}\right]$
where $B \in B_{n}$.The result is sharp and equality in (23) holds for $P(z)=a z^{n}+b,|a|=|b|=1$.
Remark 3: For $\alpha=0$, inequality (23) yields refinement of Inequality (14). If we choose $\lambda_{0}=\lambda_{2}=0$ in (23) and note that all the zeros of $\mathrm{u}(\mathrm{z})$ defined by (11) lie in the half plane defined by (12), we get for $|z| \geq 1, R>r \geq 1$ and $|\alpha| \leq 1$,

$$
\begin{equation*}
\left|R P^{\prime}(R z)-\alpha r P^{\prime}(r z)\right| \leq \frac{n}{2}\left|R^{n}-\alpha r^{n}\right||z|^{n-1}(\underset{|z|=1}{\operatorname{Max}}|P(z)|-\underset{|z|=1}{\operatorname{Min}}|P(z)|) \tag{24}
\end{equation*}
$$

Setting $\alpha=0$ in (24), we obtain for $|z| \geq 1$ and $\mathrm{R}>1$,

$$
\left|P^{\prime}(R z)\right| \leq \frac{n}{2} R^{n-1}|z|^{n-1}(\underset{|z|=1}{\operatorname{Max}}|P(z)|-\underset{|z|=1}{\operatorname{Min}}|P(z)|)
$$

which ,in particular, gives inequality (7).
Next choosing $\lambda_{1}=\lambda_{2}=0$ in (23), we immediately get the following result, which is a refinement of inequality (9).
Corollary 3: If $P \in P_{n}$ and $P(z) \neq 0$ for $|z|<1$, then for every real or complex number $\alpha$ with $|\alpha| \leq 1, R>r \geq 1$ and $|z| \geq 1$,
(2 $5|P(R z)-\alpha P(r z)| \leq \frac{1}{2}\left[\left\{\left|R^{n}-\alpha r^{n}\right||z|^{n}+|1-\alpha|\right\} \underset{|z|=1}{\operatorname{Max}}|P(z)|-\left\{\left|R^{n}-\alpha r^{n}\right||z|^{n}-|1-\alpha|\right\} \underset{|z|=1}{\operatorname{Min}}|P(z)|\right]$.
The result is sharp and equality in (25) holds for $P(z)=a z^{n}+b,|a|=|b|=1$. Inequality (25) is a compact generalization of the inequalities (7) and (8).

## 2. LEMMAS

For the proofs of these theorems, we need the following lemmas.

Lemma 1: If $P \in P_{n}$ and $P(z)$ has all its zeros in $|z| \leq k$ where $k \leq 1$, then for every $R \geq r \geq 1$ and $|z|=1$,
(26) $|P(R z)| \geq\left(\frac{R+k}{r+k}\right)^{n}|P(r z)|$.

Proof of Lemma 1: Since all the zeros of $\mathrm{P}(\mathrm{z})$ lie in $|\mathrm{z}| \leq k$ where $k \leq 1$, we write

$$
P(z)=\operatorname{Cos} \prod_{j=1}^{n}\left(z-r_{j} e^{i \theta_{j}}\right)
$$

where $r_{j} \leq k, j=1,2, \cdots, n$. Now for $0 \leq \theta<2 \pi, R \geq r \geq 1$, we have

$$
\left|\frac{R e^{i \theta}-r_{j} e^{i \theta_{j}}}{r e^{i \theta}-r_{j} e^{i \theta_{j}}}\right|=\left\{\frac{R^{2}+r_{j}^{2}-2 R r_{j} \operatorname{Cos}\left(\theta-\theta_{j}\right.}{r^{2}+r_{j}^{2}-2 r r_{j} \operatorname{Co}\left(\theta-\theta_{j}\right.}\right\}^{1 / 2} \geq\left(\frac{R+r_{j}}{r+r_{j}}\right) \geq\left(\frac{R+k}{r+k}\right) .
$$

Hence

$$
\left|\frac{P\left(R e^{i \theta}\right)}{P\left(r e^{i \theta}\right)}\right|=\prod_{j=1}^{n}\left|\frac{R e^{i \theta}-r_{j} e^{i \theta_{j}}}{r e^{i \theta}-r_{j} e^{i \theta_{j}}}\right| \geq\left(\frac{R+k}{r+k}\right)^{n}
$$

for $0 \leq \theta<2 \pi$, which implies for $|\mathrm{z}|=1$ and $R \geq r \geq 1$,

$$
|P(R z)| \geq\left(\frac{R+k}{r+k}\right)^{n}|P(r z)|
$$

This completes the proof of Lemma 1.
The next lemma follows from Corollary 18.3 of [6 , p. 65].
Lemma 2: If $P \in P_{n}$ and $P(z)$ has all its zeros in $|z| \leq 1$, then all the zeros of $B[P(z)]$ also lie in $|z| \leq 1$.
Lemma 3: If $P \in P_{n}$ and $P(z)$ does not vanish in $|z|<1$, then for every real or complex number $\alpha$ with $|\alpha| \leq 1$, $R>r \geq 1$, and $|z|=1$,
(27) $|B[P(R z)]-\alpha B[P(r z)]| \leq|B[Q(R z)]-\alpha B[Q(r z)]|$
where $Q(z)=z^{n} \overline{P(1 / \bar{z})}$.The result is sharp and equality in (27) holds for $P(z)=a z^{n}+b,|a|=|\mathrm{b}|=1$.
Proof of Lemma 3: Let $Q(z)=z^{n} \overline{P(1 / \bar{z})}$. Since all the zeros of nth degree polynomial $P(z)$ lie in $|z| \geq 1$, therefore, $Q(\mathrm{z})$ is a polynomial of degree n having all its zeros in $|z| \leq 1$. Applying Theorem 1 with $F(\mathrm{z})$ replaced by $Q(z)$, we obtain for every $R>r \geq 1$ and $|z| \geq 1$,
(28) $|B[P(R z)]-\alpha B[P(r z)]| \leq|B[Q(R z)]-\alpha B[Q(r z)]|$.

This proves Lemma 3.
Lemma 4: If $P \in P_{n}$, then for every real or complex number $\alpha$ with $|\alpha| \leq 1, R>r \geq 1$ and $|z| \geq 1$,

$$
\begin{equation*}
|B[P(R z)]-\alpha B[P(r z)]|+|B[Q(R z)]-\alpha B[Q(r z)]| \leq\left\{\left|R^{n}-\alpha r^{n}\left\|B\left[z^{n}\right]\left|+\left|1-\alpha \| \lambda_{0}\right|\right\}\left|M_{|z|=1}\right| P(z) \mid\right.\right.\right. \tag{29}
\end{equation*}
$$

where $Q(z)=z^{n} \overline{P(1 / \bar{z})}$. The result is sharp and equality in (29) holds for $P(z)=\lambda z^{n}, \alpha \neq 0$.

Proof of Lemma 4: Let $M=\underset{|z|=1}{\operatorname{Max}}|P(z)|$, then $|P(z)| \leq M$ for $|\mathrm{z}|=1$. If $\mu$ is any real or complex number with $|\mu|>1$, then by Rouche's theorem, the polynomial $F(z)=P(z)-\mu M$ does not vanish in $|\mathrm{z}|<1$. Applying Lemma 3 to the polynomial $F(\mathrm{z})$ and using the fact that $B$ is a linear operator, it follows that for every real or complex number $\alpha$ with $|\alpha| \leq 1, \mathrm{R}>\mathrm{r} \geq 1$,

$$
|B[F(R z)]-\alpha B[F(r z)]| \leq|B[H(R z)]-\alpha B[H(r z)]| \quad \text { for } \quad|z| \geq 1
$$

where

$$
H(z)=z^{n} \overline{F(1 / \bar{z})}=z^{n} \overline{P(1 / \bar{z})}-\bar{\mu} M z^{n}=Q(z)-\bar{\mu} M z^{n}
$$

Again using the linearity of $B$ and the fact $B[1]=\lambda_{0}$, we obtain
(30) $\left|(B[P(R z)]-\alpha B[P(r z)])-\mu(1-\alpha) \lambda_{0} M\right| \leq\left|(B[Q(R z)]-\alpha B[Q(r z)])-\bar{\mu}\left(R^{n}-\alpha r^{n}\right) B\left[z^{n}\right] M\right|$
for every real or complex number $\alpha$ with $|\alpha| \leq 1, \mathrm{R}>\mathrm{r} \geq 1$ and $|\mathrm{z}| \geq 1$. Now choosing the argument of $\mu$ on the right hand side of (30) such that
$\left|(B[Q(R z)]-\alpha B[Q(r z)])-\bar{\mu}\left(R^{n}-\alpha r^{n}\right) B\left[z^{n}\right] M\right|=|\mu|\left|R^{n}-\alpha r^{n}\right|\left|B\left[z^{n}\right]\right| M-|B[Q(R z)]-\alpha B[Q(r z)]|$, which is possible by Corollary 1 , we get, from (30),
(31) $|B[P(R z)]-\alpha B[P(r z)]|-|\mu| 1-\alpha| | \lambda_{0}\left|M \leq|\mu| R^{n}-\alpha r^{n} \| B\left[z^{n}\right]\right| M-|B[Q(R z)]-\alpha B[Q(r z)]|$
for $|\alpha| \leq 1, R>r \geq 1$ and $|z| \geq 1$. Letting $|\mu| \rightarrow 1$ in (31), we obtain

$$
|B[P(R z)]-\alpha B[P(r z)]|+|B[Q(R z)]-\alpha B[Q(r z)]| \leq\left\{R^{n}-\alpha r^{n}| | B\left[z^{n}\right]\left|+\left|\lambda_{0}\right|\right| 1-\alpha| | \lambda_{0} \mid\right\} M
$$

This proves Lemma 4.

## 2. PROOFS OF THE THEOREM

Proof of Theorem 1: By hypothesis $F(z)$ is a polynomial of degree $n$ having all its zeros in $|z| \leq 1$ and $P(z)$ is a polynomial of degree at most $n$ such that
(32) $|P(z)| \leq|F(z)| \quad$ for $\quad|z|=1$,

Therefore, if $F(z)$ has a zero of multiplicity $m$ at $z=e^{i \theta_{0}}$, then $P(z)$ must have a zero of
multiplicity at least m at $\mathrm{z}=e^{i \theta_{0}}$. If $P(\mathrm{z}) / F(\mathrm{z})$ is a constant, then the inequality (15) is obvious. We assume that $P(\mathrm{z}) / F(\mathrm{z})$ is not a constant, so that by maximum modulus principle, it follows that

$$
|P(z)|<|F(z)| \quad \text { for } \quad|z|>1
$$

Suppose $F(z)$ has $m$ zeros on $|z|=1$ where $0 \leq m \leq n$ so that we write $F(z)=F_{1}(z) F_{2}(z)$ where $F_{1}(z)$ is a polynomial of degree $m$ whose all zeros lie on $|z|=1$ and $F_{2}(z)$ is a polynomial of degree exactly $n-m$ having all its zeros in $|z|<1$. This gives with the help of inequality (32) that

$$
P(z)=P_{1}(z) F_{1}(z)
$$

where $P_{1}(z)$ is a polynomial of degree at most $n-m$. Now, from inequality (32), we get

$$
\left|P_{1}(z)\right| \leq\left|F_{2}(z)\right| \quad \text { for } \quad|z|=1
$$

where $F_{2}(z) \neq 0$ for $|z|=1$. Therefore, for every real or complex number $\lambda$ with $|\lambda|>1$, a direct application of Rouche's theorem shows that all the zeros of the polynomial $P_{1}(z)-\lambda F_{2}(z)$ of degree $n-m \geq 1$ lie in $|z|<1$. Hence the polynomial

$$
G(z)=F_{1}(z)\left(P_{1}(z)-\lambda F_{2}(z)\right)=P(z)-\lambda F(z)
$$

has all its zeros in $|z| \leq 1$ with at least one zero in $|z|<1$, so that we can write

$$
G(z)=\left(z-t e^{i \beta}\right) H(z)
$$

where $t<1$ and $H(\mathrm{z})$ is a polynomial of degree $\mathrm{n}-1$ having all its zeros in $|\mathrm{z}| \leq 1$. Hence with the help of Lemma 1 with $k=1$, we obtain for every $R>r \geq 1$ and $0 \leq \theta<2 \pi$,

$$
\begin{aligned}
\left|G\left(R e^{i \theta}\right)\right| & =\left|R e^{i \theta}-t e^{i \beta}\right|\left|H\left(R e^{i \theta}\right)\right| \\
& \geq\left|R e^{i \theta}-t e^{i \beta}\right|\left(\frac{R+1}{r+1}\right)^{n-1}\left|H\left(r e^{i \theta}\right)\right| \\
& =\left(\frac{R+1}{r+1}\right)^{n-1}\left|\frac{R e^{i \theta}-t e^{i \beta}}{r e^{i \theta}-t e^{i \beta}}\right|\left|\left(r e^{i \theta}-t e^{i \beta}\right) H\left(r e^{i \theta}\right)\right| \\
& \geq\left(\frac{R+1}{r+1}\right)^{n-1}\left(\frac{R+t}{r+t}\right)\left|G\left(r e^{i \theta}\right)\right| .
\end{aligned}
$$

This implies for $\mathrm{R}>\mathrm{r} \geq 1$ and $0 \leq \theta<2 \pi$,
(33) $\left(\frac{r+t}{R+t}\right)\left|G\left(R e^{i \theta}\right)\right| \geq\left(\frac{R+1}{r+1}\right)^{n-1}\left|G\left(r e^{i \theta}\right)\right|$.

Since $\mathrm{R}>\mathrm{r} \geq 1>\mathrm{t}$ so that $G\left(R e^{i \theta}\right) \neq 0$ for $0 \leq \theta<2 \pi$ and $1>\frac{1+r}{1+R}>\frac{r+t}{R+t}$, from inequality (33 ), we obtain

$$
\left|G\left(R e^{i \theta}\right)\right|>\left(\frac{R+1}{r+1}\right)^{n}\left|G\left(r e^{i \theta}\right)\right|
$$

for $R>r \geq 1$ and $0 \leq \theta<2 \pi$, which leads to

$$
\left|G\left(r e^{i \theta}\right)\right|<\left(\frac{r+1}{R+1}\right)^{n}\left|G\left(R \mathrm{e}^{\mathrm{i} \theta}\right)\right|<\left|G\left(R \mathrm{e}^{i \theta}\right)\right|
$$

for $0 \leq \theta<2 \pi$ and $R>r \geq 1$. Equalivalently, we have
(34) $|G(r z)|<|G(R z)|$ for $\quad|z|=1$ and $R>r \geq 1$.

Since all the zeros of $G(R z)$ lie in $|z| \leq(1 / R)<1$, a direct application of Rouche's theorem shows that the polynomial $G(R z)-\alpha G(r z)$ has all its zeros in $|z|<1$ for every real or complex number $\alpha$ with $|\alpha| \leq 1$. Applying Lemma 2 and using the linearity of B , it follows that all the zeros of the polynomial

$$
T(z)=B[G(R z)-\alpha G(r z)]=B[G(R z)-\alpha B[G(r z)]
$$

lie in $|\mathrm{z}|<1$ for every real or complex number $\alpha$ with $|\alpha| \leq 1$ and $R>r \geq 1$. Replacing $\mathrm{G}(\mathrm{z})$ by $\mathrm{P}(\mathrm{z})-\lambda \mathrm{F}(\mathrm{z})$, we conclude that all the zeros of the polynomial
(35) $T(z)=(B[P(R z)]-\alpha B[P(r z)])-\lambda(B[F(R z)-\alpha B[F(r z)])$
lie in $|\mathrm{z}|<1$ for all real or complex numbers $\alpha, \lambda$ with $|\alpha| \leq 1,|\lambda|>1$ and $R>r \geq 1$. This implies
(36) $|B[P(R z)]-\alpha B[P(r z)]| \leq \mid B[F(R z)-\alpha B[F(r z)] \mid \quad$ for $\quad|z| \geq 1$ and $\mathrm{R}>\mathrm{r} \geq 1$.

If inequality (36) is not true, then there a point $\mathrm{z}=\mathrm{w}$ with $|\mathrm{w}| \geq 1$ such that

$$
\left|(B[P(R z)]-\alpha B[P(r z)])_{z=w}\right|>\mid\left(B[F(R z)-\alpha B[F(r z)])_{z=w} \mid, \quad \mathrm{R}>\mathrm{r} \geq 1\right.
$$

Since all the zeros of $\mathrm{F}(\mathrm{z})$ lie in $|\mathrm{z}| \leq 1$, it follows (as in the case of $\mathrm{G}(\mathrm{z})$ ) that all the zeros of $B[F(R z)-\alpha B[F(r z)]$ lie in $|z| \leq 1$. Hence

$$
\left(B[F(R z)-\alpha B[F(r z)])_{z=w} \neq 0, \quad \mathrm{R}>\mathrm{r} \geq 1\right.
$$

We choose

$$
\lambda=\frac{(B[P(R z)]-\alpha B[P(r z)])_{z=w}}{(B[F(R z)]-\alpha B[F(r z)])_{z=w}}
$$

so that $\lambda$ is well defined real or complex number with $|\lambda|>1$, and with choice of $\lambda$, from (35), we get, $T(w)=0$ with $|w|$ $\geq 1$. Th is is clearly a contradiction to the fact that all the zeros of $T(z)$ lie in $|z|<1$. Thus for every real or complex number $\alpha$ with $|\alpha| \leq 1$ and $\mathrm{R}>\mathrm{r} \geq 1$,

$$
|B[P(R z)]-\alpha B[P(r z)]| \leq \mid B[F(R z)-\alpha B[F(r z)] \mid
$$

This completes the proof of Theorem 1.
Proof of Theorem 2: The result is clear if $\mathrm{P}(\mathrm{z})$ has a zero on $|\mathrm{z}|=1$, for then $m=\underset{|z|=1}{\operatorname{Min}}|P(z)|=0$. We now assume that $\mathrm{P}(\mathrm{z})$ has all its zeros in $|\mathrm{z}|<1$ so that $\mathrm{m}>0$ and

$$
m \leq|P(z)| \quad \text { for } \quad|z|=1
$$

This gives for every $\lambda$ with $|\lambda|<1$,

$$
\left|\lambda z^{n}\right| m<|P(z)| \quad \text { for } \quad|z|=1
$$

By Rouche's theorem, it follows that all the zeros of polynomial $F(z)=P(z)-\lambda m z^{n}$ lie in $|\mathrm{z}|<1$ for every real or complex number $\lambda$ with $|\lambda|<1$. Therefore, (as before) we conclude that all the zeros of polynomial $G(z)=F(R z)-\alpha F(r z)$ lie in $|z|<1$ for every real or complex $\alpha$ with number $|\alpha| \leq 1$ and $\mathrm{R}>\mathrm{r} \geq 1$. Hence by Lemma 2, all the zeros of the polynomial
(37) $S(z)=B[G(z)]=B[F(R z)]-\alpha B[F(r z)]$

$$
=B[P(R z)]-\alpha B[P(r z)]-\lambda\left(R^{n}-\alpha r^{n}\right) B\left[z^{n}\right] m
$$

lie in $|\mathrm{z}|<1$ for all real or complex numbers $\alpha, \lambda$ with $|\alpha| \leq 1,|\lambda|<1$ and $\mathrm{R}>\mathrm{r} \geq 1$. This implies

$$
\begin{equation*}
|B[P(R z)]-\alpha B[P(r z)]| \geq\left|R^{n}-\alpha r^{n}\right|\left|B\left[z^{n}\right]\right| m \quad \text { for } \quad|z| \geq 1 \text { and } \mathrm{R}>\mathrm{r} \geq 1 \tag{38}
\end{equation*}
$$

If inequality (38) is not true, then there is a point $\mathrm{z}=\mathrm{w}$ with $|\mathrm{w}| \geq 1$ such that

$$
\left|\{B[P(R z)]-\alpha B[P(r z)]\}_{z=w}\right|<\left|R^{n}-\alpha r^{n}\right|\left|\left\{B\left[z^{n}\right]\right\}_{z=w}\right| m
$$

Since $\left\{B\left[z^{n}\right]\right\}_{z=w} \neq 0$, we take

$$
\lambda=\{B[P(R z)]-\alpha B[P(r z)]\}_{z=w} / m\left(R^{n}-\alpha r^{n}\right)\left\{B\left[z^{n}\right]\right\}_{z=w}
$$

so that $\lambda$ is a well defined real or complex number with $|\lambda|<1$ and with choice of $\lambda$, from (37), we get $\mathrm{S}(\mathrm{w})=0$ with $|\mathrm{w}| \geq 1$. This contradicts the fact that all the zeros of $S(z)$ lie in $|z|<1$. Thus for every real or complex number $\alpha$ with $|\alpha| \leq 1$ and $\mathrm{R}>\mathrm{r} \geq 1$,

$$
|B[P(R z)]-\alpha B[P(r z)]| \geq\left|R^{n}-\alpha r^{n}\right|\left|B\left[z^{n}\right]\right| m \quad \text { for } \quad|z| \geq 1
$$

This completes the proof of Theorem 2.
Proof of Theorem 3: By hypothesis, the polynomial $\mathrm{P}(\mathrm{z})$ does not vanish in $|\mathrm{z}|<1$, therefore, if $m=\underset{|z|=1}{\operatorname{Min}}|P(\mathrm{z})|$, then $m \leq|P(z)|$ for $|\mathrm{z}| \leq 1$. We first show that for every real or complex number $\delta$ with $|\delta| \leq 1$, the polynomial $F(z)=P(z)+m \delta z^{n}$ does not vanish in $|z|<1$. This is obvious if $m=0$ and for $m>0$, we prove it by a contradiction. Assume that $F(\mathrm{z})$ has a zero in $|\mathrm{z}|<1$ say at $\mathrm{z}=\mathrm{w}$ with $|\mathrm{w}|<1$,
then we have $P(w)+m \delta w^{n}=F(w)=0$. This gives

$$
|P(w)|=\left|m \delta w^{n}\right| \leq m|w|^{n}<m
$$

which is clearly a contradiction( to the minimum modulus principle). Hence $F(z)$ has no zero in $|z|<1$ for every $\delta$ with $\mid$ $\delta \mid \leq 1$. Applying Lemma 3 to the polynomial $F(z)$, we obtain for every real or complex number $\alpha$ with number $|\alpha| \leq 1$ and $\mathrm{R}>\mathrm{r} \geq 1$,

$$
|B[F(R z)]-\alpha B[F(r z)]| \leq|B[G(R z)]-\alpha B[G(r z)]|, \quad|z| \geq 1
$$

where $G(z)=z^{n} \overline{F(1 / \bar{z})}=z^{n} \overline{P(1 / \bar{z})}-m \bar{\delta}=Q(z)-m \bar{\delta}$. Equivalently,
(39) $\left|B[P(R z)]-\alpha B[P(r z)]-m \delta\left(R^{n}-\alpha r^{n}\right) B\left[z^{n}\right]\right| \leq\left|B[Q(R z)]-\alpha B[Q(r z)]-m \bar{\delta}(1-\alpha) \lambda_{0}\right|$
for all real or complex numbers $\alpha, \delta$ with number $|\alpha \neq 1,|\delta| \leq 1$ and $\mathrm{R}>\mathrm{r} \geq 1$. Now choosing the argument of $\delta$ such that

$$
\left|B[P(R z)]-\alpha B[P(r z)]-m \delta\left(R^{n}-\alpha r^{n}\right) B\left[z^{n}\right]\right|=|B[P(R z)]-\alpha B[P(r z)]|+m|\delta||1-\alpha|\left|B\left[z^{n}\right]\right| \mid
$$

We obtain from (39), for $|\alpha| \leq 1,|\delta| \leq 1$ and $R>r \geq 1$,

$$
|B[P(R z)]-\alpha B[P(r z)]|+m\left|\delta \left\|R^{n}-\alpha r^{n}\left|B\left[z^{n}\right]\right| \leq|B[Q(R z)]-\alpha B[Q(r z)]|+m\left|\delta\|1-\alpha\| \lambda_{0}\right|\right.\right.
$$

for $|\mathrm{z}| \geq 1$, or equivalently,

$$
|B[P(R z)]-\alpha B[P(r z)]|+|\delta|\left(\left|R^{n}-\alpha r^{n}\left\|B\left[z^{n}\right]\left|-\left|1-\alpha \| \lambda_{0}\right|\right) m \leq|B[Q(R z)]-\alpha B[Q(r z)]|\right.\right.\right.
$$

for $|\alpha| \leq 1,|\delta| \leq 1$ and $R>r \geq 1$. Letting $|\delta| \rightarrow 1$, we get

$$
|B[P(R z)]-\alpha B[P(r z)]|+\left(\left|R^{n}-\alpha r^{n}\left\|B\left[z^{n}\right]\left|-\left|1-\alpha \| \lambda_{0}\right|\right) m \leq|B[Q(R z)]-\alpha B[Q(r z)]|\right.\right.\right.
$$

for $|\alpha| \leq 1$ and $\mathrm{R}>\mathrm{r} \geq 1$. Combining this inequality with Lemma 4, we get, for every real or complex number $\alpha$ with $|\alpha|$ $\leq 1, \mathrm{R}>\mathrm{r} \geq 1$ and $|\mathrm{z}| \geq 1$,

$$
\begin{aligned}
& 2|B[P(R z)]-\alpha B[P(r z)]|+\left(\left|R^{n}-\alpha r^{n} \| B\left[z^{n}\right]\right|-|1-\alpha|\left|\lambda_{0}\right|\right) m \\
& \leq|B[P(R z)]-\alpha B[P(r z)]+|B[Q(R z)]-\alpha B[Q(r z)]| \\
& \leq\left(\left|R^{n}-\alpha r^{n}\right|\left|B\left[z^{n}\right]\right|+|1-\alpha|\left|\lambda_{0}\right|\right) M
\end{aligned}
$$

which is equivalent to (23) and this completes the proof of Theorem 3.

## REFERENCES

[1] N.C. Ankeny and T.J. Rivlin, On a Theorem of S. Bernstein, Pacific J. Math., 5(1955), 849-852.
[2] A. Aziz and Q.M. Dawood, Iinequality for polynomials and its derivative, Approx. Theory, 54(1988), 306- 313.
[3] A. Aziz and N.A. Rather, On an inequality of S. Bernstein and Gauss-Lucas Theorem, Analytic and Geometric inequalities and their Application,(Th.M.Rassias and H. M. Sarivastava eds) Kluwer Acad. Pub., (1999), 29 - 35.
[4] S. Bernstein, Sur í ordre de la meilleure approximation des fonctions par des polynomes de degree donné, Momoires de' 1 Í Académic Royal de Belgique, 4(1912), 1-103.
[5] P.D. Lax, Proof of a conjecture of P.Erdös on the derivative of a polynomial, Bull. Amer.Math. Soc., 50(1944), 509 - 513.
[6] M. Marden, Geometry of Polynomials, Math. Surveys, No. 3, Amer.Math. Soc. Providence, RI, 1949.
[7] G.V. Milovanović, D.S. Mitrinović and Th.M. Rassias, Topics in polynomials: Extremal Properties, Inequalities and Zeros, World Scientific Publishing Co., Singapore (1994).
[8] G. Pólya and G. Szeg, Problems and Theorems in Analysis, Vol. 1, Springer New York, 1972.
[9] Q. I. Rahman, Functions of exponential type, Trans. Amer. Soc., 135(1969), 295 - 309.
[10] Q .I. Rahman and G. Schmeisser, Analytic Theory of polynomials, Oxford University Press, New York, 2002.
[11] M. Riesz, Über einen satz des Herrn Serge Bernstein, Acta Math., 40(1916), 337-347.
[12] S. Bernstein, Sur li ordre de la meilleure approximation des fonctions par des polynomes de degré donné, Momoires de' í Académic Royal de Belgique, 4(1912), 1-103.


[^0]:    * Corresponding author: M. A. Shah*, * E-mail: mushtaqa022@gmail.com

