SOME COMMON FIXED POINT THEOREMS FOR SEQUENCE OF MAPPINGS IN D*- METRIC SPACE

T. VEERAPANDI & AJI. M. PILLAI*

Reader in Mathematics, P.M.T. College, Melaneelithanallur – 627 953, India E-mail: tveerapandi@ymail.com

*Part -Time Research Scholar, Manomaniam Sundaranar University, Tirunelveli, India E- mail: ajimpillai@yahoo.com

(Received on: 28-03-12; Accepted on: 19-04-12)

ABSTRACT

In this paper we establish some common Fixed Point Theorems for sequence of contraction and generalized contraction mappings in D^* - metric space which is introduced by Shaban Sedghi, Nabi Shobe and Haiyun Zhou [10]. In what follows (X, D^*) will denote D^* - metric space, N, the set of all natural number and R^+ , the set of all positive real number.

Mathematics Subject Classification: 54E40; 54E35; 35H25.

Keywords: D*- metric, sequence of contractive mapping; Complete D* - metric space; Common fixed point.

1. INTRODUCTION

There have been an number of generalization in generalized metric space (or D-Metric space) initated by Dhage [2] in 1992. He proved the existence of unique fixed point theorems of sequence of mappings satisfying certain contractive conditions in complete and bounded D- Metric space. Dealing with D- Metric space, Ahmad etal. [1], Dhage [2, 3, 4] Rhoades [8], Singh and Sharma [9] and others made a significant contribution in fixed point theory of D- Metric space. Unfortunately almost all theorems in D-Metric space are not valid (See S.V.R Naidu and others [5-7]). Here our aim is to prove some common fixed point theorems for sequences of generalized contractive mappings in D*- Metric space as a probable modification of the definition of D-Metric spaces introduced by Dhage [2].

Definition 1.1: Let X be a non empty set. A generalized metric (or D^* - metric) on X is a function $D^*: X^3 \rightarrow [0, \infty)$ that satisfies the following conditions for each x, y, z, $a \in X$.

- 1. $D^*(x, y, z) \ge 0$
- 2. $D^*(x, y, z) = 0$ if and only if x = y = z
- 3. $D^*(x, y, z) = D^*(\rho\{x, y, z\})$ where ρ is permutation.
- 4. $D^*(x, y, z) \le D^*(x, y, a) + D^*(a, z, z).$

The pair (X, D^*) is called generalized metric (or D^* - metric) space.

Example 1.2:

(a) $D^*(x, y, z) = \max \{ d(x, y), d(y, z), d(z, x) \},\$

(b) $D^*(x, y, z) = d(x, y) + d(y, z) + d(z, x)$.

Here, d is the ordinary metric on X.

(c) If $X = R^n$ then we define

 $D^*(x, y, z) = (||x - y||^p + ||y - z||^p + ||z - x||^p)^{1/p}$ for every $p \in R^+$

Corresponding author: AJI. M. PILLAI, *E-mail: ajimpillai@yahoo.com

(d) If X = R then we define

$$D^* (x, y, z) = \begin{cases} 0, & \text{if } x = y = z, \\ Max \{x, y, z\}, \text{ otherwise,} \end{cases}$$

Remark 1.3: In D* - metric space D* $(x, y, y) = D^* (x, x, y)$

Definition 1.4: A open ball in a D* - metric space X with centre x and radius r is denoted by $B_{D^*}(x, r)$ and is defined by $B_{D^*}(x, r) = \{y \in X: D^*(x, y, y) < r\}$

Example 1.5: Let X=R Denote D* (x, y, z) = |x-y| + |y-z| + |z-x| for all x, y, $z \in R$.

Thus $B_{D^*}(0, 1) = \{y \in R / D^*(0, y, y) < 1\}$ $= \{y \in R / |0 - y| + |y - y| + |y - 0| < 1\}$ $= \{y \in R / |y| + |y| < 1\}$ $= \{y \in R / |y| < \frac{1}{2}\}$ $= \{y \in R / -\frac{1}{2} < y < \frac{1}{2}\}$ $= (-\frac{1}{2}, \frac{1}{2}). \text{ (Open Interval)}$

Definition 1.6: Let (X, D^*) be a D^* - metric space and $A \subseteq X$ 1. If for every $x \in A$, there exist r > o such that $B_{D^*}(x, r) \subseteq A$, then subset A is called open subset of X.

2. Subset A of X is said to be D^* - bounded if there exist r > o such that

 $D^*(x, y, y) < r$ for all $x, y \in A$.

3. A sequence $\{x_n\}$ in X converges to x if and only if

$$D^*(x_n, x_n, x) = D^*(x, x, x_n) \rightarrow 0 \text{ as } n \rightarrow \infty.$$

That is, for each $\varepsilon > 0$ there exist $n_0 \in N$ such that for all $n \ge n_0$ implies $D^*(x, x, x_n) < \varepsilon$ This is equivalent for each $\varepsilon > 0$, there exist $n_0 \in N$ such that for all $n, \ge n_0$ implies $D^*(x, x_n, x_n) < \varepsilon$.

It is also noted that $D^*(x_n, x_n, x) = D^*(x, x, x_n) < \epsilon$ for all $n \ge n_0$, for some $n_0 \in N$.

4. A sequence $\{x_n\}$ in X is called a Cauchy sequence if for each $\varepsilon > 0$, there exist $n_0 \in N$ such that $D^*(x_n, x_n, x_m) < \varepsilon$ for each n, $m \ge n_0$ The D^{*} - metric space (X, D^{*}) is said to complete if every Cauchy sequence is convergent.

Remark 1.7:

(1) D* is continuous function on X^3

- (2) If sequence $\{x_n\}$ in X converges to x, then x is unique.
- (3) Any convergent sequence in (X, D*) is a Cauchy sequence.

Definition 1.8: A point x in X is a fixed point of the map T: $X \rightarrow X$ if Tx = x.

Definition 1.9: A point x in X is a common fixed point of a sequence of maps $T_n: X \rightarrow X$ if $T_n(x) = x$ for all n...

Theorem 1: Let X be a D* - complete metric space and $T_n : X \rightarrow X$ be a sequence maps such that

 $D^*(T_ix, T_iy, z) \le \alpha D^*(x, y, z)$ for all $i \ne j$ and for all $x, y, z \in X$ with $o \le \alpha < \frac{1}{2}$

Then $\{T_n\}$ have a unique common fixed point.

Proof: Let $x_0 \in X$ be any fixed arbitrary element Define a sequence $\{x_n\}$ in X as.

 $x_{n+1} = T_{n+1} x_n$ for all n = 0, 1, 2, ...

Let $d_n = D^* (x_n, x_{n+1}, x_{n+1})$ for all n = 0, 1, 2...

Now $d_{n+1} = D^* (x_{n+1}, x_{n+2}, x_{n+2})$ = $D^* (T_{n+1}x_n, T_{n+2}x_{n+1}, x_{n+2})$ $\leq \alpha D^* (x_n, x_{n+1}, x_{n+2})$ $\leq \alpha D^* (x_n, x_{n+1}, x_{n+1}) + \alpha D^* (x_{n+1}, x_{1n+2}, x_{n+2})$ = $\alpha d_n + \alpha d_{n+1}$

 $(1 - \alpha) d_{n+1} \leq \alpha d_n$

$$d_{n+1} \leq \frac{\alpha}{1-\alpha} d_n$$

$$d_{n+1} \leq k d_n \quad \text{for all } n = 0, 1, 2..., \text{ where } k = \frac{\alpha}{1-\alpha} < 1 \text{ (Since } \alpha < \frac{1}{2})$$

$$d_n \leq k d_{n-1}$$

$$\vdots$$

$$k^n d_0 \rightarrow 0 \text{ as } n \rightarrow \infty$$

Therefore $\lim_{n \to \alpha} d_n = 0$ Thus $\lim_{n \to \alpha} D^*(x_n, x_{n+1}, x_{n+1}) = 0$

Now we shall prove that $\{x_n\}$ is a D* - Cauchy sequence in X.

Let m > n >, n_0 for some $n_0 \in N$.

 $Now \quad D^*\!(x_n,\,x_n,\,x_m \) \ \leq D^*\!(x_n,\,x_n,\,x_{n+1}) + D^*\!(x_{n+1},\,x_{n+1},\,x_m)$

$$\leq \sum_{k=\infty}^{m-1} \quad D^*(\mathbf{x}_k, \mathbf{x}_k, \mathbf{x}_{k+1}) \rightarrow 0 \text{ as } \mathbf{m}, \mathbf{n} \rightarrow \infty$$

Thus $\lim_{n,m\to\alpha} D^*(x_n, x_n, x_m) = 0$

Therefore $\{x_n\}$ is D* - Cauchy sequence in X.

Since X is D* - Complete $x_n \rightarrow x$ in X. we prove that x is a fixed point of T_n for all n suppose there exist an m such that $x \neq T_m x$.

Then D*(T_mx, x, x) =
$$\lim_{n \to \infty} D^* (T_m x, x_{n+1}, x)$$

= $\lim_{n \to \infty} D^*(T_m x, T_{n+1} x_n, x)$
 $\leq \alpha \lim_{n \to \infty} D^*(x, x_{n+1}, x)$
= 0

Therefore $D^*(T_mx, x, x) = 0$, Therefore $T_n x=x$ for all n. Thus x is common fixed point of $\{T_n\}$ for all n.

UNIQUENESS

Supper x#y such that $T_ny = y$ for all n.

Then $D^*(x, y, y) = D^*(T_i x, T_i y, y)$

$$\leq \alpha D^* (x, y, y)$$

This implies $(1 - \alpha) D^* (x, y, y) \le 0$

Since $x \neq y$ we have $D^*(x, y, y) > 0$ her $(1 - \alpha) < 0$.

This implies $\alpha > 1$ which contraction to $\alpha < \frac{1}{2}$.

Thus $\{T_n\}$ have a unique common fixed point.

Theorem 2: Let X be a complete D*- metric space and $T_n: X \rightarrow X$ be a sequence of maps such that

 $D^*(T_ix, T_jy, T_kz) \leq \alpha \ D^* \ (x, \, y, \, z) \ \text{for all} \quad i \neq j \neq k \ \text{and} \ x, \, y, \, z \in X \ \text{with} \ 0 \leq \alpha < 1.$

Then $\{T_n\}$ have a unique common fixed point.

Proof: Let $x_0 \in X$ be any fixed arbitrary element Define a sequence $\{x_n\}$ in X as $x_{n+1} = T_{n+1} x_n$ for all $n = 0, 1, 2, \dots$

Let $d_n = D^* (x_n, x_{n+1}, x_{n+2})$

$$\begin{split} d_1 &= D^* \; (x_1, \, x_2, \, x_3) \\ &= D^* \; (T_1 x_0, \, T_2 x_1, \, T_3 x_2 \\ &\leq \alpha \; D^* \; (x_0, \, x_1, \, x_2) \\ d_1 \; &\leq \alpha \; d_0 \\ d_2 &= D^* \; (x_2, \, x_3, \, x_4) \\ &= D^* \; (T_2 \; x_1, \, T_3 \; x_2, \, T_1 \; x_3) \\ &\leq \alpha \; D^* \; (x_1, \, x_2, \, x_3) \\ &\leq \alpha \; d_1. \\ &\leq \alpha^2 do \end{split}$$

Continuing in this way we get $d_n \le \alpha^n d_0 \rightarrow 0$ as $n \rightarrow \infty$ (since $0 \le \alpha < 1$).

Now we shall prove that $\{x_n\}$ is a Cauchy sequence in X.

Let $d_n^* = D^* (x_n, x_n, x_{n+1})$ Then $d_{n+1}^* = D^* (x_{n+1}, x_{n+1}, x_{n+2})$ $\leq D^* (x_n, x_{n+1}, x_{n+2}) + D^* (x_n, x_{n+1}, x_{n+1})$ $\leq d_{n+1} d_n^*$ $d_{n+1}^* - d_n^* \leq d_n$. $\leq \alpha^n d_0 \rightarrow 0$ as $n \rightarrow \infty$ (since $0 \leq \alpha < 1$) $d_{n+1}^* \leq d_n^*$ for all n

Hence $\{d_n^*\}$ is monotonically decreasing sequence of positive real number and it converges to its glb. Let it be d. Then $d_n^* \rightarrow d$ as $n \rightarrow \infty$.

Now we shall prove that d = 0. Suppose $d \neq 0$.

Now d =
$$\frac{\lim}{n_x \to \infty} d_{n+2}^*$$

 $\leq \frac{\lim}{n_x \to \infty} \{d_{n+1+}d_{n+1}^*\}$
 $\leq \frac{\lim}{n_x \to \infty} \{\alpha d_{n+}d_{n+1}^*\}$
 $< \frac{\lim}{n_x \to \infty} \{d_{n+}d_{n+1}^*\}$

= d. which is contraction . Thus d = 0.

Hence $D^*(x_n, x_n, x_m) \rightarrow 0$ as m, n $\rightarrow \infty$

Therefore $\{x_n\}$ is a D* Cauchy sequence in X.

Since X is D* complete $x_n \rightarrow x$ in X

Now we prove that x is fixed point of T_n

To prove that $T_n x = x$ for all n.

Suppose There is an m such that $T_m x \neq x$

Then D*(T_mx, x, x) =
$$\frac{\lim}{n_x \to \infty}$$
 D*(T_mx, x_{n+1}, x_{n+2})
= D*(T_mx, T_{n+1}x_n, T_{n+2}x_{n+1})
 $\leq \alpha \frac{\lim}{n \to \infty}$ D*(x, x_{n+1}, x_{n+2})
 $\leq \alpha$ D*(x, x, x)
= 0

Thus $T_n x = x$. for all n.

Now we prove that x is a unique common fixed point of $\{T_n\}$.

Suppose $x \neq y$ and $T_n y = y$.

Then $D^*(x,y,y) = D^*(T_ix, T_jy, T_ky)$

$$\leq \alpha D^*(x, y, y)$$

This impulse $(1-\alpha)D^*(x, y, y) \leq 0$

Since $x \neq y$ we have $D^*(x, y, y) > 0$

This ((1- α) <0

This impulse $\alpha > 1$ which in contradiction Hence $\{T_n,\}$ have a unique common fixed point

Theorem 3: Let X be a D^{*} - complete metric space and $T_n: X \rightarrow X$ be a sequence maps such that

 $D^*(T_iT_ix, T_ix, y) \le \alpha D^*(T_ix, x, y)$ for all $i \ne j$ and for all $x, y, z \in X$ with $o \le \alpha < 1$.

Then $\{T_n\}$ have a unique common fixed point.

Proof: Let $x_0 \in X$ be any fixed arbitrary element. Define a sequence $\{x_n\}$ in X as $x_{n+1} = T_{n+1} x_n$ for n=0; 1; 2 ...

 $D^{*}(x_{n+1}, x_{n}, x_{n}) = D^{*}(T_{n+1} T_{n} x_{n-1}, T_{n} x_{n-1}, x_{n})$

$$\leq \alpha D^* (T_n x_{n-1}, x_{n-1}, x_n)$$

= $\alpha D^* (x_n, x_{n-1}, x_n)$
= $\alpha D^* (x_n, x_{n-1}, x_{n-1})$
.
.
 $\leq \alpha^n D^* (x_1, x_0, x_0) \rightarrow 0 \text{ as } n \rightarrow \infty \text{ (since } 0 < \alpha < 1)$

Now we shall prove that $\{x_n\}$ is a Cauchy sequence in X. Let m > n > no for some $no \in N$.

$$D^*(x_n, x_n, x_m) \le \sum_{k=n}^{m-1} D^*(x_k, x_{k+1}, x_{k+1})$$
$$< \alpha^n / (1-\alpha) D^*(x_1, x_0, x_0) \text{ as } m \to \infty$$
$$\to 0 \text{ as } n \to \infty$$

 $D^*(x_n, x_n, x_m) \rightarrow 0 \text{ as } n, m \rightarrow \infty$

Therefore $\{x_n\}$ is D* Cauchy sequence in X Since X is D* complete $x_n \rightarrow x$ in X

Now we prove that $T_n x=x$ for all n.

Suppose there is an m such that $T_m x = y$ where $y \neq x$.

$$D^*(T_m x, x, x) = \frac{\lim}{n \to \infty} D^*(y, x_{n+2}, x_{n+1})$$
$$= \frac{\lim}{n \to \infty} D^*(y, T_{n+2} T_{n+1} x_n, T_{n+1} x_n)$$
$$\leq \alpha \frac{\lim}{n \to \infty} D^*(y, T_{n+1} x_n, x_n)$$
$$= \alpha \frac{\lim}{n \to \infty} D^*(y, x_{n+1}, x_n)$$
$$= \alpha D^*(y, x, x)$$
$$= \alpha D^*(T_m x, x, x)$$
$$< D^*(T_m x, x, x)$$

Therefore $T_n x=x$ for all n..

Suppose $x \neq y$ Such that that $T_n y=y$ for all n. © 2012, IJMA. All Rights Reserved

Then $D^*(x, x, y) = D^* (T_{n+1} T_n x, T_n x, y)$

$$\leq \alpha D^*(T_n x, x, y)$$

$$\leq \alpha D^*(x, x, y)$$

(1- α) D*(x, x, y) ≤ 0

Thus 1 - $\alpha < 0$. This implies $\alpha > 1$ which is contradiction.

Therefore x = y

Hence x is a unique common fixed point of the sequence of maps $\{T_n\}$.

Theorem 4: Let X be a complete D^* - metric space and $T_n: X \rightarrow X$ be a sequence of maps such that

 $D^*(T_kT_jT_ix, T_jT_ix, Tix,) \le \alpha D^*(T_jT_ix, T_ix, x)$ for all $i \ne j \ne k$ and for all $x \in X$ with $0 \le \alpha < 1$.

Then $\{T_n\}$ have a unique common fixed point.

Proof: Let $x_0 \in X$ be any fixed arbitrary element Define a sequence $\{x_n\}$ in X as $x_{n+1} = T_{n+1} x_n$ for all $n = 0, 1, 2, \dots$ Let $d_n = D^* (x_n, x_{n+1}, x_{n+2})$

$$\begin{split} d_{1} &= D^{*} (x_{1}, x_{2}, x_{3}) \\ &= D^{*} (T_{1}x_{0}, T_{2} T_{1}x_{0}, T_{3} T_{2} T_{1}x_{0}) \\ &\leq \alpha D^{*} (x_{0}, T_{1}x_{0}, T_{2} T_{1}x_{0}) \\ &= \alpha D^{*} (x_{0}, x_{1}, x_{2}) \\ d_{1} &\leq \alpha d_{0} \\ d_{2} &= D^{*} (x_{2}, x_{3}, x_{4}) \\ &= D^{*} (T_{2}x_{1}, T_{3} T_{2}x_{1}, T_{4} T_{3} T_{2}x_{1}) \\ &\leq \alpha D^{*} (x_{1}, T_{2}x_{1}, T_{3} T_{2}x_{1}) \\ &= \alpha D^{*} (x_{1}, x_{2}, x_{3}) \\ &= \alpha d_{1}. \\ &\leq \alpha^{2} d_{0} \end{split}$$

Continuing in this way we get $d_n \le \alpha^n d_0 \rightarrow 0$ as $n \rightarrow \infty$ (since $0 \le \alpha < 1$).

Now we shall prove that $\{x_n\}$ is a Cauchy sequence in X.

Hence $\{d_n^*\}$ is monotonically decreasing sequence of positive real number and it converges to its glb. Let it be d. Then $d_n^* \rightarrow d$ as $n \rightarrow \infty$.

Now we shall prove that d = 0. Suppose $d \neq 0$.

Now d =
$$\frac{\lim}{n_x \to \infty} d_{n+2}^*$$

 $\leq \frac{\lim}{n_x \to \infty} \{d_{n+1+}d_{n+1}^*\}$
 $\leq \frac{\lim}{n_x \to \infty} \{\alpha d_{n+}d_{n+1}^*\}$
 $< \frac{\lim}{n_x \to \infty} \{d_{n+}d_{n+1}^*\}$

= d. which is contraction .Thus d = 0.

Hence $D^*(x_n, x_n, x_m) \rightarrow 0$ as m, n $\rightarrow \infty$

Therefore $\{x_n\}$ is a D* Cauchy sequence in X.

Since X is D* complete $x_n \rightarrow x$ in X

Now we prove that x is fixed point of T_n

To prove that $T_n x = x$ for all n.

Suppose There is an m such that $T_m x \neq x$

Then D*(T_mx, x, x) =
$$\frac{\lim}{n_x \to \infty}$$
 D*(T_mx, x_{n+1}, x_{n+2})
= D*(T_mx, T_{n+1}x_n, T_{n+2}x_{n+1})
 $\leq \alpha \frac{\lim}{n \to \infty}$ D*(x, x_{n+1}, x_{n+2})
 $\leq \alpha$ D*(x, x, x)
= 0

Thus $T_n x = x$. for all n.

Now we prove that x is a unique common fixed point of $\{T_n\}$.

Suppose $x \neq y$ and $T_n y = y$.

Then $D^*(x,y,y) = D^*(T_ix, T_jy, T_ky)$

 $\leq \alpha D^*(x, y, y)$

This implies $(1-\alpha)D^*(x, y, y) \leq 0$

Since $x \neq y$ we have $D^*(x, y, y) > 0$

This ((1- α) <0

This implies $\alpha > 1$ which in contradiction Hence $\{T_n,\}$ have a unique common fixed point.

Theorem 5: Let X be a complete D* - metric space and $T_n : X \rightarrow X$ be a sequence of maps such that

 $D^*(T_ix, T_iy, T_kz) \le a\{D^*(x, y, z) + D^*(x, T_i, x, T_iy) + D^*(y, T_iy, T_kz)\}$ for all x, y, $z \in X$ with $i \ne j \ne k$ and $0 \le a < 1/3$.

Then $\{T_n\}$ have a unique common fixed point.

Proof: Let $x_0 \in X$ a fixed arbitrary element and define a sequence $\{x_n\}$ in X as $x_{n+1} = T_{n+1} x_n$ for n = 0, 1, 2, ...

Let $d_n = D^*(x_n, x_{n+1}, x_{n+2})$.

Then $d_{n+1} = D^* (x_{n+1}, x_{n+2}, x_{n+3})$

$$\begin{split} &= D^* \left(T_{n+1} \; x_n \; , T_{n+2} \; x_{n+1} \; T_{n+3} \; x_{n+2} \right) \\ &\leq a \{ D^* \left(x_n, \; x_{n+1}, \; x_{n+2} \right) + D^* \left(\; x_n \; , T_{n+1} \; x_n \; , T_{n+2} \; x_{n+1} \right) + D^* \left(\; x_{n+1} \; , T_{n+2} \; x_{n+1} \; T_{n+3} \; x_{n+2} \right) \} \\ &= a \; \{ D^* (x_n \; x_{n+1}, \; x_{n+2}) + D^* (x_n \; , x_{n+1}, \; x_{n+2}) + D^* (x_{n+1}, x_{n+2}, \; x_{n+3}) \} \\ &= a \; \{ 2 \; D^* (x_n, \; x_{n+1}, \; x_{n+2}) + D^* (x_{n+1}, x_{n+2}, \; x_{n+3}) \} \\ &= a \; \{ 2 \; D^* (x_n, \; x_{n+1}, \; x_{n+2}) + D^* (x_{n+1}, x_{n+2}, \; x_{n+3}) \} \\ d_{n+1} \leq 2a \; d_n \; + a \; d_{n+1} \\ d_{n+1} \leq \{ 2a/(1-a) \} \; d_n \end{split}$$

$$d_{n+1} \le b d_n$$
, where $b = 2a/(1-a) < 1$

Hence $d_n \leq b^n d_0 \rightarrow 0$, as $n \rightarrow \infty$.

Now we shall prove that $\{x_n\}$ is a Cauchy sequence in X.

Let $d_n^* = D^* (x_n, x_n, x_{n+1})$ Then $d_{n+1}^* = D^* (x_{n+1}, x_n)$

 $d_{n+1}^* = D^* (x_{n+1}, x_{n+1}, x_{n+2})$

$$\begin{split} &\leq D^* \; (x_n, \, x_{n+1}, \, x_{n+2}) + D^* \; (x_n, \, x_{n+1}, \, x_{n+1}) \\ &\leq d_{n+} \, d_n^* \\ &d_{n+1}^* - d_n^* \leq d_n. \; \leq b^n \, d_0 {\rightarrow} 0 \; \text{as} \; n {\rightarrow} \infty \; (\text{since} \; 0 \leq \; b < 1) \\ &d_{n+1}^* \leq d_n^* \quad \text{for all } n \end{split}$$

Hence $\{d_n^*\}$ is monotonically decreasing sequence of positive real number and it converges to its glb. Let it be d. Then $d_n^* \rightarrow d$ as $n \rightarrow \infty$.

Now we shall prove that d = 0. Suppose $d \neq 0$.

Now d =
$$\frac{\lim}{n_x \to \infty} d_{n+2}^*$$

 $\leq \frac{\lim}{n_x \to \infty} \{d_{n+1+}d_{n+1}^*\}$
 $\leq \frac{\lim}{n_x \to \infty} \{b d_{n+}d_{n+1}^*\}$
 $< \frac{\lim}{n_x \to \infty} \{d_{n+}d_{n+1}^*\}$

...

= d. which is contraction .Thus d = 0.

Hence $D^*(x_n, x_n, x_m) \rightarrow 0$ as m, n $\rightarrow \infty$

Therefore $\{x_n\}$ is a D* Cauchy sequence in X.

Since X is D* complete $x_n \rightarrow x$ in X

Now we prove that x is fixed point of T_n

To prove that $T_n x = x$ for all n

Suppose there is an m such that $T_m x \neq x$, Then

$$D^{*}(T_{m}x, x, x) = \frac{\lim_{n_{x} \to \infty} D^{*}(T_{m}x, x_{n+2}, x_{n+3})}{n_{x} \to \infty} D^{*}(T_{m}x, x_{n+2}, x_{n+3})$$

$$= D^{*}(T_{m}x, T_{n+2}x_{n+1}, T_{n+3}x_{n+2})$$

$$\leq a \frac{\lim_{n \to \infty} \{D^{*}(x, x_{n+1}, x_{n+2}) + D^{*}(x, T_{m}x, T_{n+2}x_{n+1}) + D^{*}(x_{n+1}, T_{n+2}x_{n+1}, T_{n+3}x_{n+2})\}}{\leq a \frac{\lim_{n \to \infty} \{D^{*}(x, x_{n+1}, x_{n+2}) + D^{*}(x, T_{m}x, x_{n+2}) + D^{*}(x_{n+1}, x_{n+2}, x_{n+3})\}}{\leq a D^{*}(x, T_{m}x, x)}$$

(1-a) $D^*(x, T_m x, x) \le 0$ Hence (1-a) < 0

Therefore a>1, which is contradiction to a < 1.

Thus $T_n x = x$. for all n.

Now we prove that x is a unique common fixed point of $\{T_n\}$

Suppose $x \neq y$ and $T_n y = y$ for all n.

Then $D^*(x,y,y) = D^*(T_1x, T_2y, T_3 y)$

 $\leq a \{D(x, y, y) + D^{*}(x, T_{1}x, T_{2}y) + D^{*}(y, T_{2}y, T_{3}y)$ = a {D(x, y, y) + D*(x, x, y) + D*(y, y, y) $\leq 2a D^{*}(x, y, y)$ < D* (x, y, y), which is contradiction..

Hence $\{T_n\}$ have a unique common fixed.

Theorem 6: Let X be a complete D^* - metric space and $T_n : X \rightarrow X$ be a sequence of maps such that

 $D^* (T_i x, T_j y, T_k z) \le a_1 D^* (x, y, z) + a_2 \{D^* (x, T_i, x, T_j y) + D^* (y, T_j y, T_k z)\} + a_3 \{D^* (x, y, T_j y) + D^* (y, z, T_k z)\}$ for all x, y, z \in X with $i \ne j \ne k$ and $0 \le a_1 + 2a_2 + 2a_3 < 1$. Then $\{T_n\}$ have a unique common fixed point.

Proof: Let $x_0 \in X$ a fixed arbitrary element and define a sequence $\{x_n\}$ in X as $x_{n+1} = T_{n+1} x_n$ for n = 0, 1, 2, ...

Let $d_n = D^* (x_n, x_{n+1}, x_{n+2})$. Then

 $d_{n+1} = D^* (x_{n+1}, x_{n+2}, x_{n+3})$

 $= D^* \left(T_{n+1} x_n , T_{n+2} x_{n+1} T_{n+3} x_{n+2} \right)$

 $\leq a_1 D^*(x_n \ , \ x_{n+1}, \ x_{n+2}) + a_2 \left(\ \{ D^*(x_n \ , \ T_{n+1}x_n \ , \ T_{n+2} \ x_{n+1}) + D^* \left(x_{n+1}, \ T_{n+2} \ x_{n+1}, \ T_{n+3} \ x_{n+2} \right) \} \\ + a_3 \ \{ D^*(x_n \ , \ x_{n+1}, \ T_2 \ x_{n+1}) + D^*(x_{n+1}, \ x_{n+2}, \ T_3 \ x_{n+2} \) \}$

$$\begin{split} = a_1 \ D^*(x_n \,,\, x_{n+1},\, x_{n+2}) + a_2 \left\{ D^*(x_n \,,\, x_{n+1},\, x_{n+2} \,) + D^*(x_{n-+1},\, x_{n+2},\, x_{n+3}) \right\} \\ &+ a_3 \left\{ D^*(x_n \,,\, x_{n+1},\, x_{n+2}) \,+ D^*(x_{n+1},\, x_{n+2},\, x_{n+3}) \right\} \end{split}$$

 $\leq \ (a_1 + a_2 + a_3 \) \ D^*(x_n \, , \, x_{n+1}, \, x_{n+2}) + (a_2 + a_3 \) \ D^*(x_{n+1}, \, x_{n+2}, \, x_{n+3})$

 $\leq \ (a_1 + a_2 + a_3 \) \ d_n + (a_2 + a_3 \) \ d_{n+1}$

 $(1 - a_2 - a_3) d_{n+1} \le (a_1 + a_2 + a_3) d_n$

 $d_{n+1} \leq \{(a_1 \! + \! a_2 \! + \! a_3) \ / \ (1 \ \text{--} \ a_2 \ \text{--} \ a_3 \)\} \ d_n$

 $d_{n+1} \le a d_n$, for all n where $a = \{ (a_1+a_2+a_3) / (1-a_2 - a_3) \} < 1$.

Hence
$$d_n \leq a^n d_0 \rightarrow 0 \text{ as } n \rightarrow \infty$$

Now we prove that $\{x_n\}$ is D^* - Cauchy sequence in X.

Let
$$d_n^* = D^* (x_n, x_n, x_{n+1})$$

Then $d_{n+1}^* = D^* (x_{n+1}, x_{n+1}, x_{n+2})$

$$\leq D^* (x_n, x_{n+1}, x_{n+2}) + D^* (x_n, x_{n+1}, x_{n+1})$$

$$\leq d_{n+1} d_n^*$$

 $d_{n+1}{}^* \text{ - } d_n{}^* \leq \ d_n. \ \leq \alpha^n \, d_0 {\rightarrow} 0 \text{ as } n {\rightarrow} \infty \text{ (since } 0 \leq \ \alpha < 1)$

$$d_{n+1}^* \leq d_n^*$$
 for all n

Hence $\{d_n^*\}$ is monotonically decreasing sequence of positive real number and it converges to its glb. Let it be d.

x_m)

Then $d_n^* \to d \text{ as } n \to \infty$.

Now we shall prove that d = 0. Suppose $d \neq 0$.

Now d =
$$\frac{\lim_{x \to \infty} d_{n+2}^{*}$$

 $\leq \frac{\lim_{x \to \infty} \{d_{n+1} + d_{n+1}^{*}\}}{\sum_{x \to \infty} \{b d_{n+1} + d_{n+1}^{*}\}}$
 $\leq \frac{\lim_{x \to \infty} \{b d_{n+1} + d_{n+1}^{*}\}}{\sum_{x \to \infty} \{d_{n+1} + d_{n+1}^{*}\}}$

= d. which is contraction. Thus d = 0.

For m > n, we have

$$\begin{split} D^*(x_n,\,x_n,\,x_m) &\leq D^*(x_n,\,x_n,\,x_{n+1}) + D^*(x_{n+1},\,x_{n+1},\,x_m) \\ &\leq D^*(x_n,\,x_n,\,x_{n+1}) + D^*(x_{n+1},\,x_{n+1},\,x_{n+2}) + . \ . \ . \ + D^*(x_{m-1},\,x_{m-1},\,x_{m-1}) \end{split}$$

 $\rightarrow 0$ as n, m $\rightarrow \infty$. Hence D*(x_n, x_n, x_m) $\rightarrow 0$ as m, n $\rightarrow \infty$

Therefore $\{x_n\}$ is a D* Cauchy sequence in X.

Since X is D* complete $x_n \rightarrow x$ in X

Now we prove that x is fixed point of $\{T_n\}$

To prove that $T_n x = x$ for all n.

Suppose there is an m such that $T_m x \neq x$, Then

$$\begin{split} D^*(T_m x, x, x) &= \frac{\lim}{n \to \infty} D^*(T_m x, x_{n+2}, x_{n+3}) \\ &= \frac{\lim}{n \to \infty} D^*(T_m x, T_{n+2} x_{n+1}, T_{n+3} x_{n+2}) \\ &\leq \frac{\lim}{n \to \infty} \{ a_1 D^*(x, x_{n+1}, x_{n+2}) + a_2 \{ D^*(x, T_m x, T_{n+2} x_{n+1}) + D^*(x_{n+1}, T_{n+2} x_{n+1}, T_{n+3} x_{n+2}) \} \\ &\quad + a_3 \{ D^*(x, x_{n+1}, T_{n+2} x_{n+1}) + D^*(x_{n+1}, x_{n+2}, T_{n+3} x_{n+2}) \} \\ &= \frac{\lim}{n \to \infty} \{ a_1 D^*(x, x_{n+1}, x_{n+2}) + a_2 \{ D^*(x, T_m x, x_{n+2}) + D^*(x_{n-1}, x_{n+2}, x_{n+3}) \} \\ &\quad + a_3 \{ D^*(x, x_{n+1}, x_{n+2}) + D^*(x_{n+1}, x_{n+2}, x_{n+3}) \} \\ &\leq a_2 D^*(x, T_m x, x) \\ &< D^*(x, T_m x, x) \; , \text{which is contradiction . Thus} \; T_n x = x..\text{for all } n. \end{split}$$

Now we prove that x is a unique common fixed point of $\{T_n\}$

Suppose $x \neq y$ and $T_n y = y$ for all n.

Then $D^*(x,y,y) = D^*(T_{n+1}x, T_{n+2}y, T_{n+3}y)$

 $\leq a_1 D^*(x, y, y) + a_2 \{D^*(x, T_{n+1}x, T_{n+2}y) + D^*(y, T_{n+2}y, T_{n+3}y)\} + a_3 \{D^*(x, y, T_{n+2}y) + D^*(y, y, T_{n+3}y)\}$ = $a_1 D^*(x, y, y) + a_2 \{D^*(x, x, y) + D^*(y, y, y)\} + a_3 \{D^*(x, y, y) + D^*(y, y, y)\}$ = $(a_1 + a_2 + a_3) D^*(x, y, y)$ < $D^*(x, y, y)$, which is contradiction.

Hence $\{T_n\}$ have a unique common fixed

Theorem7: Let X be a complete D^* - metric space and $T_n : X \rightarrow X$ be a sequence of maps such that $D^*(T_ix, T_jy, T_kz) \le a \max\{ D^*(x, y, z), \{D^*(x, T_i, x, T_jy), D^*(y, T_jy, T_kz) D^*(x, y, T_jy), D^*(y, z, T_kz)\}$ for all x, y, $z \in X$, with $i \ne j \ne k$ and $0 \le a < 1$.

Then $\{T_n\}$ have a unique common fixed point.

Proof: Let $x_0 \in X$ a fixed arbitrary element and define a sequence $\{x_n\}$ in X as $x_{n+1} = T_1 x_n$ for n = 0, 1, 2, ...

Let
$$d_n = D^*(x_n, x_{n+1}, x_{n+2}).$$

 $d_{n+1} = D^* (x_{n+1}, x_{n+2}, x_{n+3})$

 $= D^* \left(T_{n+1} \ x_n \ , T_{n+2} \ x_{n+1} \ T_{n+3} \ x_{n+2} \right)$

 $\leq a \max \left\{ D^{*}(x_{n} \ , \ x_{n+1}, \ x_{n+2}), D^{*}(x_{n}, \ T_{n+1}x_{n} \ , \ T_{n+2} \ x_{n+1}) \right\}, D^{*}(x_{n+1}, \ T_{n+2} \ x_{n+1}, \ T_{n+3} \ x_{n+2} \right\}, D^{*}(x_{n}, \ x_{n+1}, \ T_{2n+2} \ x_{n+1}),$

 $D^{*}(x_{n+1}, x_{n+2}, T_{n+3} x_{n+2})$

 $= a \max \{ D^*(x_n, x_{n+1}, x_{n+2}), D^*(x_n, x_{n+1}, x_{n+2}), D^*(x_{n-1}, x_{n+2}, x_{n+3}) D^*(x_n, x_{n+1}, x_{n+2}), D^*(x_{n+1}, x_{n+2}, x_{n+3}) \}$

 $\leq a \max \{ D^*(x_n, x_{n+1}, x_{n+2}), D^*(x_{n+1}, x_{n+2}, x_{n+3}) \}$

 $\leq a \max \{d_n, d_{n+1}\}$

 $d_{n+1} \leq a \; d_n \; \text{ for all } n$

Hence $d_n \le a^n \ d_0 \rightarrow 0$ as $n \rightarrow \infty$

Now we prove that $\{x_n\}$ is D^* - Cauchy sequence in X.

Let
$$d_n^* = D^* (x_n, x_n, x_{n+1})$$

Then $d_{n+1}^* = D^* (x_{n+1}, x_{n+1}, x_{n+2})$

```
\begin{split} &\leq D^* \; (x_n, \, x_{n+1}, \, x_{n+2}) + D^* \; (x_n, \, x_{n+1}, \, x_{n+1}) \\ &\leq \; d_{n\,+} d_n ^* \end{split}
```

 $d_{n+1}{}^* \text{ - } d_n{}^* \leq \ d_n \text{.} \ \leq \alpha^n \, d_0 {\rightarrow} 0 \text{ as } n {\rightarrow} \infty \text{ (since } 0 \leq \ \alpha < 1)$

$$d_{n+1}^* \leq d_n^*$$
 for all n

Hence $\{d_n^*\}$ is monotonically decreasing sequence of positive real number and it converges to its glb. Let it be d.

Then $d_n^* \to d \text{ as } n \to \infty$.

Now we shall prove that d = 0. Suppose $d \neq 0$.

Now d =
$$\frac{\lim}{n_x \to \infty} d_{n+2}^*$$

 $\leq \frac{\lim}{n_x \to \infty} \{ d_{n+1+} d_{n+1}^* \}$
 $\leq \frac{\lim}{n_x \to \infty} \{ ad_{n+} d_{n+1}^* \}$
 $< \frac{\lim}{n_x \to \infty} \{ d_{n+} d_{n+1}^* \}$
 $= d$

Now we prove that $\{x_n\}$ is D^* - Cauchy sequence in X.

For m > n we have,

 $D^*(x_n,\,x_n,\,x_m) \leq D^*(x_n,\,x_n,\,x_{n+1}) + D^*(x_{n+1},\,x_{n+1},\,x_{n+2}) + . \quad . \quad + D^*(x_{m-1},\,x_{m-1},\,x_m) \rightarrow 0 \text{ as } m. \ n \rightarrow \infty$

Thus $\{x_n\}$ is a D* Cauchy sequence in X and X is D*- complete $x_n \rightarrow x$ in X.

Now we shall prove that $T_n x = x$ for all n. Suppose there is m such that $T_m x \neq x$

 $D^{*}(T_{m}x, x, x) = \lim_{n \to \infty} D^{*}(T_{m}x, x_{n+2}, x_{n+3})$

- $= \lim_{m \to \infty} D^*(T_m x, T_{n+2} x_{n+1}, T_{n+3} x_{n+2})$
- $\leq a \lim_{n \to \infty} \max \{ D^*(x, x_{n+1}, x_{n+2}), D^*(x, T_m x, T_{n+2} x_{n+1}), D^*(x_{n+1}, T_2 x_{n+1}, T_3 x_{n+2}), D^*(x, x_{n-1}, T_2 x_{n+1}), D^*(x_{n+1}, x_{n+2}, T_3 x_{n+2}) \}$

 $= a \lim_{n \to \infty} \max \{ D^*(x_1, x_{n+1}, x_{n+2}), D^*(x_1, T_1x_1, x_{n+2}), D^*(x_{n-1}, x_{n+2}, x_{n+3}), D^*(x_1, x_{n+1}, x_{n+2}), D^*(x_1, x_{n+1}, x_{n+2}), D^*(x_1, x_{n+1}, x_{n+2}) \}$

 $\leq a \max \{ D^*(x, T_1x, x), 0 \}$

 $< D^{*}(Tx, x, x),$

Which is a contradiction.

Thus $T_1x = x$..

Similarly we can prove that $T_2x = T_3x = x$.

Now we prove that x is a unique common fixed point of T_1 , T_2 , T_3

Suppose $x \neq y$ and $T_1x = T_2x = T_3x = x \& T_1y = T_2y = T_3y = y$

Then $D^*(x,y,y) = D^*(T_1x, T_2y, T_3y)$

 $\leq a \max \{ D^*(x, y, y), \{ D^*(x, T_1x, T_2y), D^*(y, T_2y, T_3y), D^*(x, y, T_2y), D^*(y, y, T_3y) \}$ = a max {D*(x, y, y), D*(x, x, y), D*(x, y, y), D*(y, y, y)} = a D* (x, y, y) < D* (x, y, y),

which is a contradiction.

Hence T₁, T₂ &T₃ have a unique common fixed point

Theorem 8: Let X be a complete D* - metric space and $T_n : X \rightarrow X$ be a sequence of maps such that

 $D^* \left(T_i x, \, T_j y, \, T_k z \right) \leq \ a_1 \ D^* (x, \, y, \, z) + a_2 \ max \{ D^* (x, \, T_i, x, \, T_j y) \ , \ D^* \left(y \ , \, T_j y, \, T_k z \right) \} \ for \ all \ x, \ y, \ z, \ \in \ X \ with \ i \neq j \neq k \ and \ 0 \leq a_1 + 2a_2 < 1.$

Then $\{T_n\}$ have a unique common fixed point.

Proof: Let $x_0 \in X$ a fixed arbitrary element and define a sequence $\{x_n\}$ in X as $x_{n+1} = T_n x_n$ for n = 0, 1, 2, ...

Let $d_n = D^*(x_n, x_{n+1}, x_{n+2})$.

Then $d_{n+1} = D^* (x_{n+1}, x_{n+2}, x_{n+3})$

 $= D^* (T_{n+1} x_n, T_{n+2} x_{n+1} T_{n+3} x_{n+2})$ $\le a_1 D^* (x_n, x_{n+1}, x_{n+2}) + a_2 \max \{D^* (x_n, T_{n+1} x_n, T_{n+2} x_{n+1}), D^* (x_{n+1}, T_{n+2} x_{n+1} T_{n+3} x_{n+2})\}$ $= a_1 \{D^* (x_n x_{n+1}, x_{n+2}) + a_2 \max \{D^* (x_n, x_{n+1}, x_{n+2}), D^* (x_{n+1}, x_{n+2}, x_{n+3})\}$ $= (a_1 + a_2) D^* (x_n, x_{n+1}, x_{n+2}) + a_2 D^* (x_{n+1}, x_{n+2}, x_{n+3})\}$ $d_{n+1} \le \{(a_1 + a_2) d_n + a_2 d_{n+1}\}$

 $(1-a_2)\}d_{n+1} \leq \{(a_1\!+a_2)d_n$

 $d_{n+1} \leq \{(a_1 + a_2)/(1 - a_2)\} d_n$

 $d_{n+1} \le b d_n$. where $b = \{(a_1 + a_2)/(1 - a_2)\} < 1$.

Hence $d_n \leq b^n d_0 \rightarrow 0$, as $n \rightarrow \infty$.

Now we shall prove that $\{x_n\}$ is a Cauchy sequence in X.

Let
$$d_n^* = D^* (x_n, x_n, x_{n+1})$$

Then $d_{n+1}^* = D^* (x_{n+1}, x_{n+1}, x_{n+2})$

$$\begin{split} &\leq D^*\;(x_n,\,x_{n+1},\,x_{n+2}) + \quad D^*\;(x_n,\,x_{n+1},\,x_{n+1}) \\ &\leq d_{n\,+}\,d_n^{\,*} \end{split}$$

 ${d_{n+1}}^* \text{ - } {d_n}^* \leq \text{ } {d_n} \text{. } \leq \alpha^n \, {d_0} {\rightarrow} 0 \text{ as } n {\rightarrow} \infty \text{ (since } 0 \leq \text{ } \alpha < 1)$

$$d_{n+1}^* \le d_n^*$$
 for all n

Hence $\{d_n^*\}$ is monotonically decreasing sequence of positive real number and it converges to its glb. Let it be d.

Then $d_n^* \to d \text{ as } n \to \infty$.

Now we shall prove that d = 0. Suppose $d \neq 0$.

Now d =
$$\frac{\lim}{n_x \to \infty} d_{n+2}^*$$

 $\leq \frac{\lim}{n_x \to \infty} \{d_{n+1}, d_{n+1}^*\}$
 $\leq \frac{\lim}{n_x \to \infty} \{b d_{n+1}, d_{n+1}^*\}$
 $< \frac{\lim}{n_x \to \infty} \{d_{n+1}, d_{n+1}^*\}$

= d .which is contradiction .Thus d = 0.

Hence $D^*(x_n, x_n, x_m) \rightarrow 0$ as m, n $\rightarrow \infty$

Therefore $\{x_n\}$ is a D* Cauchy sequence in X.

Since X is D^* complete $x_n \rightarrow x$ in X

Now we prove that x is fixed point of $\{T_n\}$

To prove that $T_n x = x$ for all n.

Suppose there is m such that $T_m x \neq x$. Then

$$D^*(T_m x, x, x) = \frac{\prod_x n_x}{n_x \to \infty} D^*(T_m x, x_{n+2}, x_{n+3})$$
$$= \frac{\lim_x n \to \infty}{n \to \infty} D^*(T_m x, T_{n+2} x_{n+1}, T_{n+3} x_n)$$

$$\leq \frac{\lim}{n \to \infty} \{a_1 D^*(x, x_{n+1}, x_{n+2}) + a_2 \max \{D^*(x, T_m x, T_{n+2} x_{n+1}), D^*(x_{n+1}, T_{n+2} x_{n+1} T_{n+3} x_{n+2})\}$$

$$\leq \frac{\lim}{n \to \infty} \{a_1 D^*(x, x_{n+1}, x_{n+2}) + a_2 \max \{D^*(x, T_m x, x_{n+2}), D^*(x_{n+1}, x_{n+2}, x_{n+3})\}$$

$$\leq a_2 D^*(x, T_m x, x)$$

$$< D^*(x, T_m x, x), \text{ which is contradiction }.$$

Thus $T_n x = x$. for all n..

Now we prove that x is a unique common fixed point of $\{T_n\}$.

Suppose $x \neq y$ and $T_n y = y$ for all n.

Then $D^*(x,y,y) = D^*(T_{n+1}x, T_{n+2}y, T_{n+3} y)$

$$\begin{split} &\leq a_1\{D(x,\,y,\,y)+a_2\;\;max\;\{D^*(x,\,T_{n+1}x,\,T_{n+2}y\;)\;,\,D^*(y,\,T_{n+2}y\,,T_{n+3}y\;)\} \\ &\leq a_1\;\{D(x,\,y,\,y)+a_2\;\;max\;\{D^*(x,\,x,\,y\;)\;,\,D^*(y,\,y\;,\,y\;)\} \\ &\leq (a_{1+}a_2\;)\;D^*(x,\,y,\,y) \\ &< D^*\;(x,\,y,\,y), \text{ which is a contradiction.} \end{split}$$

Hence $\{T_n,\}$ have a unique common fixed point

Remark 2.7: If we put $a_2 = 0$, $T_n = T$ for all n and $a_1 = a$ in the above theorem we get the following Theorem as corollary.

Corollary 2: Let (X, D^*) be a complete D^* - metric space and $T: X \to X$ be a map such that

$$D^*(Tx, Ty, Tz) \le a D^*(x, y, z)$$
 for all $x, y, z \in X$ and $0 \le a < 1$.

Then T has a unique fixed point.

The above Theorem is know as Banach contraction Type Theorem in D* - metric space.

Remark 2.9: If we put $a_1 = 0$, $T_n = T$ for all n and $a_2 = a$ in the above theorem 1. we get the following theorem as corollary 2.10.

Corollary 2.10: Let (X, D^*) be a complete D^* - metric space and $T: X \to X$ be a map such that

$$D^*(Tx, Ty, Tz) \le a \max \{D^*(x, Tx, Ty), D^*(y, Ty, Tz)\} \text{ for all } x, y, z \in X \text{ and } 0 \le a < \frac{1}{2}$$
.

Then T has a unique fixed point.

Theorem 2.11: Let X be a complete D^* - metric space and $T_n : X \rightarrow X$ be a sequence of maps such that

 $D^*(T_ix, T_jy, T_kz) \le a_1 D^*(x, y, z) + a_2 \max\{D^*(x, T_i, x, T_jy), D^*(y, T_jy, T_kz)\} + a_3 \max\{D^*(x, y, T_jy), D^*(y, z, T_kz)\}$ for all x, y, z \in X, with $i \ne j \ne k$ and $0 \le a_1 + 2a_2 + 2a_3 < 1$. Then $\{T_n\}$ have a unique common fixed point.

Proof: Let $x_0 \in X$ a fixed arbitrary element and define a sequence $\{x_n\}$ in X as $x_{n+1} = T_{n+1} x_n$ for n = 0, 1, 2, ...

Let $d_n = D^*(x_n, x_{n+1}, x_{n+2}).$

Then $d_{n+1} = D^* (x_{n+1}, x_{n+2}, x_{n+3})$

 $= D^* \; (T_{n+1} \; x_n \; , \; T_{n+2} \; x_{n+1} T_{n+3} \; x_{n+2} \;)$ © 2012, IJMA. All Rights Reserved

 $\leq a_1 D^*(x_n \ , \ x_{n+1}, \ x_{n+2}) + a_2 \max \left\{ D^*(x_n, \ T_{n+1}x_n \ , \ T_{n+2} \ x_{n+1}) \ , \ D^*(x_{n+1}, \ T_{n+2} \ x_{n+1}, \ T_{n+3} \ x_{n+2}) \right\} \\ + a_3 \max \left\{ D^*(x_n, \ x_{n+1}, \ T_{n+2} \ x_{n+1}) \ , \ D^*(x_{n+1}, \ x_{n+2}, \ \ T_{n+3} \ x_{n+2}) \right\}$

 $=a_1 D^*(x_n, x_{n+1}, x_{n+2}) + a_2 \max\{D^*(x_n, x_{n+1}, x_{n+2}), D^*(x_{n-1}, x_{n+2}, x_{n+3})\} + a_3 \max\{D^*(x_n, x_{n+1}, x_{n+2}), D^*(x_{n+1}, x_{n+2}, x_{n+3})\}$

 $\leq (a_1 + a_2 + a_3) D^*(x_n, x_{n+1}, x_{n+2}) + (a_2 + a_3) D^*(x_{n+1}, x_{n+2}, x_{n+3})$

 $\leq \ (a_1+a_2+a_3) \ d_n + (a_2+a_3) \ d_{n+1}$

 $(1 \ \text{-} \ a_2 \ \text{-} \ a_3) \ d_{n+1} \leq \ (a_1 \text{+} a_2 \text{+} a_3) \ d_n$

 $d_{n+1} \leq \left\{ \left(a_1 {+} a_2 {+} a_3\right) / \left(1 - a_2 {-} a_3\right) \right\} \, d_n$

 $d_{n+1} \le a \ d_n$, for all n where $a = \{(a_1+a_2+a_3) / (1-a_2 - a_3)\} < 1$.

Hence $d_n \le a^n d_0 \longrightarrow 0 \text{ as } n \to \infty$

Now we prove that $\{x_n\}$ is D^* - Cauchy sequence in X.

Let
$$d_n^* = D^* (x_n, x_n, x_{n+1})$$

Then $d_{n+1}^* = D^* (x_{n+1}, x_{n+1}, x_{n+2})$

$$\begin{split} &\leq D^* \; (x_n, \, x_{n+1}, \, x_{n+2}) + D^* \; (x_n, \, x_{n+1}, \, x_{n+1}) \\ &\leq \; d_{n\,+} \, d_n * \\ &d_{n+1}^* \; - \, d_n^* \leq d_n \leq \alpha^n \, d_0 {\rightarrow} 0 \; \text{as} \; n {\rightarrow} \infty \; (\text{since} \; 0 \leq \; \alpha < 1) \\ &d_{n+1}^* \leq d_n^* \quad \text{for all } n \end{split}$$

Hence $\{d_n^*\}$ is monotonically decreasing sequence of positive real number and it converges to its glb. Let it be d.

Then $d_n^* \to d \text{ as } n \to \infty$.

Now we shall prove that d = 0. Suppose $d \neq 0$.

Now
$$d = \frac{\lim}{n_x \to \infty} d_{n+2}^*$$

 $\leq \frac{\lim}{n_x \to \infty} \{d_{n+1+}d_{n+1}^*\}$
 $\leq \frac{\lim}{n_x \to \infty} \{b d_{n+}d_{n+1}^*\}$
 $< \frac{\lim}{n_x \to \infty} \{d_{n+}d_{n+1}^*\}$

= d. which is contraction .Thus d = 0.

For m > n we have

$$\begin{split} D^*(x_n,\,x_n,\,x_m) &\leq D^*(x_n,\,x_n,\,x_{n+1}) + D^*(x_{n+1},\,x_{n+1},\,x_m) \\ &\leq D^*(x_n,\,x_n,\,x_{n+1}) + D^*(x_{n+1},\,x_{n+1},\,x_{n+2}) + . \ . \ . \ + D^*(x_{m-1},\,x_{m-1},\,x_m) \end{split}$$

 $\rightarrow 0$ as n, m $\rightarrow \infty$.

Hence $D^*(x_n, x_n, x_m) \rightarrow 0$ as m, n $\rightarrow \infty$

Therefore $\{x_n\}$ is a D* Cauchy sequence in X.

Since X is D* complete $x_n \rightarrow x$ in X

Now we prove that x is fixed point of $\{T_n\}$

To prove that $T_n x = x$ for all n.

Suppose there is an m such that $T_m x \neq x$, Then

$$\begin{aligned} D^*(T_m x, x, x) &= \frac{\lim}{n \to \infty} D^*(T_m x, x_{n+2}, x_{n+3}) \\ &= \frac{\lim}{n \to \infty} D^*(T_m x, T_{n+2} x_{n+1}, T_{n+3} x_{n+2}) \\ &\leq \frac{\lim}{n \to \infty} \{a_1 D^*(T_m x, x_{n+1}, x_{n+2}) + a_2 \max\{D^*(x, T_1 x, T_2 x_{n+1}), D^*(x_{n+1}, T_2 x_{n+1}, T_3 x_{n+2})\} \\ &+ a_3 \max\{D^*(x, x_{n+1}, T_2 x_{n+1}), D^*(x_{n+1}, x_{n+2}, T_3 x_{n+2}) \} \\ &= \frac{\lim}{n \to \infty} \{a_1 D^*(x, x_{n+1}, x_{n+2}) + a_2 \max\{D^*(x, T_1 x, x_{n+2}), D^*(x_{n+1}, x_{n+2}, x_{n+3})\} \\ &+ a_3 \max\{D^*(x, x_{n+1}, x_{n+2}), D^*(x_{n+1}, x_{n+2}, x_{n+3})\} \\ &\leq a_2 D^*(x, T_1 x, x) \end{aligned}$$

Similarly we can prove that $T_2x = T_3x = x$.

Now we prove that x is a unique common fixed point of T₁, T₂, T₃

Suppose $x \neq y$ and $T_1x=T_2x=T_3x=x$ & $T_1y=T_2y=T_3y=y$

Then $D^*(x,y,y) = D^*(T_1x, T_2y, T_3y)$

 $\leq a_1 D^*(x, y, y) + a_2 \max\{D^*(x, T_1x, T_2y), D^*(y, T_2y, T_3y)\} + a_3 \max\{D^*(x, y, T_2y), D^*(y, y, T_3y)\}$ = $a_1 D^*(x, y, y) + a_2 \max\{D^*(x, x, y), D^*(y, y, y)\} + \max a_3\{D^*(x, y, y), D^*(y, y, y)\}$ = $(a_1 + a_2 + a_3) D^*(x, y, y)$ < $D^*(x, y, y)$, which is contradiction.

Hence $\{T_n\}$ has a unique common fixed point.

Theorem 2.12: Let X be a complete D*- metric space and $T_1, T_2, T_3: X \rightarrow X$ be any three maps such that

 $\begin{array}{l} D^{*}(T_{k}x,\,T_{j}y,\,T_{i}z)\leq a\,max\,\,\{D^{*}(x,\,y,\,z),\,1/2\{D^{*}(x,\,T_{i},x,\,T_{j}y)\,+D^{*}\,\,(y,\,T_{j}y,\,T_{k}z)\},\,1/2\{D^{*}(x,\,y,\,T_{j}y)\,+D^{*}\,\,(y,\,z,\,T_{k}z)\}\,\,with\,\,i\neq j\neq k\,\,,\quad for\,\,all\,\,x,\,y,\,z\,\in\,X,\,and\,\,\,0\leq\,a<1. \end{array}$

Then $\{T_n\}$ has a unique common fixed point.

Proof: Let $x_0 \in X$ a fixed arbitrary element and define a sequence $\{x_n\}$ in X as $x_{n+1} = T_{n+1} x_n$ for n = 0, 1, 2, ...

Let $d_n = D^*(x_n, x_{n+1}, x_{n+2})$.

Then $d_{n+1} = D^* (x_{n+1}, x_{n+2}, x_{n+3})$

$$= D^* (T_{n+1} x_n, T_{n+2} x_{n+1} T_{n+3} x_{n+2})$$

 $\leq a \max \{ D^*(x_n, x_{n+1}, x_{n+2}), 1/2 \{ D^*(x_n, T_{n+1}x_n, T_{n+2}, x_{n+1}) + D^*(x_{n+1}, T_{n+2}, x_{n+1}, T_{n+3}, x_{n+2}) \}, \\ 1/2 \{ D^*(x_n, x_{n+1}, T_{n+2}, x_{n+1}) + D^*(x_{n+1}, x_{n+2}, T_{n+3}, x_{n+2}) \} \}$

 $= a \max \{ D^*(x_n, x_{n+1}, x_{n+2}) , 1/2 \{ D^*(x_n, x_{n+1}, x_{n+2}) + D^*(x_{n-+1}, x_{n+2}, x_{n+3}) \} \\ 1/2 \{ D^*(x_n, x_{n+1}, x_{n+2}) + D^*(x_{n+1}, x_{n+2}, x_{n+3}) \} \}$

 $\leq a \max \left\{ D^*(x_n, x_{n+1}, x_{n+2}) \,, \ 1/2 \left\{ D^*(x_n, x_{n+1}, x_{n+2}) \,+ D^*(x_{n+1}, x_{n+2}, x_{n+3}) \right\} \right.$

 $\leq a \; max \; \left\{ d_n \; , \; 1/2 \; \left(d_n \; _{+} d_{n+1} \; \right) \; \right\}$

If max $\{d_n, 1/2 (d_n + d_{n+1})\} = \frac{1}{2} (d_n + d_{n+1})$ then $d_{n+1} \le d_n$ for all n. Thus $d_{n+1} \le d_n$ for all n.

Hence $d_n \le a^n d_0 \to 0 \text{ as } n \to \infty$

Now we prove that $\{x_n\}$ is D^* - Cauchy sequence in X.

Let
$$d_n^* = D^* (x_n, x_n, x_{n+1})$$

Then $d_{n+1}^* = D^* (x_{n+1}, x_{n+1}, x_{n+2})$

$$\leq D^* (x_n, x_{n+1}, x_{n+2}) + D^* (x_n, x_{n+1}, x_{n+1})$$

$$\leq d_{n+} d_n^*$$

$$- d_n^* \leq d_n \leq \alpha^n d_0 \rightarrow 0 \text{ as } n \rightarrow \infty \text{ (since } 0 \leq \alpha < 1)$$

 $d_{n+1}^{}^* \leq d_n^* \quad \text{for all } n$

Hence $\{d_n^*\}$ is monotonically decreasing sequence of positive real number and it converges to its glb. Let it be d.

Then $d_n^* \rightarrow d \text{ as } n \rightarrow \infty$.

 d_{n+1}^{*}

Now we shall prove that d = 0. Suppose $d \neq 0$.

Now
$$d = \frac{\lim}{n_x \to \infty} d_{n+2}^*$$

 $\leq \frac{\lim}{n_x \to \infty} \{ d_{n+1+} d_{n+1}^* \}$
 $\leq \frac{\lim}{n_x \to \infty} \{ ad_{n+} d_{n+1}^* \}$
 $< \frac{\lim}{n_x \to \infty} \{ d_{n+} d_{n+1}^* \}$
 $= d$

Now we prove that $\{x_n\}$ is D^* - Cauchy sequence in X.

For m > n we have,

 $D^*(x_n, \, x_n, \, x_m) \leq D^*(x_n, \, x_n, \, x_{n+1}) \ + \ D^*(x_{n+1}, \, x_{n+1}, \, x_{n+2}) \ + \ . \ . \ . \ + \ D^*(x_{m-1}, \, x_{m-1}, \, x_m) \rightarrow 0 \ as \ m. \ n \rightarrow \infty$

Thus $\{x_n\}$ is a D* Cauchy sequence in X and X is D* - complete $x_n \rightarrow x$ in X.

Now we shall prove that $T_n x = x$ for all n. Supose there is m $T_m x \neq x$

$$\begin{split} D^*(T_m x, x, x) &= \lim_{n \to \infty} D^*(T_m x, x_{n+2}, x_{n+3}) \\ &= \lim_{n \to \infty} D^*(T_m x, T_{n+2} x_{n+1}, T_{n+3} x_{n+2}) \\ &\leq a \lim_{n \to \infty} \max \left\{ D^*(x, x_{n+1}, x_{n+2}), \frac{1}{2} \{ D^*(x, T_m x, T_{n+2} x_{n+1}) + D^*(x_{n+1}, T_{n+2} x_{n+1}, T_{n+3} x_{n+2}) \} \right\} \\ &= a \lim_{n \to \infty} \max D^*(x, x_{n+1}, T_{n+2} x_{n+1}) + D^*(x_{n+1}, x_{n+2}, T_{n+3} x_{n+2}) \} \\ &= a \lim_{n \to \infty} \max D^*(x, x_{n+1}, x_{n+2}), \frac{1}{2} \{ D^*(x, T_m x, x_{n+2}) + D^*(x_{n-1}, x_{n+2}, x_{n+3}) \} \\ &= 4 \max \{ D^*(x, T_m x, x), 0 \} \\ &\leq D^*(T_m x, x, x), \text{ Which is a contradiction.} \end{split}$$

Thus $T_n x = x$. for all n.

Suppose $x \neq y$ and $T_n y = y$ for all n.

Then $D^*(x,y,y) = D^*(T_nx, T_{n+2}y, T_{n+3}y)$

 $\leq a \max \{ D^*(x, y, y), \frac{1}{2} \{D^*(x, T_{n+1}x, T_{n+2}y) + D^*(y, T_{n+2}y, T_{n+3}y) \}, \\ \frac{1}{2} \{D^*(x, y, T_{n+2}y) + D^*(y, y, T_{n+3}y) \} \}$ $= a \max \{ D^*(x, y, y), \frac{1}{2} D^*(x, x, y), \frac{1}{2} D^*(x, y, y) \}$ $= a D^*(x, y, y),$

which is contradiction.

Hence $\{T_n\}$ has a unique common fixed

Theorem 2.13: Let X be a complete D* - metric space and $T_n: X \rightarrow X$ be a sequence of map such that $D^*(T_ix, T_jy, T_kz) \le a_1 D^*(x, y, z) + a_2 \max \{D^*(x, T_ix, T_jy), D^*(y, T_jy, T_kz)\} + a_3 \max\{D^*(x, y, T_jy), D^*(y, z, T_kz)\}$ for all x, y, $z \in X$ and $0 \le a_1 + 2a_2 + 2a_3 < 1$. Then T has a unique fixed point.

Proof: Let $x_0 \in X$ a fixed arbitrary element and define a sequence $\{x_n\}$ in X as

$$\begin{split} x_{n+1} &= T_1 \; x_n \\ x_{n+2} &= T_2 \; x_{n+1} \\ x_{n+3} &= T_3 \; x_{n+2} \; \text{ for } n = \; 3k \; \text{, } k = \; 0, \; 1, \; 2, \; \dots \end{split}$$

Let $d_n = D^*(x_n, x_{n+1}, x_{n+2}).$

Then $d_{n+1} = D^* (x_{n+1}, x_{n+2}, x_{n+3})$

 $= \mathbf{D}^* (\mathbf{T}_1 \mathbf{x}_n, \mathbf{T}_2 \mathbf{x}_{n+1} \mathbf{T}_3 \mathbf{x}_{n+2})$

 $\leq a_1 D^*(x_n , x_{n+1}, x_{n+2}) + a_2 \max\{ D^*(x_n, T_1x_n , T_2 x_{n+1}) , D^*(x_{n+1}, T_2 x_{n+1}, T_3 x_{n+2}) \}, \\ + a_3 \max\{ D^*(x_n, x_{n+1}, T_2 x_{n+1}) , D^*(x_{n+1}, x_{n+2}, T_3 x_{n+2}) \} \}$

 $\begin{array}{rcl} = & a_1 \; D^*(x_n\,,\,x_{n+1},\,x_{n+2}) + \; a_2 \; max \; \{ \; D^*(x_n\,,\,x_{n+1},\,x_{n+2}\;), \; D^*(x_{n + 1},\,x_{n+2},\,x_{n+3}) \} \\ & + \; a_3 \; max \; \{ D^*(x_n\,,\,x_{n+1},\,x_{n+2}) \; \; , \; D^*(x_{n+1},\,x_{n+2},\,x_{n+3}) \} \} \end{array}$

 $\leq \{a_1 \ D^*(x_n, \, x_{n+1}, \, x_{n+2}) + (a_2 + a_3 \) max\{D^*(x_n, \, x_{n+1}, \, x_{n+2}), \, D^*(x_{n+1}, \, x_{n+2}, \, x_{n+3})\}$

 $d_{n+1} \leq a_1 \; d_n + \left(\begin{array}{c} a_2 + a_3 \end{array} \right) \left(d_{n-+} d_{n+1-} \right)$

 $(1 \text{ - } (a_2 \text{ + } a_3)) \, d_{n+1} \leq (a_1 + a_2 \text{ + } a_3) \, d_n$

 $d_{n+1} \le a d_n$ for all n, where $a = (a_1 + a_2 + a_3) / (1 - (a_2 + a_3)) < 1$

Hence $d_n \le a^n d_0 \longrightarrow 0 \text{ as } n \to \infty$

Now we prove that $\{x_n\}$ is D^* - Cauchy sequence in X.

Let $d_n^* = D^* (x_n, x_n, x_{n+1})$

Then $d_{n+1}^* = D^* (x_{n+1}, x_{n+1}, x_{n+2})$

$$\begin{split} &\leq D^* \; (x_n, \, x_{n+1}, \, x_{n+2}) + \quad D^* \; (x_n, \, x_{n+1}, \, x_{n+1}) \\ &\leq d_{n+} d_n^* \\ &d_{n+1}^* \; \text{ - } d_n^* \leq \; d_n \leq \alpha^n \, d_0 {\rightarrow} 0 \text{ as } n {\rightarrow} \infty \; (\text{since } 0 \leq \; \alpha < 1) \end{split}$$

 $d_{n+1}^{}* \leq d_n^{}* \ \text{ for all } n$

Hence $\{d_n^*\}$ is monotonically decreasing sequence of positive real number and it converges to its glb. Let it be d.

Then $d_n^* \to d \text{ as } n \to \infty$.

Now we shall prove that d = 0. Suppose $d \neq 0$.

Now
$$d = \frac{\lim}{n_x \to \infty} d_{n+2}^*$$

 $\leq \frac{\lim}{n_x \to \infty} \{d_{n+1+} d_{n+1}^*\}$
 $\leq \frac{\lim}{n_x \to \infty} \{ad_{n+} d_{n+1}^*\}$
 $< \frac{\lim}{n_x \to \infty} \{d_{n+} d_{n+1}^*\}$
 $= d$

Now we prove that $\{x_n\}$ is D^* - Cauchy sequence in X.

For m > n we have,

$$\begin{split} D^*(x_n,\,x_n,\,x_m) &\leq D^*(x_n,\,x_n,\,x_{n+1}) \ + \ D^*(x_{n+1},\,x_{n+1},\,x_{n+2}) + \ . \ . \ + \ D^*(x_{m-1},\,x_{m-1},\,x_m) \rightarrow 0 \ \text{as } m. \ n \rightarrow \infty \end{split}$$
 Thus $\{x_n\}$ is a D* Cauchy sequence in X and X is D* - complete $x_n \rightarrow x$ in X.

$$\begin{aligned} D^*(T_1x, x, x) &= \lim_{n \to \infty} D^*(T_1x, x_{n+2}, x_{n+3}) \\ &= \lim_{n \to \infty} D^*(T_1x, T_2 x_{n+1}, T_3 x_{n+2}) \\ &\leq \lim_{n \to \infty} \{a_1 \ D^*(x, x_{n+1}, x_{n+2}) + a_2 \max\{D^*(x, T_1x, T_2 x_{n+1}), D^*(x_{n+1}, T_2 x_{n+1}, T_3 x_{n+2})\}, \\ &\quad + a_3 \{D^*(x, x_{n-1}, T_2 x_{n+1}), D^*(x_{n+1}, x_{n+2}, T_3 x_{n+2})\} \} \end{aligned}$$

$$\begin{aligned} &= \lim_{n \to \infty} \{a_1 D^*(x, x_{n+1}, x_{n+2}) + a_2 \max\{D^*(x, T_1x, x_{n+2}), D^*(x_{n-1}, x_{n+2}, x_{n+3})\} \\ &\quad + a_3 \max\{D^*(x, x_{n+1}, x_{n+2}), D^*(x_{n+1}, x_{n+2}, x_{n+3})\} \} \end{aligned}$$

$$\begin{aligned} &\leq a_2 \ D^*(x, T_1x, x) \\ &< D^*(T_1x, x, x), \text{ Which is a contradiction.} \end{aligned}$$

Thus $T_1 x = x$..

Similarly we can prove that $T_2x = T_3x = x$.

Now we shall prove that $T_x - x$

Now we prove that x is a unique common fixed point of T_1 , T_2 , T_3

Suppose $x \neq y$ and $T_1x=T_2x=T_3x=x$ & $T_1y=T_2y=T_3y=y$

Then $D^*(x,y,y) = D^*(T_1x, T_2y, T_3y)$

 $\leq \{a_1 D^*(x, y, y) + a_2 \max\{D^*(x, T_1x, T_2y), D^*(y, T_2y, T_3y), + a_3 \max\{D^*(x, y, T_2y), D^*(y, y, T_3y)\}\}$ = $a_1 D^*(x, y, y) + a_2 D^*(x, x, y) + a_3 D^*(x, y, y)\}$ < $(a_1 + a_2 + a_3) D^*(x, y, y),$ < $D^*(x, y, y),$

which is a contradiction.

Hence $\{T_n\}$ has a unique common fixed point .

REFERENCES

[1] B. Ahmad, M. Ashraf, and B.E. Rhoades, "Fixed point theorems for expansive mappings in D-metric spaces, "Indian Journal of Pure and Applied Mathematics, vol.32, no.10, pp. 1513-1518, 2001.

[2] B.C. Dhage, "Generalized metric spaces and mappings with fixed point, "Bulletin of the Calcutta Mathematical Society, vol.84, no.4, pp.329-336, 1992.

[3] B.C. Dhage, "A common fixed point principle in D-metric spaces," Bulletin of the Calcutta Mathematical Society, vol.91, no.6, pp. 475-480, 1999.

[4] B.C. Dhage, A.M. Pathan, and B.E. Rhoades, "A general existence principle for fixed point theorems in D-metric spaces, "International Journal of Mathematical Sciences, vol.23, no.7, pp. 441-448, 2000.

[5] S.V.R. Naidu, K.P.R. Rao, and N.Srinivasa Rao, "On the topology of D-metric spaces and generation of D-metric spaces from metric spaces, "International Journal of Mathematics and Mathematical Sciences vol.2004, no.51, pp. 2719-2740, 2004.

[6] S.V.R. Naidu, K.P.R. Rao, and N.Srinivasa Rao, "On the concepts of balls in a D-metric space, "International Journal of Mathematics and Mathematical Sciences, vol. 2005, no.1, pp. 133-141, 2005.

[7] S.V.R. Naidu, K.P.R. Rao, and N.Srinivasa Rao, "On convergent sequence and fixed point theorems in D-metric spaces, "International Journal of Mathematical Science, vol.2005, no.12, pp. 1969-1988, 2005.

[8] B.E. Rhoades, "A fixed point theorem for generalized metric spaces, "International Journal of Mathematics and Mathematical Sciences, vol.19, no.3, pp. 457-460, 1996.

[9] B. Singh and R.K. Sharma, "Common fixed points via compatible maps in D-metric spaces, "Radovi Mathematical, vol.11, no.1, pp. 145-153, 2002.

[10] Shaban Sedghi, NabiShobe and Haiyun Zhou, "A common Fixed Point Theorem in D*-Metric Spaces, "Hindawi Publishing corporation Fixed Point Theory and Applications, vol.2007, Article ID 27906, 13 pages do i: 10.1155.

[11] B. Ahmad, M. Ashraf, and B.E. Rhoades, "Fixed point theorems for expansive mappings in D-metric spaces, "Indian Journal of Pure and Applied Mathematics, vol.32, no.10, pp. 1513-1518, 2001.

[12] B.C. Dhage, "Generalized metric spaces and mappings with fixed point, "Bulletin of the Calcutta Mathematical Society, vol.84, no.4, pp.329-336, 1992.

[13] B.C. Dhage, "A common fixed point principle in D-metric spaces,"Bulletin of the Calcutta Mathematical Society, vol.91, no.6, pp. 475-480, 1999.

[14] B.C. Dhage, A.M. Pathan, and B.E. Rhoades, "A general existence principle for fixed point theorems in D-metric spaces, "International Journal of Mathematical Sciences, vol.23, no.7, pp. 441-448, 2000.

[15] S.V.R. Naidu, K.P.R. Rao, and N.Srinivasa Rao, "On the topology of D-metric spaces and generation of D-metric spaces from metric spaces, "International Journal of Mathematics and Mathematical Sciences vol.2004, no.51, pp. 2719-2740, 2004.

[16] S.V.R. Naidu, K.P.R. Rao, and N.Srinivasa Rao, "On the concepts of balls in a D-metric space, "International Journal of Mathematics and Mathematical Sciences, vol. 2005, no.1, pp. 133-141, 2005.

[17] S.V.R. Naidu, K.P.R. Rao, and N. Srinivasa Rao, "On convergent sequence and fixed point theorems in D-metric spaces, "International Journal of Mathematical Science, vol.2005, no.12, pp. 1969-1988, 2005.

[18] B.E. Rhoades, "A fixed point theorem for generalized metric spaces, "International Journal of Mathematics and Mathematical Sciences, vol.19, no.3, pp. 457-460, 1996.

[19] B. Singh and R.K. Sharma, "Common fixed points via compatible maps in D-metric spaces, "Radovi Mathematical, vol.11, no.1, pp. 145-153, 2002.

[20] Shaban Sedghi, NabiShobe and Haiyun Zhou, "A common Fixed Point Theorem in D*-Metric Spaces, "Hindawi Publishing corporation Fixed Point Theory and Applications, vol.2007, Article ID 27906, 13 pages do i: 10.1155.

[21] T Veerapandi, Aji M Pillai ,"some fixed point theorems for multivalued mappings in D* metric space, International journal of mathematical Archive-3(1), 2012, page 270-284

[22] T veerapandi, Aji M Pillai,"A common fixed point theorem and some fixed point theorems in D* metric spaces". African Journal of mathematics and computer science Research, vol 4(8), Aug 2011, page 273-280.

[23] T.Veerapandi, Aji M Pillai. "Some common fixed point theorems in D* metric spaces". African journal of Mathematics and Computer Science research, vol 4(12), Nov 2011.page 357-367.

[24] T Veerapandi, Aji M Pillai, "A common fixed point theorem in D* metric space". International Journal of mathematical Archive. Dec 2010, page 81-85.

[25] Shishir Jain, Mamata Singh, Shobha Jain, "Fixed point theorems for sequence of mappings in Fuzzy metric spaces satisfying a new contractive condition". ANALELE S»TIINT»IFICE ALE UNIVERSIT, AT» II \AL.I. CUZA" DIN IAS»I (S.N.) MATEMATIC, A, Tomul LIII, 2007, f.1
