International Journal of Mathematical Archive-3(4), 2012, Page: 1554-1560 (c) ${ }^{\text {IMA }}$ Available online through www.ijma.info ISSN 2229-5046

BOOLEAN LIKE SEMI RING OF FRACTIONS

Ketsela Hailu, Berhanu Bekele Belayneh, Zelalem Teshome and K. Venkateswarlu*
Department of Mathematics, Po Box 1176, Addis Ababa University, Faculty of Computer and Mathematical Sciences, Addis Ababa, Ethiopia

E-mail: ketselahailu@gmail.com, berhanufk@yahoo.co.uk, zelalemwale@yahoo.com, *drkvenkateswarlu@gmail.com
(Received on: 12-04-12; Accepted on: 30-04-12)

Abstract

In this paper we construct the fractions of a Boolean like semi ring and establish that Boolean like semi ring of fraction is Boolean like ring of Foster [1].

Key words: Boolean like semi ring, Boolean like ring, ring of fractions.
Mathematics Subject Classification: 16Y30, 16 Y 60.

INTRODUCTION

The concept of Boolean like rings is originally due to Foster A.L. [1]. Later Swarminathan [6, 7] has extensively studied the geometry of Boolean like rings. Recently Venkateswarlu et al [8] introduced the notion of Boolean like semi rings by generalizing the concept of Boolean like rings of Foster. Venkateswarlu and Murthy [8, 9,10 \& 11] have made an extensive study of Boolean like semi rings to name some:ideals, Prime ideals, Maximal ideals, nil radical and Jacobson radical of Boolean like semi rings. Further they have generalized most of the concepts of commutative theory of rings to the class of Boolean like semi rings. In fact it is observed in [8] that Boolean like semi rings are special classes of left near rings. In this paper we further investigate the theory of Boolean like semi rings by introducing the notion of fractions of Boolean like semi rings and prove that fractions of Boolean like semi rings are precisely the Boolean like rings of Foster [1]. This paper is divided into two sections. The first section is devoted to collect certain definition and results concerning Boolean like semi rings from [8]. In section 2 we introduce the notion of fractions of Boolean like rings and prove that every Boolean like semi ring of fractions is a Boolean like ring of Foster (see Theorem 2.9)

1. PRELIMINARIES

Here, we recall certain definitions and results on Boolean like semi rings from [8].
Definition 1.1: A non empty set R together with two binary operations + and satisfying the following conditions is called Boolean like semi ring;

1. $(\mathrm{R},+)$ is an abelian group;
2. (R, \cdot) is a semi group;
3. $\mathrm{a} \cdot(\mathrm{b}+\mathrm{c})=\mathrm{a} \cdot \mathrm{b}+\mathrm{a} . \mathrm{c}$;
4. $\mathrm{a}+\mathrm{a}=0$ for all a in R ;
5. $a b(a+b+a b)=a b$ for all $a, b, c \in R$.

Lemma 1.2: Let R be a Boolean like semi ring. Then $\mathrm{a} .0=0$ for all a in R .
Definition 1.3: A Boolean like semi ring R is said to be weak commutative if $a b c=a c b$ for $a l l a, b$ and $c \in R$.
Lemma 1.4: Let R be weak commutative Boolean like semi ring. Then $0 . a=0$ for all $a \in R$.
Lemma 1.5: Let R be weak commutative Boolean like semi ring and let m and n be integers. Then, (i) $a^{m} a^{n}=a^{m+n}$ (ii) $\left(a^{m}\right)^{n}=a^{m n}$ (iii) $(a b)^{n}=a^{n} b^{n}$

[^0]
2. CONSTRUCTION OF BOOLEAN LIKE SEMI RING OF FRACTIONS

Here we introduce the construction of $S^{-1} \mathrm{R}$ from a Boolean like semi ring R .
Definition2.1: A non empty subset S of R is called multiplicatively closed whenever $a, b \in S$ implies $a b \in S$
Now we prove the following two lemmas which we use in the sequel.
Lemma 2.2: Let R be a weak commutative Boolean like semi ring. Then $\mathrm{b} a^{2}+b^{2} \mathrm{a}=\mathrm{ba}+(b a)^{2} \forall \mathrm{a}, \mathrm{b} \in \mathrm{R}$.

$$
\begin{aligned}
& \text { Proof: } \mathrm{b} a^{2}+b^{2} \mathrm{a}=\mathrm{baa}+\mathrm{bba}=\mathrm{baa}+\mathrm{bab} \quad \text { (by } 3 \text { of def 1.1) } \\
& =\mathrm{ba}(\mathrm{a}+\mathrm{b}) \quad(\mathrm{by} 3 \text { of def 1.1) } \\
& =\text { ba }(b+a) \quad(b y 1 \text { of def 1.1) } \\
& =b a(b+a+\underline{b a+b a}) \quad(b y 4 \text { of def 1.1) } \\
& =\text { bab }+ \text { baa }+ \text { baba }+ \text { baba } \quad \text { (by } 3 \text { of def 1.1) } \\
& =\mathrm{ba}(\mathrm{~b}+\mathrm{a}+\mathrm{ba})+(b a)^{2} \quad(\text { by } 1 \text { of def } 1.1 \text { and lemma 1.5) } \\
& =\mathrm{ba}+(b a)^{2}
\end{aligned}
$$

Lemma 2.3: Let R be a weak commutative Boolean like semi ring. Then

$$
\mathrm{c}\left(\mathrm{a}+a^{2}\right)\left(b+b^{2}\right)=0 \forall \mathrm{a}, \mathrm{~b}, \mathrm{c} \in \mathrm{R} .
$$

Proof: Consider c $\left(\mathrm{a}+a^{2}\right)\left(b+b^{2}\right)=\mathrm{c}\left(\mathrm{a}+a^{2}\right) b+\mathrm{c}\left(\mathrm{a}+a^{2}\right) b^{2}$ (by 3 of def 1.1)

$$
\begin{aligned}
& =\mathrm{cb}\left(\mathrm{a}+a^{2}\right)+\mathrm{c} b^{2}\left(\mathrm{a}+a^{2}\right) \quad \text { (by def 1.3) } \\
& =\mathrm{c}\left[\mathrm{~b}\left(\mathrm{a}+\mathrm{a}^{2}\right)+b^{2}\left(\mathrm{a}+a^{2}\right)\right] \quad \text { (by 3of def 1.1) } \\
& \left.=\mathrm{c}\left[\mathrm{ba}+\mathrm{b} a^{2}+b^{2} \mathrm{a}+b^{2} a^{2}\right)\right] \quad \text { (by } 3 \text { of def 1.1) } \\
& =\mathrm{c}\left[\left(\mathrm{ba}+b^{2} a^{2}\right)+\left(\mathrm{b} \mathrm{a}^{2}+b^{2} \mathrm{a}\right)\right] \\
& =\mathrm{c}\left[\left(\mathrm{ba}+(b a)^{2}\right)+\left(\mathrm{b} a^{2}+b^{2} \mathrm{a}\right)\right] \quad(\text { by lemma 1.5 }) \\
& =\mathrm{c}\left[\mathrm{ba}+(b a)^{2}+\left(\mathrm{ba}+(b a)^{2}\right)\right] \quad(\text { by lemma 2.2) } \\
& =\mathrm{c} 0 \quad \text { (by } 4 \text { of def 1.1) } \\
& =0 \quad \text { (by lemma1.2) }
\end{aligned}
$$

Remark 2.4: In [8], it is observed that $\mathrm{a}+a^{2}$ is a nilpotent element in a Boolean like semi ring R .
Theorem 2.5: Let R be a weak commutative Boolean like semi ring and S be a multiplicatively closed subset of R. Define a relation \sim on $R \times S$ by $\left(r_{1}, s_{1}\right) \sim\left(r_{2}, s_{2}\right)$ if and only if $\exists s \in S$ such that $s\left(s_{1} r_{2}+s_{2} r_{1}\right)=0$. Then \sim is an equivalence relation.~

Proof: Let $(\mathrm{r}, \mathrm{s}) \in \mathrm{R}$ x S. Then for any t in S , from 4 of definition 1.1 and lemma 1.2 we have that $\mathrm{t}(\mathrm{sr}+\mathrm{sr})=\mathrm{t} 0=0$.
Hence $(\mathrm{r}, \mathrm{s}) \sim(\mathrm{r}, \mathrm{s})$.Thus \sim is reflexive .
Now suppose $\left(r_{1}, s_{1}\right) \sim\left(r_{2}, s_{2}\right)$. Then $t\left(s_{1} r_{2}+s_{2} r_{1}\right)=0$ for some t in S.

$$
\begin{aligned}
& \Rightarrow \mathrm{t}\left(\mathrm{~s}_{2} \mathrm{r}_{1}+\mathrm{s}_{1} \mathrm{r}_{2}\right)=0 \\
& \Rightarrow\left(\mathrm{r}_{2}, \mathrm{~s}_{2}\right) \sim\left(\mathrm{r}_{1}, \mathrm{~s}_{1}\right) . \text { Thus } \sim \text { is symmetric. }
\end{aligned}
$$

Finally let $\left(r_{1}, s_{1}\right),\left(r_{2}, s_{2}\right)$ and $\left(r_{3}, s_{3}\right) \in R \times S$ such that $\left(r_{1}, s_{1}\right) \sim\left(r_{2}, s_{2}\right)$ and $\left(r_{2}, s_{2}\right) \sim\left(r_{3}, s_{3}\right)$. Then $t\left[s_{1} r_{2}+s_{2} r_{1}\right]=0=t^{\prime}$ [$\mathrm{s}_{2} \mathrm{r}_{3}+\mathrm{s}_{3} \mathrm{r}_{2}$] for some t and t^{\prime} in S

$$
\begin{array}{ll}
\Rightarrow \mathrm{t}\left[\mathrm{~s}_{1} \mathrm{r}_{2}+\mathrm{s}_{2} \mathrm{r}_{1}\right] \mathrm{s}_{3}=0=t^{\prime}\left[\mathrm{s}_{2} \mathrm{r}_{3}+\mathrm{s}_{3} \mathrm{r}_{2}\right] \mathrm{s}_{1} & \text { (by lemma 1.4) } \\
\Rightarrow \mathrm{ts}_{3}\left[\mathrm{~s}_{1} \mathrm{r}_{2}+\mathrm{s}_{2} \mathrm{r}_{1}\right]=0=t^{\prime} \mathrm{s}_{1}\left[\mathrm{~s}_{2} \mathrm{r}_{3}+\mathrm{s}_{3} \mathrm{r}_{2}\right] & \text { (by def 1.3) } \\
\Rightarrow t^{\prime} \mathrm{ts}_{3}\left[\mathrm{~s}_{1} \mathrm{r}_{2}+\mathrm{s}_{2} \mathrm{r}_{1}\right]=0=t^{\prime} \mathrm{s}_{1}\left[\mathrm{~s}_{2} \mathrm{r}_{3}+\mathrm{s}_{3} \mathrm{r}_{2}\right] \mathrm{t} & \text { (by def 2.3 \& lemma 1.4) } \\
\Rightarrow t^{\prime} \mathrm{t} \mathrm{~s}_{3}\left(\mathrm{~s}_{1} \mathrm{r}_{2}\right)+t^{\prime} \mathrm{t} \mathrm{~s}_{3}\left(\mathrm{~s}_{2} \mathrm{r}_{1}\right)+t^{\prime} \mathrm{ts}_{1}\left(\mathrm{~s}_{2} \mathrm{r}_{3}\right)+t^{\prime} t \mathrm{~s}_{1}\left(\mathrm{~s}_{3} \mathrm{r}_{2}\right)=0 & \\
\Rightarrow\left[t^{\prime} \mathrm{ts}_{1}\left(\mathrm{~s}_{3} \mathrm{r}_{2}\right)+t^{\prime} \mathrm{t} \mathrm{~s}_{1}\left(\mathrm{~s}_{3} \mathrm{r}_{2}\right)\right]+\left[t^{\prime} t \mathrm{~s}_{2}\left(\mathrm{~s}_{1} \mathrm{r}_{3}\right)+t^{\prime} \mathrm{ts}_{2}\left(\mathrm{~s}_{3} \mathrm{r}_{1}\right)\right]=0 & \\
\Rightarrow t^{\prime} \mathrm{ts}_{2}\left(\mathrm{~s}_{3} \mathrm{r}_{1}\right)+t^{\prime} \mathrm{ts}_{2}\left(\mathrm{~s}_{1} \mathrm{r}_{3}\right)=0 & \text { (by def 1.3) } \\
\Rightarrow t^{\prime} \mathrm{ts}_{2}\left[\mathrm{~s}_{3} \mathrm{r}_{1}+\mathrm{s}_{1} \mathrm{r}_{3}\right]=0 & \text { (by } \left.1 \text { of def } 1.1 \text { where } t^{\prime} \mathrm{s}_{2} \text { is in } \mathrm{S} .\right)
\end{array}
$$

Hence we have some t^{\prime} ts $\mathrm{s}_{2} \in S$ such that ($\left.\mathrm{r}_{1}, \mathrm{~s}_{1}\right) \sim\left(\mathrm{r}_{3}, \mathrm{~s}_{3}\right)$. Thus \sim is an equivalence relation.
Remark 2.6: From the preceding theorem we denote the equivalence class containing (r, s) in $\mathrm{R} \times \mathrm{S}$ by $\frac{r}{s}$ and the set of all equivalence classes by $S^{-1} \mathrm{R}$.

Lemma 2.7: Let R be a weak commutative Boolean like semi ring and S be a multiplicatively closed subset of R. Then
(i) If $0 \notin S$ and R has no zero divisors, then $\left(r_{1}, s_{1}\right) \sim\left(r_{2}, s_{2}\right)$ if and only if $s_{1} r_{2}=s_{2} r_{1}$
(ii) $\frac{r}{s}=\frac{r t}{s t}=\frac{t r}{s t}=\frac{t r}{t s}$ for all r in R and for all s, t in S
(iii) $\frac{r s}{s}=\frac{r s}{s_{1}^{\prime}}$ for all r in R and for all $\mathrm{s}, \mathrm{s}^{\prime}$ in S .
(iv) $\frac{s}{s}=\frac{s}{s^{\prime}}$ for all s, s^{\prime} in S .
(v) If $0 \in \mathrm{~S}$, then $S^{-1} \mathrm{R}$ contains exactly one element.

Proof: Routine.
Theorem 2.8: Let S be a multiplicatively closed subset in a weak commutative Boolean like semi ring R. Define binary operations + and \cdot on $S^{-1} \mathrm{R}$ as follows:

$$
\frac{r_{1}}{s_{1}}+\frac{r_{2}}{s_{2}}=\frac{s_{2} r_{1}+s_{1} r_{2}}{s_{1} s_{2}} \text { and } \frac{r_{1}}{s_{1}} \cdot \frac{r_{2}}{s_{2}}=\frac{r_{1} r_{2}}{s_{1} s_{2}}
$$

Then $\left(S^{-1} \mathrm{R},+, \cdot\right)$ is a Boolean like semi ring.
Proof: To prove + and \cdot are well defined let $\frac{\mathbf{r}_{\mathbf{1}}}{\mathbf{s}_{\mathbf{1}}}=\frac{r_{1}^{\prime}}{s_{1}^{\prime}}, \frac{\mathbf{r}_{2}}{\mathbf{s}_{\mathbf{2}}}=\frac{r_{2}^{\prime}}{s_{2}^{\prime}}$. This implies $\mathrm{t}\left[s_{1}^{\prime} r_{1}+s_{1} r_{1}^{\prime}\right]=0=t^{\prime}\left[s_{2}^{\prime} r_{2}+s_{2} r_{2}^{\prime}\right]$ for some t, t^{\prime}, in S .

First we prove that $\frac{s_{2} r_{1}+s_{1} r_{2}}{s_{1} s_{2}}=\frac{s_{2}^{\prime} r_{1}^{\prime}+s_{1}^{\prime} r_{2}^{\prime}}{s_{1}^{\prime} s_{2}^{\prime}} \quad$ [i.e. $\frac{\mathrm{r}_{1}}{s_{1}}+\frac{\mathrm{r}_{2}}{s_{2}}=\frac{\mathrm{r}_{1}^{\prime}}{\mathrm{s}_{1}^{\prime}}+\frac{\mathrm{r}_{2}^{\prime}}{\mathrm{s}_{2}^{\prime}}$]
Consider $t^{\prime} \mathrm{t}\left[s_{1}^{\prime} s_{2}^{\prime}\left(s_{2} r_{1}+s_{1} r_{2}\right)+s_{1} s_{2}\left(s_{2}^{\prime} r_{1}^{\prime}+s_{1}^{\prime} r_{2}^{\prime}\right)\right]$

$$
\begin{array}{ll}
=t^{\prime} \mathrm{t}\left(s_{1}^{\prime} s_{2}^{\prime}\right)\left(s_{2} r_{1}\right)+t^{\prime} \mathrm{t}\left(s_{1}^{\prime} s_{2}^{\prime}\right)\left(s_{1} r_{2}\right)+t^{\prime} \mathrm{t}\left(s_{1} s_{2}\right)\left(s_{2}^{\prime} r_{1}^{\prime}\right)+t^{\prime} \mathrm{t}\left(s_{1} s_{2}\right)\left(s_{1}^{\prime} r_{2}^{\prime}\right) & \text { (by } 3 \text { of def 1.1) } \\
=t^{\prime} \mathrm{t}\left(s_{2}^{\prime} s_{2}\right)\left(s_{1}^{\prime} r_{1}\right)+t^{\prime} \mathrm{t}\left(s_{1}^{\prime} s_{1}\right)\left(s_{2}^{\prime} r_{2}\right)+t^{\prime} \mathrm{t}\left(s_{2}^{\prime} s_{2}\right)\left(s_{1} r_{1}^{\prime}\right)+t^{\prime} \mathrm{t}\left(s_{1}^{\prime} s_{1}\right)\left(s_{2} r_{2}^{\prime}\right) & \text { (by def 1.3) } \\
=\left(t^{\prime} \mathrm{t}\right)\left(s_{2}^{\prime} s_{2}\right)\left[\left(s_{1}^{\prime} r_{1}\right)+\left(s_{1} r_{1}^{\prime}\right)\right]+\left(t^{\prime} \mathrm{t}\right)\left(s_{1}^{\prime} s_{1}\right)\left[\left(s_{2}^{\prime} r_{2}\right)+\left(s_{2} r_{2}^{\prime}\right)\right] & \\
=t^{\prime}\left(s_{2}^{\prime} s_{2}\right) t\left[\left(s_{1}^{\prime} r_{1}\right)+\left(s_{1} r_{1}^{\prime}\right)\right]+t^{\prime}\left[\left(s_{2}^{\prime} r_{2}\right)+\left(s_{2} r_{2}^{\prime}\right)\right] \mathrm{t}\left(s_{1}^{\prime} s_{1}\right) & \text { (by def 1.3) } \tag{bydef1.3}
\end{array}
$$

$$
\begin{array}{ll}
=t^{\prime}\left(s_{2}^{\prime} s_{2}\right)(0)+(0) t\left(s_{1}^{\prime} s_{1}\right) & \text { (by [*] above) } \\
=0+0 & \text { (by lemmas } 1.2 \\
=0 &
\end{array}
$$

Hence + is well defined. Next we prove, $\mathrm{s}\left[\left(s_{1}^{\prime} s_{2}^{\prime}\right) r_{1} \mathrm{r}_{2}+\mathrm{s}_{1} \mathrm{~s}_{2}\left(r_{1}^{\prime} r_{2}^{\prime}\right)\right]=0$ for some s in S .
Now, $\frac{r_{1}}{s_{1}}=\frac{r_{1}^{\prime}}{s_{1}^{\prime}}, \frac{r_{2}}{s_{2}}=\frac{r_{2}^{\prime}}{s_{2}^{\prime}}$ implies,

$$
\mathrm{t}\left[s_{1}^{\prime} \mathrm{r}_{1}+\mathrm{s}_{1} r_{1}^{\prime}\right]=0=t^{\prime}\left[s_{2}^{\prime} \mathrm{r}_{2}+\mathrm{s}_{2} \mathrm{r}_{2}^{\prime}\right] \text { for some } \mathrm{t} \text { and } t^{\prime} \text { in } \mathrm{S} .
$$

$$
\begin{array}{ll}
\Rightarrow \mathrm{t}\left[s_{1}^{\prime} \mathrm{r}_{1}+\mathrm{s}_{1} r_{1}^{\prime}\right] s_{2}^{\prime} \mathrm{r}_{2}=0=t^{\prime}\left[s_{2}^{\prime} \mathrm{r}_{2}+\mathrm{s}_{2} r_{2}^{\prime}\right] \mathrm{s}_{1} r_{1}^{\prime} & \text { (by lemma 1.4) } \\
\Rightarrow \mathrm{tt}^{\prime}\left[s_{1}^{\prime} \mathrm{r}_{1}+\mathrm{s}_{1} r_{1}^{\prime}\right] s_{2}^{\prime} \mathrm{r}_{2}=0=t t^{\prime}\left[s_{2}^{\prime} \mathrm{r}_{2}+\mathrm{s}_{2} r_{2}^{\prime}\right] \mathrm{s}_{1} r_{1}^{\prime} & \text { (by lemma 1.2 \& 1.4) } \\
\Rightarrow \mathrm{tt}^{\prime}\left(s_{2}^{\prime} \mathrm{r}_{2}\right)\left[s_{1}^{\prime} \mathrm{r}_{1}+\mathrm{s}_{1} r_{1}^{\prime}\right]+t t^{\prime}\left(\mathrm{s}_{1} r_{1}^{\prime}\right)\left[s_{2}^{\prime} \mathrm{r}_{2}+\mathrm{s}_{2} r_{2}^{\prime}\right]=0 & \text { (by def 1.3) } \\
\Rightarrow \mathrm{tt}^{\prime}\left(s_{2}^{\prime} \mathrm{r}_{2}\right)\left[s_{1}^{\prime} \mathrm{r}_{1}\right]+\mathrm{tt}^{\prime}\left(s_{2}^{\prime} \mathrm{r}_{2}\right)\left[\mathrm{s}_{1} r_{1}^{\prime}\right]+t \mathrm{t}^{\prime}\left(\mathrm{s}_{1} r_{1}^{\prime}\right)\left[s_{2}^{\prime} \mathrm{r}_{2}\right]+t \mathrm{t}^{\prime}\left(\mathrm{s}_{1} r_{1}^{\prime}\right)\left[\mathrm{s}_{2} r_{2}^{\prime}\right]=0 & \text { (by } 3 \text { of def 1.1) } \\
\Rightarrow \mathrm{tt}^{\prime}\left(s_{1}^{\prime} s_{2}^{\prime}\right)\left[\mathrm{r}_{1} \mathrm{r}_{2}\right]+t t^{\prime}\left[\mathrm{s}_{1} r_{1}^{\prime}\right]\left(s_{2}^{\prime} r_{2}\right)+t t^{\prime}\left(s_{1} r_{1}^{\prime}\right)\left[s_{2}^{\prime} r_{2}\right]+t \mathrm{t}^{\prime}\left[\mathrm{s}_{1} \mathrm{~s}_{2}\right]\left(r_{1}^{\prime} r_{2}^{\prime}\right)=0 & \text { (by def 1.3) } \\
\Rightarrow \mathrm{tt}^{\prime}\left(s_{1}^{\prime} s_{2}^{\prime}\right)\left[\mathrm{r}_{1} \mathrm{r}_{2}\right]+t \mathrm{t}^{\prime}\left[\mathrm{s}_{1} \mathrm{~s}_{2}\right]\left(r_{1}^{\prime} r_{2}^{\prime}\right)=0 & \text { (by 4 of def 1.1) } \\
\Rightarrow \mathrm{tt}^{\prime}\left[\left(s_{1}^{\prime} s_{2}^{\prime}\right)\left[\mathrm{r}_{1} \mathrm{r}_{2}\right]+\left[\mathrm{s}_{1} \mathrm{~s}_{2}\right]\left(r_{1}^{\prime} r_{2}^{\prime}\right)\right]=0 &
\end{array}
$$

Thus choose $\mathrm{s}=\mathrm{tt}^{\prime}$ which is also in S. Hence multiplication is also well defined. We observe the following trivial fact, before proceeding to the next.

Before proceeding to the next, $\frac{r_{1}}{s}+\frac{r_{2}}{s}=\frac{r_{1}+r_{2}}{s}$ for any r_{1}, r_{2} in R and s in S (from lemma 2.7 and theorem 2.8)

Now we claim that ($S^{-1} R,+$) is an abelian group.

A. + is associative. Let $\frac{r_{1}}{s_{1}}, \frac{r_{2}}{s_{2}}, \frac{r_{3}}{s_{3}} \in s^{-1}$ R. Then,
$\frac{r_{1}}{s_{1}}+\left[\frac{r_{2}}{s_{2}}+\frac{r_{3}}{s_{3}}\right]=\frac{r_{1}}{s_{1}}+\left[\frac{s_{3} r_{2}+s_{2} r_{3}}{s_{2} s_{3}}\right]=\frac{\left(s_{2} s_{3}\right) r_{1}+s_{1}\left(s_{3} r_{2}+s_{2} r_{3}\right)}{s_{1}\left(s_{2} s_{3}\right)}$

$$
\begin{array}{ll}
=\frac{\left(s_{2} r_{1}\right) s_{3}+\left(s_{1} r_{2}\right)_{3}+\left(s_{1} s_{2}\right) r_{3}}{\left(s_{1} s_{2}\right) s_{3}}=\frac{\left(s_{2} r_{1}\right) s_{3}}{\left(s_{1} s_{2}\right) s_{3}}+\frac{\left(s_{1} r_{2}\right) s_{3}}{\left(s_{1} s_{2}\right) s_{3}}+\frac{\left(s_{1} s_{2}\right) r_{3}}{\left(s_{1} s_{2}\right) s_{3}} & \text { (by lemm 2.7) } \\
=\frac{\left(s_{2} r_{1}+s_{1} r_{2}\right)_{3}}{\left(s_{1}\right.}+\frac{\left(s_{1} s_{2} s_{3} r_{3}\right) s_{3}}{\left(s_{1} s_{2}\right) s_{3}}=\frac{s_{2} r_{1}+s_{1} r_{2}}{s_{1} s_{2}}+\frac{r_{3}}{s_{3}} & \text { (by lemma 2.7) } \\
=\left[\frac{r_{1}}{s_{1}}+\frac{r_{2}}{s_{2}}\right]+\frac{r_{3}}{s_{3}} . \text { Hence associative. }
\end{array}
$$

B. Existence of additive identity (zero element)

For any $\frac{\mathrm{r}}{\mathrm{s}}$ in $s^{-1} \mathrm{R}, \frac{r}{s}+\frac{0}{\mathrm{~s}}=\frac{\mathrm{r}+0}{\mathrm{~s}}$ (by remark 3.4) $=\frac{\mathrm{r}}{\mathrm{s}}=\frac{0+\mathrm{r}}{\mathrm{s}}=\frac{0}{\mathrm{~s}}+\frac{\mathrm{r}}{\mathrm{s}}$.

Hence $\frac{0}{s}$ is the additive identity for any s in S .
C. + is commutative.

Let $\frac{r_{1}}{s_{1}}, \frac{r_{2}}{s_{2}} \in S^{-1} R$, then $\frac{r_{1}}{s_{1}}+\frac{r_{2}}{s_{2}}=\frac{s_{2} r_{1}+s_{1} r_{2}}{s_{1} s_{2}}=\frac{s_{1} r_{2}+s_{2} r_{1}}{s_{1} s_{2}} \quad$ (by 1of def 1.1)

$$
\begin{aligned}
& =\frac{s\left(s_{1} r_{2}+s_{2} r_{1}\right)}{s\left(s_{1} s_{2}\right)}, \quad \quad \quad \text { (by lemma 2.7 for any } s \text { in } S \text {) } \\
& =\frac{s\left(s_{1} r_{2}+s_{2} r_{1}\right)}{s\left(s_{2} s_{1}\right)}=\frac{s_{1} r_{2}+s_{2} r_{1}}{s_{2} s_{1}} \quad(\text { by def 1.3) } \\
& =\frac{r_{2}}{s_{2}}+\frac{r_{1}}{s_{1}}
\end{aligned}
$$

D. Existence of additive inverse:

Let $\frac{\mathrm{r}}{\mathrm{s}}$ be in S^{-1} R. Then $\frac{\mathrm{r}}{\mathrm{s}}+\frac{\mathrm{r}}{\mathrm{s}}=\frac{\mathrm{r}+\mathrm{r}}{\mathrm{s}}=\frac{0}{\mathrm{~s}}$. (by \#)

$$
\begin{aligned}
& =\frac{s\left(s_{1} r_{2}+s_{2} r_{1}\right)}{s\left(s_{2} s_{1}\right)}=\frac{s_{1} r_{2}+s_{2} r_{1}}{s_{2} s_{1}} \quad \text { (by def 1.3) } \\
& =\frac{r_{2}}{s_{2}}+\frac{r_{1}}{s_{1}}
\end{aligned}
$$

Hence $\left(S^{-1} \mathrm{R},+\right)$ is an abelian group.
E. ($\left.S^{-1} R, \cdot\right)$ is a semi group.

$$
\text { Let } \frac{\mathrm{r}_{1}}{s_{1}}, \frac{\mathrm{r}_{2}}{s_{2}}, \frac{\mathrm{r}_{3}}{s_{3}} \in S^{-1} \mathrm{R} \text {, then } \frac{\mathrm{r}_{1}}{s_{1}} \cdot\left[\frac{r_{2}}{s_{2}} \cdot \frac{\mathrm{r}_{3}}{s_{3}}\right]=\frac{\mathrm{r}_{1}}{s_{1}} \cdot\left[\frac{\mathrm{r}_{2} \mathrm{r}_{3}}{s_{2} s_{3}}\right]=\frac{\mathrm{r}_{1}\left(\mathrm{r}_{2} \mathrm{r}_{3}\right)}{s_{1}\left(s_{2} s_{3}\right)}=\frac{\left(\mathrm{r}_{1} \mathrm{r}_{2}\right) \mathrm{r}_{3}}{\left(s_{1} s_{2} s_{3}\right.} \text { (by } 2 \text { of def 1.1) }
$$

$$
=\left[\frac{\mathrm{r}_{1} \mathrm{r}_{2}}{s_{1} s_{2}}\right] \cdot \frac{r_{3}}{s_{3}}=\left[\frac{\mathrm{r}_{1}}{\mathrm{~s}_{1}} \cdot \frac{\mathrm{r}_{2}}{\mathrm{~s}_{2}}\right] \cdot \frac{\mathrm{r}_{3}}{\mathrm{~s}_{3}}
$$

F. (.) is distributive over +

Let $\frac{r_{1}}{s_{1}}, \frac{r_{2}}{s_{2}}, \frac{r_{3}}{s_{3}} \in S^{-1} R$, then

$$
\begin{aligned}
\frac{r_{1}}{s_{1}} \cdot\left[\frac{r_{2}}{s_{2}}+\frac{r_{3}}{s_{3}}\right]=\frac{r_{1}}{s_{1}} \cdot\left[\frac{s_{3} r_{2}+s_{2} r_{3}}{s_{2} s_{3}}\right] & =\frac{r_{1}\left(s_{3} r_{2}+s_{2} r_{3}\right)}{s_{1}\left(s_{2} s_{3}\right)}=\frac{r_{1}\left(s_{3} r_{2}\right)+r_{1}\left(s_{2} r_{3}\right)}{s_{1}\left(s_{2} s_{3}\right)}=\frac{r_{1}\left(r_{2 s_{3}}\right)+r_{1}\left(r_{3} s_{2}\right)}{\left(s_{1} s_{2}\right) s_{3}} \\
& =\frac{\left(r_{1} r_{2}\right) s_{3}+\left(r_{1} r_{3}\right) s_{2}}{s_{1}\left(s_{2} s_{3}\right)} \quad(b y \operatorname{def} 1.3) \\
& =\frac{\left(r_{1} r_{2}\right) s_{3}}{\left(s_{1} s_{2} s_{3}\right.}+\frac{\left(r_{1} r_{3}\right)^{s} s_{2}}{\left(s_{1} s_{3}\right) s_{2}}=\frac{\left(r_{1} r_{2}\right)}{\left(s_{1} s_{2}\right)}+\frac{\left(r_{1} r_{3}\right)}{\left(s_{1} s_{3}\right)} \\
& =\left[\frac{r_{1}}{s_{1}} \cdot \frac{r_{2}}{s_{2}}\right]+\left[\frac{r_{1}}{s_{1}} \cdot \frac{r_{3}}{s_{3}}\right]
\end{aligned}
$$

G. Characteristic of $\mathbf{S}^{-\mathbf{1}} \mathrm{R}$ is $\mathbf{2}$.

Let $\frac{\mathrm{r}}{\mathrm{s}}$ be in $\mathrm{S}^{-1} \mathrm{R}$, then $\frac{\mathrm{r}}{\mathrm{r}}+\frac{\mathrm{r}}{\mathrm{s}}=\frac{\mathrm{r}+\mathrm{r}}{\mathrm{s}}=\frac{0}{\mathrm{~s}}$
H. Let $\frac{r_{1}}{s_{1}}, \frac{r_{2}}{s_{2}} \in S^{-1} R$. Then $\frac{r_{1}}{s_{1}} \cdot \frac{r_{2}}{s_{2}}=\frac{r_{1}}{s_{1}} \cdot \frac{r_{2}}{s_{2}}\left[\frac{r_{1}}{s_{1}}+\frac{r_{2}}{s_{2}}+\frac{r_{1}}{s_{1}} \cdot \frac{r_{2}}{s_{2}}\right]$

Claim: $\frac{r_{1} r_{2}}{s_{1} s_{2}}=\frac{r_{1} r_{2}}{s_{1} s_{2}}\left[\frac{s_{2} r_{1}+s_{1} r_{2}+r_{1} r_{2}}{s_{1} s_{2}}\right]$
Let $t \in S$ be any element. Then consider;

$$
\begin{aligned}
& t\left[\left(s_{1} s_{2}\right)\left(r_{1} r_{2}\right)\left(s_{2} r_{1}+s_{1} r_{2}+r_{1} r_{2}\right)+\left(s_{1} s_{2}\right)\left(s_{1} s_{2}\right)\left(r_{1} r_{2}\right)\right] \\
&\left.=t\left[\left(s_{1} s_{2}\right)\left(r_{1} r_{2}\right)\left(s_{2} r_{1}+s_{1} r_{2}+r_{1} r_{2}\right)+\left(s_{1} s_{2}\right)\right)\left(r_{1} r_{2}\right)\left(s_{1} s_{2}\right)\right] \text { (by def 1.3) } \\
&=t\left(s_{1} s_{2}\right)\left(r_{1} r_{2}\right)\left[\left(s_{2} r_{1}+s_{1} r_{2}+r_{1} r_{2}\right)+\left(s_{1} s_{2}\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\mathrm{t}\left(\mathrm{~s}_{1} \mathrm{~s}_{2}\right)\left(\mathrm{r}_{1} \mathrm{r}_{2}\right)\left[\mathrm{r}_{1} \mathrm{~s}_{2}+\mathrm{s}_{1} \mathrm{r}_{2}+\mathrm{r}_{1} \mathrm{r}_{2}+\mathrm{s}_{1} \mathrm{~s}_{2}\right] \quad \text { (by def 1.3) } \\
& =t\left(s_{1} s_{2}\right)\left(r_{1} r_{2}\right)\left[r_{1}\left(s_{2}+r_{2}\right)+s_{1}\left(r_{2}+s_{2}\right)\right] \quad \text { (by } 3 \text { of def 1.1) } \\
& =t\left(s_{1} s_{2}\right)\left(r_{1} r_{2}\right)\left(r_{1+} s_{1}\right)\left(r_{2}+s_{2}\right) \\
& =t\left(s_{1} r_{1}\right)\left(s_{2} r_{2}\right)\left(s_{1}+r_{1}\right)\left(s_{2}+r_{2}\right) \quad \text { (by def 1.3) } \\
& =t\left(s_{1} r_{1}\right)\left(s_{1}+r_{1}\right)\left(s_{2} r_{2}\right)\left(s_{2}+r_{2}\right) \quad \text { (by def 1.3) } \\
& =\mathrm{t}\left(s_{1} r_{1}+\left(s_{1} r_{1}\right)^{2}\right)\left(s_{2} r_{2}+\left(s_{2} r_{2}\right)^{2}\right) \\
& =0 \quad \text { (by lemma 2.2). }
\end{aligned}
$$

Hence we have that $\frac{r_{1} r_{2}}{s_{1} s_{2}}=\frac{r_{1} r_{2}}{s_{1} s_{2}}\left[\frac{s_{2} r_{1}+s_{1} r_{2}+r_{1} r_{2}}{s_{1} s_{2}}\right]$ which proves 5 of def1.1
Thus $\left(S^{-1} R,+, \cdot\right)$ is a Boolean like semi ring.
Now we recall the following definition of A. L. Foster [1] regarding Boolean like ring
Definition [1]: A Boolean like ring R is a commutative ring with unity and is of characterstic 2 in which $a b(1+a)(1+b)$ $=0$ for all a, b in R

Theorem 2.9: ($\left.S^{-1} R,+,.\right)$ is a Boolean like ring.
Proof: Let $\frac{r_{1}}{s_{1}}, \frac{r_{2}}{s_{2}} \in S^{-1} R$. Then $\frac{r_{1}}{s_{1}} \cdot \frac{r_{2}}{s_{2}}=\frac{r_{1} r_{2}}{s_{1} s_{2}}=\frac{s\left(r_{1} r_{2}\right)}{s\left(s_{1} s_{2}\right)} \quad$ (by lemma 2.7)

$$
\begin{aligned}
& =\frac{s\left(r_{2} r_{1}\right)}{s\left(s_{2} s_{1}\right)}=\frac{\left(r_{2} r_{1}\right)}{\left(s_{2} s_{1}\right)} \quad \text { (by lemma 2.7) } \\
& =\frac{r_{2} r_{1}}{s_{2} s_{1}}=\frac{r_{2}}{s_{2}} \cdot \frac{r_{1}}{s_{1}}
\end{aligned}
$$

Thus • is commutative.
Hence left distributive property also holds from commutative property of • and F of theorem 2.8
i. Multiplicative identity,

Let $\frac{r}{s}$ be any element. Then,
$\frac{\mathrm{r}}{\mathrm{s}} \cdot \frac{\mathrm{s}}{\mathrm{s}}=\frac{\mathrm{rs}}{\mathrm{ss}}=\frac{\mathrm{r}}{\mathrm{s}} \quad$ (by lemma 2.7)
$=\frac{\mathrm{sr}}{\mathrm{ss}}=\frac{\mathrm{s}}{\mathrm{s}} \cdot \frac{\mathrm{r}}{\mathrm{s}}$ (by lemma 2.7). Hence $\frac{\mathrm{s}}{\mathrm{s}}$ is the multiplicative identity.
ii. Let $\frac{r_{1}}{s_{1}}, \frac{r_{2}}{s_{2}} \in S^{-1} R$. Then,

$$
\begin{array}{rlr}
\frac{r_{1}}{s_{1}} \cdot \frac{r_{2}}{s_{2}}\left[\frac{s_{1}}{s_{1}}+\frac{r_{1}}{s_{1}}\right]\left[\frac{s_{2}}{s_{2}}+\frac{r_{2}}{s_{2}}\right] & =\frac{\left(r_{1} r_{2}\right)\left(s_{1}+r_{1}\right)\left(s_{2}+r_{2}\right)}{\left(s_{1} s_{2}\right)\left(s_{1} s_{2}\right)} & \text { (by lemma 2.7) } \\
& =\frac{s\left(s_{1} s_{2}\right)\left(r_{1} r_{2}\right)\left(s_{1}+r_{1}\right)\left(s_{2}+r_{2}\right)}{s\left(s_{1} s_{2}\right)\left(s_{1} s_{2}\right)\left(s_{1} s_{2}\right)} & \text { (by lemma 2.7) } \\
& =\frac{s\left(s_{1} r_{1}\right)\left(s_{1}+r_{1}\right)\left(s_{2} r_{2}\right)\left(s_{2}+r_{2}\right)}{s\left(s_{1} s_{2}\right)\left(s_{1} s_{2}\right)\left(s_{1} s_{2}\right)} & \\
& =\frac{0}{s^{\prime}} \quad \text { where } s^{\prime}=s\left(s_{1} s_{2}\right)\left(s_{1} s_{2}\right)\left(s_{1} s_{2}\right) \quad \text { (by lemma 2.3) }
\end{array}
$$

REFERENCES:

[1] Foster.A.L: The theory of Boolean like rings, Trans.Amer.Math.Soc. Vol.59, 1946.
[2] Gunter Pilz: Near-Rings, The theory and its applications (North-Holland) 1983.
[3] Macoy N.H: and Montgomery’s: A representation of generalized Boolean rings, Duke Math. J. 3, 1937, 455-459.
[4] Sharp.R.Y: Steps in commutative algebra, London Mathematical society, 2000.
[5] Subrahmanyam. N.V: Boolean semi rings, Math. Annalen 148, 395-401, 1962.
[6] Swaminathan V: Boolean- like rings, PhD dissertation, Andhra University, India, 1982.
[7] Swaminathan V: On Foster’s Boolean- like rings, Math. Seminar Notes, Kobe University, Japan, Vol 8, 1980, 347367.
[8] Venkateswarlu. K and Murthy B.V.N and Amaranth N: Boolean like semi rings, Int. J. Contemp. Math. Sciences, Vol. 6, 2011, no. 13,619-635.
[9] Venkateswarlu. K and Murthy B.V.N: primary ideals in a Boolean like semi rings. (Int. J. Contemp. Math. Sciences, Vol. 6, 2011, no. 28, 1367 - 1377.
[10] Venkateswarlu. K and Murthy B.V.N: Semi prime ideals and Annihilators in Boolean like semi rings, International journal of Algebra, Vol.5, 2011, no. 28,1363-1370.
[11] Venkateswarlu. K and Murthy B.V.N: Spectrum of Boolean like semi rings, International Journal of Mathematical Sciences and Applications, Vol. 1, 2011, No. 3, 1083 - 1088.

[^0]: * Corresponding author: K. Venkateswarlu*, * E-mail: *drkvenkateswarlu@gmail.com

