International Journal of Mathematical Archive-3(4), 2012, Page: 1698-1700 (C) $\$$ MA Available online through www.ijma.info ${ }^{\text {ISSN 2229-5046 }}$

SOME OTHER COMMUTATIVE - TRANSITIVE FINITE RINGS

A. BAKHTVAR \& R. SAFAKISH*
${ }^{1}$ Department of Mathematics, Faculty of science, University bu-Ali sina Hamadan, Islamic Republic of Iran.
E-mail: safakish@basu.ac.ir

(Received on: 10-03-12; Accepted on: 28-03-12)

Abstract

The ring R is said to be commutative- transitive if for each $a, b, c \in R \backslash Z(R), a b=b a$ and $b c=c b$ imply $a c=c a$. In this paper, we present other examples of commutative- transitive rings.

We show that a ring R is commutative- transitive iff commutative graph R is a union of complete graphs. So we show non-commutative rings of order p^{4} are commutative- transitive.

Keywords: transitive rings, commutative- transitive, centralizer,

INTRODUCTION

In reference [1], the structure of commutative- transitive finite rings has been described, it is shown in that paper that simple and commutative- transitive finite rings are fields or 2×2 matrices rings on fields or $\frac{\mathbb{Z}}{\left[L_{\mathbb{R})}\right.}=F_{1} \times F_{2}$ for two fields and . Also, the structure of irreducible commutative- transitive ring were specified.

COMMUTATIVE - TRANSITIVE FINITE RINGS

Definition 1: Ring R is said to be commutative-transitive if for each $a, b, c \in R, a b=b a$ and $b c=c b$, imply $a c=c a$ [1].
Theorem 1: The following conditions are equivalent for ring R :
A) R is commutative- transitive.
B) For each $x, y \in R Z(R)$, if $x y=y x$, then $c(x)=c(y)$.
C) The centralizers of all non central elements of R are commutative.

Definition 2: Let R is a ring.Commutative graph $\mu(R)$ as set of vertices $\mu(R)$ is all elements non central of R and distinct vertices a, b in $\mu(R)$ adjacent iff $a b=b a$.

Result 1: The ring R is commutative-transitive iff commutative graph $\mu(R)$ is union of complete graphs. [] \{ \}|F Example 1: For an arbitrary field, the ring $R=\left\{\left.\left[\begin{array}{cc}a & b \\ 0 & c\end{array}\right] \right\rvert\, \mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathrm{F}\right\}$ is commutative -transitive. Let $A=$ $\left[\begin{array}{ll}a & b \\ 0 & c\end{array}\right]$ is a non-central elements of R. We determine the centralizer of A.

If $B=\left[\begin{array}{ll}x & y \\ 0 & z\end{array}\right] \in C(A)$, Then $A B=B A$. So $(a-c) y=(x-z) b$ we consider the following cases:
Case 1: if $a=c$, then $C(A)=\left\{\left[\begin{array}{ll}x & y \\ 0 & x\end{array}\right] \| \mathrm{x}, \mathrm{y} \in \mathrm{F}\right\}$.
Case 2: If $a \neq c$, then $C(A)=\left\{\left.\left[\begin{array}{cc}x & (x-z) b(a-c)^{-1} \\ 0 & z\end{array}\right] \right\rvert\, x, z \in \mathrm{~F}\right\}$

[^0]
A. BAKHTVAR \& R. SAFAKISH*/ Some other commutative - transitive finite rings/ IJMA- 3(4), April-2012, Page: 1698-1700

In each case $C(A)$ is commutative. So R is commutative- transitive. The commutative graph of R is the union of $|F|+1$ complete graphs which an of them has $|F|^{2}-|F|$ vertices.

GROUP RINGS

Definition 3: Let G is a group and R is a ring. Then $R G$ is defined as $R G=\left\{\sum_{g \in G} r_{g} g \mid r_{g} \in R\right\}$ in which $r_{g}=0$, except for some finite numbers. In $R G$, addition and multiplication are defined naturally and distributedly, respectively. $R G$ is called a group ring on R [3].

Example 2: Let $Q_{8}=\{ \pm 1, \pm i, \pm j, \pm k\}$ is an eight-element quaternion group. We show that the group ring of $Z_{2} Q_{8}$ is commutative- transitive. For simplicity, we put $1^{\prime}=-1, i^{\prime}=-I, j^{\prime}=-j, k^{\prime}=-k$. It is shown that: $Z\left(Z_{2} Q_{8}\right.$ $)=\left\{a_{1} 1+a_{2} 1^{\prime}+a_{3}\left(i+i^{\prime}\right)+a_{4}\left(j+j^{\prime}\right)+a_{5}\left(k+k^{\prime}\right) \mid a_{1} \ldots a_{5} \in Z_{2}\right\}$. Regarding the symmetry of $\mathrm{Z}_{2} \mathrm{Q}_{8}$ elements. We must find $c(i), c(i+j)$ and $c(i+j+k)$ to prove that centralizer is commutative for each non-central element. we can get with a little calculation
$c(i)=\left\{a_{1} 1+a_{2} 1^{\prime}+a_{3} i+a_{4} i^{\prime}+a_{5}\left(j+j^{\prime}\right)+a_{6}\left(k+k^{\prime}\right) \mid a_{1 . . .} a_{6} \in z\right\}$
$c(i+j)=\left\{a_{1} 1+a_{2} 1^{\prime}+a_{3} i+a_{4} j+\left(a_{5}-a_{4}\right) i^{\prime}+\left(a_{5-} a_{3}\right) j^{\prime}+a_{6}\left(k+k^{\prime}\right) \mid a_{1 \ldots . .} a_{6} \in z_{2}\right\}$.
and $C(i+j+k)=\left\{a_{1} 1+a_{2} 1^{\prime}+a_{3} i+a_{4} i^{\prime}+a_{5}-a_{4}\right) j+\left(a_{5}-a_{3}\right)+\left(a_{6}-a_{4}\right) k+\left(a_{6}-a_{3}\right) k^{\prime} \mid a_{1} \ldots a_{6} \in z_{2}$.
As all above three centralizer are 6 - dimensional and each contains a 5 - dimensional subspace $Z\left(Z_{2} Q_{8}\right)$, they are commutative. Consequently group ring of $Z_{2} Q_{8}$ is commutative-transitive.

Theorem 2: If R is a non-commutative ring with identity of order p^{4}, in which p is prime number, then R is commutative-transitive.

Proof: As $|R|=p^{4}$, char R is a power of P. Therefore, elements of $0,1, \ldots, p-1$ are distinct. For each $a \in R$, we have $|c(a)|>p$. so for a $a \notin Z(R),|c(a)|=p^{2}$ or $p^{3 .}$ We show that $c(a)$ is commutative.

Case 1: If $|c(a)|=p^{2}$, we know each ring with identity of order p^{2} is commutative.
Case 2: If $|c(a)|=p^{3}$, we put $S=C(a)$ and as element $a, 0, \ldots, p-1$ are all in the center of S, we get $|Z(s)|>p$ Therefore, $|Z(S)|=p^{2}$ or p^{3}. If $|Z(S)|=p^{3}$, then $Z(S)=S$. If $|Z(S)|=p^{2}$ for each $b \notin Z(S)$. We have $Z(S) \subsetneq C(b) \subsetneq S$ which is impossible, because $|S|=p^{3}$ and $|Z(S)|=p^{2}$. The proof is complete.

Example 3: Let the following rings have 16 elements.
$R=\left\{\left.\left[\begin{array}{cc}a & b \\ 0 & a^{2}\end{array}\right] \right\rvert\, \mathrm{a}, \mathrm{b} \in F_{4}\right\}, S=\left\{\left.\left[\begin{array}{ccc}a & b & c \\ 0 & a & 0 \\ 0 & 0 & d\end{array}\right] \right\rvert\, \mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d} \in F_{2}\right\}$.
Therefore, based on the above theorem , they are commutative-transitive and the commutative of R is the union of one K_{6} graph and four K_{2} graphs and the commutative graph of S is the union of three K_{4} graphs.

Note 1: We have a single non commutative ring of p3 order with identity the following ring:
$R=\left\{\left.\left[\begin{array}{cc}a & b \\ 0 & c\end{array}\right] \right\rvert\, \mathrm{a}, \mathrm{b}, \mathrm{c} \in Z_{p}\right\}$ That is also commutative-transitive [2].
That is also commutative-transitive [2].

SKEW POLYNOMIAL RING

Definition 4: If R is a ring and $\sigma: R \rightarrow R$ is a endomorphism, let $R[x ; \sigma]$ denote the ring of polynomials over R, that is, all formal polynomials in x with coefficients from R with multiplication defined by $x r=\sigma(r) x$ [4].

Theorem 3: Let F is a field and σ is an endomorphism of F. Then $R=\frac{F[X ; \sigma]}{\left\langle x^{2}\right\rangle}$ is commutative-transitive.

A. BAKHTVAR \& R. SAFAKISH*/ Some other commutative - transitive finite rings/ IJMA- 3(4), April-2012, Page: 1698-1700

Proof: Let $Z(R)=F i x(\sigma)=K$. Now show centralizer of each non-central elements is commutative. Let $a+b x$ is a non-central element of R and $\alpha+\mu x \in c(a+b x)$

Case 1: If $\sigma(a) \neq a$ then $C(a+b x)=\left\{\left.\alpha+\frac{b(\sigma(\alpha)-\alpha)}{\sigma(\alpha)-\alpha} \mathrm{x} \right\rvert\, \alpha \in \mathrm{F}\right\}$ in this case centralizer is commutative.
Case 2: If $\sigma(a)=a$ in this case $\sigma(\alpha)=\alpha$ and $b \neq s$ so $C(a+b x)=\left\{\alpha+\mu_{X} \mid \mu \in F, \alpha \in k\right\}$.
In this case centralizer is commutative. Therefore ring R is commutative-transitive. commutative graph of R is the union of $|F|$ complete graphs which an of them has $|\mathrm{F} \vdash| \mathrm{k} \mid$ vertices and and one complete graph with $|\mathrm{k}| \Psi \mathrm{Fk} \mid$ vertices.In the following, we preset a simple and short proof of a Corollary (21) of [1].

Theorem 4: Let R is a local ring and $R J(R) \cong F_{p}{ }^{r}$, in which r is prime. If $J(R)$ is commutative, then R is commutative-ransitive.

Proof: Let a is a non-centeral element of R. show $C(a)$ is commutative. Since $J(C(a))=C(a) \cap J(R)$, so $Z_{\mathrm{p}} \subseteq \frac{C(a)}{C(a) \cap J(R)} \cong \frac{C(a) n /(R)}{J(R)} \subseteq \frac{R}{J(R)} \cong F_{p} r$.

Since r is prime so there is not any field between Z_{p} and $F_{p}{ }^{r}$. On the other hand $\frac{C(a)}{C(a) n /(R)}$ is a field since $C(a)$ is a local ring with maximal ideal of $C(a) \cap J(R)$

Therefore , $\frac{C(a)}{C(a) \cap J(R)} \cong Z_{\mathrm{p}}$ or $\frac{C(a)}{C(a) \cap J(R)} \cong F_{p}{ }^{r}$.
Case 1: If $\frac{C(a)}{C(a) \cap J(R)} \cong Z_{\mathbf{p}}$ then $C(a)=Z_{p}+(C(a) \cap J(R))$ so $C(a)$ is commutative.
Case 2: If $\frac{c(a)}{C(a) \cap J(R)} \cong F_{p^{r}}$, in this case $a \notin Z_{p}+J(R)$, since if $a \in Z_{p}+J(R)$ then Since $J(R)$ is commutative therefore $J(R) \subseteq C(a)$ Since $\frac{C(a)}{J(R)} \cong F_{p^{r}}$ and $\frac{R}{J(R)} \cong F_{p^{r}} \quad$ so $C(a)=R$ this meaning a is centeral which is a contradiction. As $a \in Z(C(a))$ so $\frac{Z(C(a))}{Z(C(a)) \cap J(R)} \neq Z_{\mathrm{p}}$.

On the other hand $Z_{\mathrm{p}} \subseteq \frac{z(C(a))}{z(C(a)) n J(R)} \cong \frac{z(c(a))+J(R)}{J(R)} \subseteq \frac{R}{J(R)} \cong F_{p}{ }^{r}$.

Therefore $\frac{z(c(a))+J(R)}{J(R)} \cong F_{p^{r}}$, since $\frac{c(a)+J(R)}{J(R)} \cong F_{p^{r}}$, So $Z(C(a))+J(R)=C(a)+J(R)$ then $C(a)=Z(C(a))+(C(a) \cap J(R))$.

And as $J(a)$ is commutative so $C(a)$ is commutative, Therefore R is commutative- transitive.

REFERENCES

[1] D. Dolzan, I. Kelp, P. Moravec, Finite rings in which commutativity is transitive, Monatsh. Math. 162 (2011) 143155.
[2] K.J.S. Eldridge, Orders for finite non-commutative rings with unity, Amer. Math. Monthly. 75 (1968) 512-514.
[3] T.Y. Lam, A first course in non-commutative rings, New York, (2001).
[4] B.R. MacDonald, Finite rings with identity, Marcel Dekker, New York, (1974).

[^0]: * Corresponding author: R. SAFAKISH*, * E-mail: safakish@basu.ac.ir

