SOME NEW CLASS OF FUNCTIONS VIA $\boldsymbol{\delta} \hat{g}$-SETS

*M. Lellis Thivagar and **B. Meera Devi
*Department of Mathematics, Arul Anandar College, Karumathur, Madurai-625514, Tamil Nadu
E -mail: mlthivagar@yahoo.co.in
**Department of Mathematics, Sri. S. R. N. M. College, Sattur-626203, Tamil Nadu, INDIA.
E -mail: abmeeradevi@gmail.com

(Received on 03-01-11: Accepted on: 18-01-11)

Abstract

In this paper we introduce a new class of functions called $\delta \hat{g}$-closed maps. We obtain several characterizations and some their properties. We also investigate its relationship with other types of functions. Further we introduce and study a new class of functions namely weaker forms of $\delta \hat{g}$ closed maps.

Keywords and Phrases: $\delta \hat{g}$-closed sets, δg^{\wedge}-continuous, $\delta \hat{g}$-closed maps, $\delta \hat{g}-$-regular, $\alpha \hat{g}$-closed sets.
AMS subject classification: 54C05, 54C10

1.INTRODUCTION:

Malghan [7] introduced generalised closed functions and Devi et al.[1] intro- duced $\alpha \mathrm{g}$-closed functions. T. Noiri [9] and Veerakumar[12] introduced δ-closed functions and \widehat{g} closed functions in topological spaces. In this present paper we use $\delta \hat{g}$-closed sets to define a new class of functions called $\delta \hat{g}$-closed functions and obtain some properties of these functions. We further introduce and study a new class of functions namely weakly $\delta \hat{g}$-closed functions and we introduce a new space called $\delta \widehat{g}$-regular space.

2. PRELIMINARIES:

Throughout this paper (X, τ) and, (Y, σ) and (Z, η) represent non-empty topological spaces on which no separation axioms are assumed unless or otherwise mentioned. For a subset A of $\mathrm{X}, \operatorname{cl}(\mathrm{A}), \operatorname{int}(\mathrm{A})$ and A^{c} denote the closure of A, the interior of A and the complement of A respectively. Let us recall the following definitions, which are useful in the sequel.

Definition: 2.1A subset A of a space (X, τ) is called a
(i) semi-open set [3] if $\mathrm{A} \subseteq \operatorname{cl}(\operatorname{int}(\mathrm{A}))$.
(ii) α-open set [8] if $\mathrm{A} \subseteq \operatorname{int}(\operatorname{cl}(\operatorname{int}(\mathrm{A})))$.
(iii) regular open set [11] if $A=\operatorname{int}(\operatorname{cl}(A))$.
(iv) δ-open set [13] if $\mathrm{A}=\delta \operatorname{int}(\mathrm{A})$.

The complement of a semi-open (resp. α-open, regular open) set is called semi- closed (resp. α-closed, regular closed).

[^0]The δ-interior [13] of a subset A of X is the union of all regular open set of X contained in A and is denoted by Int δ (A). The subset A is called δ-open [13] if $\mathrm{A}=\operatorname{Int}_{\delta}(\mathrm{A})$, i.e. a set is δ-open if it is the union of regular open sets. the complement of a δ-open is called δ-closed. Alternatively, a set $\mathrm{A} \subseteq(\mathrm{X}, \tau)$ is called δ-closed [13] if $\mathrm{A}=$ $\mathrm{cl}_{\delta}(\mathrm{A})$, where $\mathrm{cl}_{\delta}(\mathrm{A})=\{\mathrm{x} \in \mathrm{X}: \operatorname{int}(\mathrm{cl}(\mathrm{U})) \cap \mathrm{A}=\varphi, \mathrm{U} \in \tau$ and $x \in U\}$.

Definition: 2.2 A subset A of (X, τ) is called
(i) generalized closed (briefly g-closed) $\operatorname{set}[4]$ if $\operatorname{cl}(A) \subseteq U$ whenever $\mathrm{A} \subseteq \mathrm{U}$ and U is open set in (X, τ).
(ii) δ-generalized closed (briefly $\delta \mathrm{g}$-closed) $\operatorname{set}[2]$ if $\mathrm{cl}_{\delta}(\mathrm{A})$
$\subseteq U$ whenever $A \subseteq U$ and U is open set in (X, τ).
(iii) \hat{g}-closed set [12] if $\operatorname{cl}(A) \subseteq U$ whenever $A \subseteq U$ and U is a semi-open set in (X, τ).
(iv) α - $\widehat{\mathrm{g}}$-closed (briefly $\alpha \hat{\mathrm{g}}$-closed) set [6] if $\alpha \mathrm{cl}(\mathrm{A}) \subseteq \mathrm{U}$ whenever $A \subseteq U$ and U is a \hat{g}-open set in (X, τ).
(v) $\delta \hat{g}$-closed set [5] if $\mathrm{cl}_{\delta}(\mathrm{A}) \subseteq \mathrm{U}$ whenever $\mathrm{A} \subseteq \mathrm{U}$ and U is a \hat{g}-open in (X, τ).

The complement of a g -closed (resp. $\delta \mathrm{g}$-losed, $\widehat{\mathrm{g}}$-closed, $\alpha \widehat{\mathrm{g}}$-closed and $\delta \widehat{\mathrm{g}}$-closed) set is called g -open (resp. $\delta \mathrm{g}$ open, $\widehat{\mathrm{g}}$-open, $\alpha \hat{\mathrm{g}}$-open and $\delta \hat{\mathrm{g}}$-open).

Definition: 2.3 A function $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ is called:
(i) δ-closed [9] if $\mathbf{f}(\mathrm{V})$ is δ-closed in (Y, σ) for every δ -closed set V of (X, τ)..
(ii) δ-continuous [10] if $\mathrm{f}^{-1}(\mathrm{~V})$ is δ-open in (X, τ) for every δ-open set V of (Y, σ).
(iii) $\delta \widehat{\mathrm{g}}$-continuous [5] if $\mathbf{f}^{-1}(\mathrm{~V})$ is $\delta \widehat{\mathrm{g}}$-closed in (X, τ) for every closed set V of (Y, σ).
(iv) $\delta \hat{g}$-irresolute [5] if $\mathbf{f}^{-1}(\mathrm{~V})$ is $\delta \hat{\mathrm{g}}$-closed in (X, τ)

Remark: $3.2 \delta \hat{g}$-openness and $\delta \mathrm{g}^{\wedge}$-continuity are independent as shown by the following examples.

Example: 3.3 Let $X=\{a, b, c\}=Y ; \tau=\{\varphi,\{a\},\{c\}$, $\{\mathrm{a}, \mathrm{c}\},\{\mathrm{b}, \mathrm{c}\}, \mathrm{X}\}$ and, $\sigma=\{\varphi,\{\mathrm{b}\}, \mathrm{Y}\}$. Define $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow$ (Y, σ) by $\mathrm{f}(\mathrm{a})=\mathrm{b}, \mathrm{f}(\mathrm{b})=\mathrm{c}$ and $\mathrm{f}(\mathrm{c})=\mathrm{a}$. Then f is $\delta \hat{\mathrm{g}}-$ continuous but not $\delta \hat{g}$-open, because $\{\mathrm{b}, \mathrm{c}\}$ is open in (X, τ) but $\mathrm{f}(\{\mathrm{b}, \mathrm{c}\})=\{\mathrm{a}, \mathrm{c}\}$ is not $\delta \widehat{\mathrm{g}}$-open in (Y, σ).

Example: 3.4 Let $\mathrm{X}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}=\mathrm{Y}$ with topologies $\tau=\{\varphi,\{a\},\{b, c\}, X\}$ and, $\sigma=\{\varphi,\{a\}, Y\}$. Define $f:(X, \tau)$ $\rightarrow(\mathrm{Y}, \sigma)$ by $\mathrm{f}(\mathrm{a})=\mathrm{b}, \mathrm{f}(\mathrm{b})=\mathrm{a}$ and $\mathrm{f}(\mathrm{c})=\mathrm{c}$. Then f is $\delta \hat{\mathrm{g}}-$ open but not $\delta \hat{g}$-continuous, because $\{\mathrm{b}, \mathrm{c}\}$ is closed in (Y, σ) bu $\mathrm{f}^{-1}(\{\mathrm{~b}, \mathrm{c}\})=\{\mathrm{a}, \mathrm{c}\}$ is not $\delta \mathrm{g}^{\wedge}$-closed in (X, τ).

Remark: 3.5 The composite mapping of two $\delta \widehat{g}$-closed maps is not in $\delta \widehat{\mathrm{g}}$-closed maps as shown in following example.

Example: 3.6 Let $X=\{a, b, c\}=Y=Z ; \tau=\{\varphi,\{a\}$, $\{c\},\{a, c\}, X\}, \sigma=\{\varphi,\{a\}, Y\}$ and $\eta=\{\varphi,\{a\},\{a, b\},\{a$, $\mathrm{c}\}, \mathrm{Z}\}$. Define a map $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ by $\mathrm{f}(\mathrm{a})=\mathrm{a}, \mathrm{f}(\mathrm{b})=$ c and $\mathrm{f}(\mathrm{c})=\mathrm{b}$ and let $\mathrm{g}:(\mathrm{Y}, \sigma) \rightarrow(\mathrm{Z}, \eta)$ be the identity function. Clearly f and g are $\delta \mathrm{g}^{\wedge}$-closed maps. But $\mathrm{g} \circ \mathbf{f}$ $:(\mathrm{X}, \tau) \rightarrow(\mathrm{Z}, \eta)$ is not an $\delta \hat{\mathrm{g}}$-closed map because $(\mathrm{g} \circ \mathbf{f})$ $(\{b\})=\{c\}$ is not an $\delta \widehat{g}$-closed set of (Z, η) where $\{b\}$ is a closed set of (X, τ).

Theorem:3.7 If $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ is closed and $\mathrm{g}:(\mathrm{Y}, \sigma)$ $\rightarrow(\mathrm{Z}, \eta)$ is $\delta \hat{g}$-closed map then $\mathrm{g} \circ \mathbf{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Z}, \eta)$ is $\delta \widehat{\mathrm{g}}$-closed.

Proof: Let G be a closed subset of X. Since f is closed, $f(G)$ is closed set of Y. On the
other hand, $\delta \hat{\mathrm{g}}$-closeness of g implies $\mathrm{g}(\mathrm{f}(\mathrm{G}))$ is $\delta \hat{\mathrm{g}}$-closed in Z. Hence
$\mathrm{g} \circ \mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Z}, \eta)$ is $\delta \widehat{\mathrm{g}}$-closed map.
Remark: 3.8. If $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ is $\delta \hat{\mathrm{g}}$-closed and $\mathrm{g}:(\mathrm{Y}, \sigma) \rightarrow(\mathrm{Z}, \eta)$ is closed map then $\mathrm{g} \circ \mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Z}, \eta)$ may not be $\delta \hat{\mathrm{g}}$-closed. In an example 3.6 , f is $\delta \hat{\mathrm{g}}$-closed and g is closed but $\mathrm{g} \circ \mathrm{f}$ is not $\delta \hat{\mathrm{g}}$-closed map.
Definition: 3.9. A map $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ is called $\delta \mathrm{g}$ closed. (resp. $\delta \mathrm{g}$-open) if the image of each closed (resp. open) set in (X, τ) is $\delta \mathrm{g}$-closed in (Y, σ)

Proof: It is true that every $\delta \widehat{\mathrm{g}}$-closed set is $\delta \mathrm{g}$-closed.
Remark: 3.11. The converse of theorem 3.10 need not be true as shown in the following example.

Example: 3.12. Let $X=\{a, b, c\}=Y$ with topologies $\tau=\{\varphi,\{b, c\}, X\}$ and $\sigma=\{\varphi,\{c\},\{a, b\}, Y\}$. Define a function $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow \mathrm{Y}, \sigma)$ by $\mathrm{f}(\mathrm{a})=\mathrm{b}, \mathrm{f}(\mathrm{b})=\mathrm{a}, \mathrm{f}(\mathrm{c})=\mathrm{c}$. Then f is not $\delta \hat{\mathrm{g}}$-closed map because $\{\mathrm{a}\}$ is closed in (X, τ) but $\mathrm{f}(\{\mathrm{a}\})=\{\mathrm{b}\}$ is not $\delta \hat{\mathrm{g}}$-closed in (Y, σ). However f is $\delta \hat{\mathrm{g}}$-closed.

Theorem: 3.13. Every $\delta \hat{g}$-closed map is $\alpha \widehat{\mathrm{g}}$-closed. Proof: It is true that every $\delta \hat{g}$-closed set is $\alpha \hat{\mathrm{g}}$-closed.

Remark: 3.14. The converse of Theorem 3.13 need not be true as shown in the following example.

Example: 3.15. Let $X=\{a, b, c\}=Y$ with topologies τ $=\{\varphi,\{b\},\{b, c\}, X\}$ and $\sigma=\{\varphi,\{b\},\{a, b\},\{b, c\}, Y\}$.Let $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ be a function defined by $\mathrm{f}(\mathrm{a})=\mathrm{c}, \mathrm{f}(\mathrm{b})=$ b and $\mathrm{f}(\mathrm{c})=\mathrm{a}$. Then f is not $\delta \hat{g}$-closed map because $\{\mathrm{a}\}$ is closed
in (X, τ) but $\mathrm{f}(\{\mathrm{a}\})=\{\mathrm{c}\}$ is not $\delta \widehat{\mathrm{g}}$-closed in (Y, σ). However f is $\alpha \hat{\mathrm{g}}$-closed.

Theorem: 3.16. Every $\delta \hat{g}$-closed map is g-closed.
Proof: It is true that every $\delta \hat{\mathrm{g}}$-closed set is g -closed.
Remark: 3.17. The converse of the above theorem need not be true as shown in the following example.

Example: 3.18. Let $X=\{a, b, c\}=Y$ with topologies τ $=\{\varphi,\{\mathrm{b}\},\{\mathrm{a}, \mathrm{c}\}, \mathrm{X}\}$ and $\sigma=\{\varphi,\{\mathrm{a}\},\{\mathrm{a}, \mathrm{b}\},\{\mathrm{a}, \mathrm{c}\}, \mathrm{Y}\}$.Define a map $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ be a function defined by $\mathrm{f}(\mathrm{a})=\mathrm{c}, \mathrm{f}(\mathrm{b})=\mathrm{c}$ and $\mathrm{f}(\mathrm{c})=\mathrm{b}$. Then f is $\delta \hat{\mathrm{g}}$-closed map. However it is not $\delta \hat{g}$-closed because $\{b\}$ is closed in (X, τ) but $\mathrm{f}(\{\mathrm{b}\})=\{\mathrm{c}\}$ is not $\delta \widehat{\mathrm{g}}$-closed in (Y, σ).
Remark: 3.19 The following examples show that $\delta \hat{\mathrm{g}}$ closeness and \hat{g}-closeness are independent notions.

Example: 3.20. Let $X=\{a, b, c\}=Y$ with topologies $\tau=\{\varphi,\{\mathrm{a}\},\{\mathrm{a}, \mathrm{b}\}, \mathrm{X}\}$ and $\sigma=\{\varphi,\{\mathrm{a}\}, \mathrm{Y}\}$. Define a function $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ by $\mathrm{f}(\mathrm{a})=\mathrm{a}, \mathrm{f}(\mathrm{b})=\mathrm{c}$ and $\mathrm{f}(\mathrm{c})$ $=\mathrm{b}$. Then f is $\delta \hat{\mathrm{g}}$-closed map but not $\hat{\mathrm{g}}$ - closed because $\mathrm{f}(\{\mathrm{c}\}=\{\mathrm{b}\}$ is not $\hat{\mathrm{g}}$ - closed in (Y, σ) where $\{\mathrm{c}\}$ is closed set in (X, τ).

Example: 3.21. Let $X=\{a, b, c\}=Y$ with topologies $\tau=\{\varphi,\{a\},\{a, b\}, X\}$ and $\sigma=\{\varphi,\{a\},\{b, c\}, Y\}$. Define a function $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ by $\mathrm{f}(\mathrm{a})=\mathrm{a}, \mathrm{f}(\mathrm{b})=\mathrm{c}$ and $\mathrm{f}(\mathrm{c})=\mathrm{b}$. Then f is $\widehat{\mathrm{g}}$-closed map, However f is not $\delta \widehat{\mathrm{g}}$ closed because $\{c\}$ is not closed in (X, $\tau)$ but $f(\{c\})=\{b\}$ is not $\delta \hat{\mathrm{g}}$-closed in (Y, σ).

Remark: 3.22. The following table shows the relationships of $\delta \widehat{\mathrm{g}}$-closed maps with other known existing maps. The symbol"1"in a cell means that a map implies the other maps. Finally the symbol" 0 " means that a map not implies the other maps.

TABLE- 1

closed functions	$\boldsymbol{\delta} \hat{\mathbf{g}}$	$\boldsymbol{\delta g}$	\mathbf{g}	$\boldsymbol{\alpha} \hat{\mathbf{g}}$	$\hat{\mathbf{g}}$
$\delta \hat{g}$	1	1	1	1	0
$\delta \mathrm{~g}$	0	1	1	0	0
g	0	0	1	0	0
$\alpha \hat{\mathrm{~g}}$	0	0	0	1	0
$\hat{\mathrm{~g}}$	0	0	1	0	1

Theorem: 3.23. A map $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ is $\delta \hat{g}$-closed if and only if for each subset G of (Y, σ) and for each open set U of (X, τ) containing $\mathrm{f}^{-1}(\mathrm{G})$,there exists an $\delta \widehat{\mathrm{g}}$ -open set B of (Y, σ) such that $G \subset V$ and $f^{-1}(V) \subset U$.

Proof: Let f be an $\delta \hat{\mathrm{g}}$-closed map and let G be an subset of (Y, σ) and U be an open set of (X, τ) containing f^{-1} (G). Then $\mathrm{X}-\mathrm{U}$ is closed in (X, τ). Since f is $\delta \hat{\mathrm{g}}$-closed map, $\mathrm{f}(\mathrm{X}-\mathrm{U})$ is $\delta \widehat{g}$-closed set in (Y, σ). Hence $\mathrm{Y}-\mathrm{f}(\mathrm{X}-\mathrm{U})$ is $\delta \widehat{g}$-open set in (Y, σ). Take $\mathrm{V}=\mathrm{Y}-\mathrm{f}(\mathrm{X}-\mathrm{U})$. Then V is $\delta \hat{\mathrm{g}}$ -open set in (Y, σ) containing G. Such that $\mathrm{f}^{-1}(\mathrm{~V}) \subset \mathrm{U}$. Conversely, let F be an closed subset of (X, τ). Then $\mathrm{f}^{-1}(\mathrm{Y}-\mathrm{f}(\mathrm{F})) \subset \mathrm{X}-\mathrm{F}$ and $\mathrm{X}-\mathrm{F}$ is open. By hypothesis there is an $\delta \hat{g}$-open set V of (Y, σ) such that $Y-f(F) \subset V$ and $f^{-1}(V) \subset X-F$. Therefore, $F \subset X-f^{-1}(V)$. Hence $Y-V$ $\subset \mathbf{f}(\mathrm{F}) \subset \mathbf{f}\left(\mathrm{X}-\mathbf{f}^{-1}(\mathrm{~V})\right) \subset \mathrm{Y}-\mathrm{V}$ which implies $\mathrm{f}(\mathrm{F})=\mathrm{Y}-\mathrm{V}$ and hence $\mathrm{f}(\mathrm{F})$ is $\delta \hat{\mathrm{g}}$ - closed in (Y, σ). Thus f is an $\delta \widehat{\mathrm{g}}$ closed map.

Theorem: 3.24. Let $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ and $\mathrm{g}:(\mathrm{Y}, \sigma) \rightarrow$ $(Z, \eta$)be any two maps:
(i) If $\mathrm{g} \circ \mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Z}, \eta)$ is $\delta \widehat{\mathrm{g}}$-closed map and g is $\delta \widehat{\mathrm{g}}$ -irresolute injective map then f is $\delta \hat{\mathrm{g}}$ closed
(ii) If $g \circ f:(X, \tau) \rightarrow(Z, \eta)$ is $\delta \widehat{g}$-irresolute and g is $\delta \widehat{g}$-closed injective map then f is $\delta \widehat{\mathrm{g}}$-continuous.

Proof: (i) Let U be closed in (X, τ). Since $\mathrm{g} \circ \mathrm{f}$ is $\delta \widehat{g}$ closed, $(\mathrm{g} \circ \mathrm{f})(\mathrm{U})$ is $\delta \hat{g}$-closed in (Z, η). Therefore $\mathrm{g}(\mathrm{f}(\mathrm{U}))$ is $\delta \hat{\mathrm{g}}$-closed in (Z, η). Since g is irresolute, g^{-1} $(\mathrm{g}(\mathrm{f}(\mathrm{U})))$ is $\delta \hat{\mathrm{g}}$-closed in (Y, σ). That is $\mathrm{f}(\mathrm{U})$ is $\delta \hat{\mathrm{g}}$ closed in (Y, σ). Hence f is $\delta \hat{\mathrm{g}}$-closed.
(ii) Let U be closed in (Y, σ). Since g is $\delta \widehat{g}$-closed, $g(U)$ is $\delta \hat{g}$-closed in (Z, η). Since $\mathrm{g} \circ \mathbf{f}$ is $\delta \hat{\mathrm{g}}$-irresolute, $(\mathrm{g} \circ$ $\mathrm{f})^{-1}(\mathrm{~g}(\mathrm{U}))$ is $\delta \hat{\mathrm{g}}$-closed in (X, $\left.\tau\right)$.

Therefore, $\left.\left(\mathrm{f}^{-1} \circ \mathrm{~g}^{-1}\right) \mathrm{g}(\mathrm{U})\right)$ is $\delta \hat{\mathrm{g}}$-closed in (X, $\left.\tau\right)$.
Hence $\mathrm{f}^{-1}(\mathrm{U})$ is $\delta \widehat{\mathrm{g}}$-closed in (X, τ).
This shows that f is $\delta \hat{\mathrm{g}}$-continuous.
Theorem: 3.25. Let $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma$)and $\mathrm{g}:(\mathrm{Y}, \sigma) \rightarrow$
(Z, η) be any two maps and $g \circ f:(X, \tau) \rightarrow(Z, \eta)$ be an $\delta \widehat{\mathrm{g}}$ - closed map. If f is continuous then g is $\delta \hat{\mathrm{g}}$ closed.

Proof: Let V be closed in (Y, σ). Since f is continuous, $\mathrm{f}^{-1}(\mathrm{~V})$ is closed in (X, τ). Since $\mathrm{g} \circ \mathrm{f}$ is $\delta \hat{\mathrm{g}}$-closed, $(\mathrm{g} \circ \mathbf{f})\left(\mathbf{f}^{-1}(\mathrm{~V})\right)$ is $\delta \widehat{\mathrm{g}}$-closed in (Z, η). That is $\mathrm{g}(\mathrm{V})$ is $\delta \widehat{\mathrm{g}}$-closed in (Z, η). Hence g is $\delta \widehat{\mathrm{g}}$-closed.

Theorem: 3.26. A bijection $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ is $\delta \hat{\mathrm{g}}$ closed map iff $f(U)$ is $\delta \hat{g}$-open in (Y, σ) for every open set U in (X, τ).

Proof: Let $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ be an $\delta \hat{\mathrm{g}}$-closed map and U be an open set in (X, τ).Then U^{c} is closed in ($\left.\mathrm{X}, \tau\right)$. Since f is $\delta \hat{\mathrm{g}}$-closed map, $\mathrm{f}\left(\mathrm{U}^{\mathrm{c}}\right)$ is $\delta \hat{\mathrm{g}}$-closed set $\operatorname{in}(\mathrm{Y}, \sigma)$. But $\mathrm{f}\left(\mathrm{U}^{\mathrm{c}}\right)=[\mathrm{f}(\mathrm{U})]^{\mathrm{c}}$ and hence $[\mathrm{f}(\mathrm{U})]^{\mathrm{c}}$ is $\delta \hat{\mathrm{g}}$-closed in (Y, σ). Hence $f(U)$ is $\delta \hat{g}$-open in (Y, σ). Conversely, $f(U)$ is $\delta \hat{g}$-open in (Y, σ) for every open set U of (X, τ) then U^{c} is closed set in (X, τ) and $[\mathrm{f}(\mathrm{U})]^{\mathrm{c}}$ is $\delta \widehat{\mathrm{g}}$-closed in (Y, σ). But $[\mathrm{f}(\mathrm{U})]^{\mathrm{c}}=\mathbf{f}\left(\mathrm{U}^{\mathrm{c}}\right)$ and hence $\mathrm{f}\left(\mathrm{U}^{\mathrm{c}}\right)$ is $\delta \widehat{\mathrm{g}}$ closed in (Y, σ). Therefore, f is $\delta \hat{\mathrm{g}}$-closed map.

4. WEAKLY $\delta \hat{g}$-CLOSED MAPS

We introduce the following definition:
Definition: 4.1 A map f: $(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ is called weakly $\delta \hat{\mathrm{g}}$-closed (resp. weakly $\delta \hat{\mathrm{g}}$-open) if the image of every δ closed (resp. δ-open) set in (X, τ) is $\delta \hat{\mathrm{g}}$-closed (resp. $\delta \hat{\mathrm{g}}$ open) set in (Y, σ).

Theorem: 4.2 Every $\delta \hat{g}$-closed map is weakly $\delta \hat{g}$ closed.

Proof: Let $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ be an $\delta \widehat{\mathrm{g}}$-closed map and G be a δ-closed set in (X, τ). Every δ-closed set is closed, G is closed set in (X, τ). Since f is $\delta \hat{\mathrm{g}}$-closed, $\mathrm{f}(\mathrm{G})$ is $\delta \widehat{\mathrm{g}}$-closed in (Y, σ). Hence f is weakly $\delta \widehat{\mathrm{g}}$-closed map.

Remark: 4.3. The converse of the above theorem need not be true as shown in the following example.

Example:4.4. Let $X=\{a, b, c\}=Y ; \tau=\{\varphi,\{a\},\{b\}$, $\{\mathrm{a}, \mathrm{b}\},\{\mathrm{a}, \mathrm{c}\}, \mathrm{X}\}, \sigma=\{\varphi,\{\mathrm{b}\},\{\mathrm{a}, \mathrm{c}\}, \mathrm{Y}\}$. Let $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow$ (Y, σ) be the identity map. Then f is weakly $\delta \hat{\mathrm{g}}$-Closed map but f is not $\delta \hat{g}$-closed. Since $\mathrm{f}(\{\mathrm{b}, \mathrm{c}\})=\{\mathrm{b}, \mathrm{c}\}$ is not $\delta \hat{\mathrm{g}}$-closed in (Y, σ) where $\{\mathrm{b}, \mathrm{c}\}$ is closed in (X, τ).

Theorem: 4.5 Every δ-closed map is weakly $\delta \hat{\mathrm{g}}$-closed map

Proof: It is true that every δ-closed set is $\delta \hat{g}$-closed.
Remark: 4.6 The converse of the above theorem need not be true as shown in the following example.
Example: 4.7 Let $X=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}=\mathrm{Y} ; \tau=\{\varphi,\{\mathrm{a}\}$, $\{\mathrm{b}\}$, $\{\mathrm{a}, \mathrm{b}\},\{\mathrm{a}, \mathrm{c}\}, \mathrm{X}\}, \sigma=\{\varphi,\{\mathrm{a}\}, \mathrm{Y}\}$. Let $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ be the identity map. Then f is weakly $\delta \hat{\mathrm{g}}$-closed map but f is not δ-closed map because $\mathrm{f}(\{\mathrm{a}, \mathrm{c}\})=\{\mathrm{a}, \mathrm{c}\}$ is not $\delta-$

M. LellisT hivagar and ${ }^{ *}$ B. Meera Devi/ Some New Class of functions via $\delta \hat{g}-$-sets /IJMA- 2(1), Jan.-2011, Page: 169-173

closed in (Y, σ) where $\{\mathrm{a}, \mathrm{c}\}$ is closed in (X, τ).
Proposition: 4.8. The composite mapping of weakly $\delta \hat{\mathrm{g}}$ -closed maps need not be weakly $\delta \widehat{g}$-closed as shown in the following example.

Example 4.9. Let $\mathrm{X}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}=\mathrm{Y}=\mathrm{Z}$ with topologies τ $=\{\varphi,\{\mathrm{a}\},\{\mathrm{b}\},\{\mathrm{a}, \mathrm{b}\},\{\mathrm{a}, \mathrm{c}\}, \mathrm{X}\}$ and $\sigma=\{\varphi,\{\mathrm{b}\},\{\mathrm{c}\},\{\mathrm{a}$, $\mathrm{b}\},\{\mathrm{b}, \mathrm{c}\}, \mathrm{Y}\}, \eta=\{\varphi,\{\mathrm{c}\},\{\mathrm{a}, \mathrm{b}\}, \mathrm{Z}\}$. Define a function f $:(X, \tau) \rightarrow(Y, \sigma)$ by $f(a)=a, f(b)=a$ and $f(c)=b$ and let $\mathrm{g}:(\mathrm{Y}, \sigma) \rightarrow(\mathrm{Z}, \eta)$ be the identity function. Clearly f and g are weakly $\delta \hat{\mathrm{g}}$-closed map but the $\mathrm{g} \circ \mathrm{f}:(\mathrm{X}, \tau) \rightarrow$ (Z, η) is not an weakly $\delta \hat{g}$-closed map because $\{b\}$ is δ closed in (X, τ) but $(g \circ f)(\{b\})=g(f(\{b\}))=\{a\}$ is not $\delta \widehat{\mathrm{g}}$-closed set in (Z, η).

Theorem : 4.10 Let $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma$)and $\mathrm{g}:(\mathrm{Y}, \sigma)$ $\rightarrow(Z, \eta)$ be any two maps. Then
(i) $\mathrm{g} \circ \mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Z}, \eta)$ is weakly $\delta \hat{\mathrm{g}}$-closed map, if f is δ-closed map and g is weakly $\delta \hat{g}$-closed map.
(ii) If $g \circ f:(X, \tau) \rightarrow(Z, \eta)$ is weakly $\delta \hat{g}$-closed and g is $\delta \hat{\mathrm{g}}$-irresolute injective map then f is weakly $\delta \widehat{\mathrm{g}}$-closed.

Proof: (i) Let V be δ-closed in (X, τ). Since \mathbf{f} is δ-closed map, $\mathrm{f}(\mathrm{V})$ is δ-closed in (Y, σ). Since g is weakly $\delta \hat{g}$ closed map, $g(f(V))$ is $\delta \widehat{g}$-closed in (Z, η). That is ($\mathrm{g} \circ$ $\mathrm{f})(\mathrm{V})$ is $\delta \widehat{\mathrm{g}}$-closed in (Z, η). Hence $(\mathrm{g} \circ \mathbf{f})$ is weakly $\delta \widehat{\mathrm{g}}$ closed map.
(ii) Let U be the δ-closed in (X, τ). Since $\mathrm{g} \circ \mathrm{f}$ is weakly $\delta \widehat{\mathrm{g}}$-closed map, $(\mathrm{g} \circ \mathbf{f})(\mathrm{U})$ is $\delta \hat{\mathrm{g}}$-closed in (Z, η). Therefore $\mathrm{g}(\mathrm{f}(\mathrm{U}))$ is $\delta \hat{g}$-closed in (Z, η). Since g is $\delta \hat{g}$ irresolute, $\mathrm{g}^{-1}(\mathrm{~g}(\mathrm{f}(\mathrm{U})))$ is $\delta \hat{\mathrm{g}}$-closed in (Y, σ). That is $\mathrm{f}(\mathrm{U})$ is $\delta \widehat{\mathrm{g}}$-closed in (Y, σ). Hence f is weakly $\delta \hat{\mathrm{g}}$-closed map.

Remark: 4.11 Weakly $\delta \hat{\mathrm{g}}$-closeness and $\delta \hat{\mathrm{g}}$ irresoluteness are independent notions as shown in the following example.

Example: 4.12 Let $\mathrm{X}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}=\mathrm{Y}$ with topologies $\tau=\{\varphi,\{\mathrm{a}, \mathrm{b}\}, \mathrm{X}\}, \sigma=\{\varphi,\{\mathrm{b}\}, \mathrm{Y}\}$. Define a function $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ by $\mathrm{f}(\mathrm{a})=\mathrm{b}, \mathrm{f}(\mathrm{b})=\mathrm{c}$ and $\mathrm{f}(\mathrm{c})=\mathrm{a}$. Then f is weakly $\delta \hat{\mathrm{g}}$-closed map but not $\delta \hat{\mathrm{g}}$-irresolute because $\mathbf{f}^{-1}(\{\mathrm{~b}, \mathrm{c}\})=\{\mathrm{a}, \mathrm{b}\}$ is not $\delta \widehat{\mathrm{g}}$-closed in (X, τ) where $\{\mathrm{b}, \mathrm{c}\}$ is $\delta \widehat{\mathrm{g}}$-closed in (Y, σ).

Example: 4.13. Let $\mathrm{X}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}=\mathrm{Y}$ with topologies τ $=\{\varphi,\{\mathrm{a}\},\{\mathrm{c}\},\{\mathrm{a}, \mathrm{c}\}, \mathrm{X}\},=\{\varphi,\{\mathrm{a}\},\{\mathrm{c}\},\{\mathrm{a}, \mathrm{b}\},\{\mathrm{a}, \mathrm{c}\}, \mathrm{Y}\}$. Let $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ be an identity function. Clearly f is $\delta \hat{g}$-irresolute but not weakly $\delta \hat{\mathrm{g}}$-closed map because \mathbf{f} $(\{\mathrm{c}\})=\{\mathrm{c}\}$ is not $\delta \hat{\mathrm{g}}$-closed in (Y, σ)
where $\{\mathrm{c}\}$ is δ-closed in (X, τ).
Theorem: 4.14. A bijection $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ is weakly $\delta \hat{g}$-closed map, iff $f(\mathrm{U})$ is $\delta \widehat{\mathrm{g}}$-open in (Y, σ) for every δ-open set U in (X, τ).

Proof: Let $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ is weakly $\delta \hat{\mathrm{g}}$-closed map and U be an δ-open set in (X, τ). Then U^{c} is δ-closed set in (X, τ). Since f is weakly $\delta \hat{\mathrm{g}}$-closed map, $\mathrm{f}\left(\mathrm{U}^{\mathrm{c}}\right)$ is $\delta \hat{\mathrm{g}}$-closed set in (Y, σ). But $\mathrm{f}\left(\mathrm{U}^{\mathrm{c}}\right)=[\mathrm{f}(\mathrm{U})]^{\mathrm{c}}$ and © 2011, IJMA. All Rights Reserved
hence $[f(U)]{ }^{c}$ is $\delta \hat{g}$-closed set in (Y, σ). Hence $f(U)$ is $\delta \widehat{g}$ - open in (Y, σ).Conversely, $f(U)$ is $\delta \hat{g}$-open in (Y, σ) for every δ-open set U of (X, τ). Then U^{c} is δ-closed set in (X, τ) and $[\mathrm{f}(\mathrm{U})]^{\mathrm{c}}$ is $\delta \widehat{\mathrm{g}}$-closed in (Y, σ). Hence $\mathrm{f}\left(\mathrm{U}^{\mathrm{c}}\right)$ is $\delta \hat{\mathrm{g}}$-closed in (Y, σ). Thus f is weakly $\delta \hat{\mathrm{g}}$ closed map.

Theorem: 4.15. A map $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ is weakly $\delta \hat{\mathrm{g}}$ closed map, iff for each subset B of (Y, σ) and for each δ open set U of (X, τ) containing $f^{-1}(B)$, there exists an $\delta \widehat{g}$-open set V of (Y, σ) such that $B \subset V$ and $f^{-1}(V) \subset U$

Proof: Necessity, suppose f is weakly $\delta \widehat{\mathrm{g}}$-closed map. Let B be any subset of (Y, σ) and U be an δ-open set of (X, τ) containing f^{-1} (B). Then $\mathrm{X}-\mathrm{U}$ is δ-closed subset of (X, τ). Since f is weakly $\delta \hat{\mathrm{g}}$ - closed map, $\mathrm{f}(\mathrm{X}-\mathrm{U})$ is $\delta \hat{\mathrm{g}}$ closed set in (Y, σ). That is $\mathrm{Y}-\mathrm{f}(\mathrm{X}-\mathrm{U})$ is $\delta \hat{\mathrm{g}}$-open in (Y, σ). Put $\mathrm{V}=\mathrm{Y}-\mathrm{f}(\mathrm{X}-\mathrm{U})$. Then V is an $\delta \hat{\mathrm{g}}$-open set in (Y, σ) containing B such that $\mathrm{f}^{-1}(\mathrm{~V}) \subset \mathrm{U}$. Sufficiency. Let F be any δ - closed subset of (X, τ). Then $\mathrm{f}^{-1}(\mathrm{Y}-\mathrm{f}(\mathrm{F}))$ $\subset X-F$ a nd $X-F$ is δ-open in (X, τ). Put $B=Y-f(F)$. Then $\mathrm{f}^{-1}(\mathrm{~B}) \subset \mathrm{X}-\mathrm{F}$ There exists an $\delta \hat{\mathrm{g}}$-open set V of (Y, σ) such that $B=Y-f(F) \subset V$ and $f^{-1}(V) \subset X-F$.Therefore we obtain $\mathrm{f}(\mathrm{F})=\mathrm{Y}-\mathrm{V}$ and hence $\mathrm{f}(\mathrm{F})$ is $\delta \hat{\mathrm{g}}$-closed in (Y, σ). Thus f is weakly $\delta \hat{\mathrm{g}}$-closed map.

5. APPLICATIONS:

Definition: 5.1. [5] A space (X, τ) is called $\hat{\mathrm{T}}_{3 / 4}$-space if every $\delta \hat{\mathrm{g}}$-Closed set in it is-closed.

Theorem: 5.2. Let $f:(X, \tau) \rightarrow(Y, \sigma)$ and $g:(Y, \sigma)$ $\rightarrow(Z, \eta)$ two functions. Let (Y, σ) be $\hat{\mathrm{T}}_{3 / 4}$ spaces. Then
(i) $g \circ f:(X, \tau) \rightarrow(Z, \eta)$ is $\delta \widehat{g}$-closed map if g is $\delta \widehat{g}$ closed and f is $\delta \hat{\mathrm{g}}$-closed map.
(ii) $g \circ f:(X, \tau) \rightarrow(Z, \eta)$ is weakly $\delta \widehat{g}$-closed map if g is weakly $\delta \widehat{\mathrm{g}}$-closed and f is weakly $\delta \widehat{\mathrm{g}}$-closed.

Proof: (i) Let V be closed in (X, τ). Since f is $\delta \hat{\mathrm{g}}$-closed map, $\mathrm{f}(\mathrm{V})$ is $\delta \hat{\mathrm{g}}$-closed set in (Y, σ). Since Y is $\hat{\mathrm{T}}_{3 / 4}$ space, $\mathrm{f}(\mathrm{V})$ is δ-closed in Y. Since g is $\delta \hat{\mathrm{g}}$ - closed map, $\mathrm{g}(\mathrm{f}(\mathrm{V}))$ in (Z, η). That is $(\mathrm{g} \circ \mathrm{f})(\mathrm{V})$ is $\delta \hat{g}$-closed in (Z, η). Hence $(g \circ f)$ is $\delta \hat{g}$-closed map.
(ii)Let U be the δ-closed in (X, τ). Since \mathbf{f} is weakly $\delta \widehat{g}$ closed map, $\mathrm{f}(\mathrm{U})$ is $\delta \hat{\mathrm{g}}$ - closed in (Y, σ). since Y is $\hat{\mathrm{T}}_{3 / 4}$ space, $\mathrm{f}(\mathrm{U})$ is δ-closed in (Y, σ). Since g is weakly $\delta \hat{\mathrm{g}}$ closed, $\mathrm{g}(\mathbf{f}(\mathrm{U}))$ is $\delta \hat{\mathrm{g}}$-closed in (Z, η). That is $\mathrm{g} \circ \mathbf{f}(\mathrm{U})$ is $\delta \hat{g}$-closedin (Z, η). Hence $\mathrm{g} \circ \mathbf{f}$ is weakly $\delta \mathrm{g}^{\wedge}$-closed map.

We introduce the following definition:
Definition: 5.3. A space (X, τ) is said to be $\delta \hat{\mathrm{g}}$-regular if for each closed set F of X and each point $x \notin F$ there exists disjoint $\delta \hat{g}$-open sets U and V such that $\mathrm{F} \subset \mathrm{U}$ and $x \in V$.

Theorem: 5.4. In a topological space (X, τ), the

* M. LellisT hivagar and ${ }^{* *}$ B. Meera Devi/ Some New Class
following statements are equiv- alent.
(i) (X, τ) is $\delta \widehat{\mathrm{g}}$-regular.
(ii) For every point of (X, τ) and every open set V
containing x there exists an $\delta \hat{\mathrm{g}}$-open set A such that $\mathrm{x} \in$ $\mathrm{A} \subset \operatorname{cl}_{\delta}(\mathrm{A}) \subset \mathrm{V}$.

Proof: (i) \Rightarrow (ii) Let $x \in X$ and V be an open set containing x. Then $X-V$ is closed and $x \notin X-V$. By (i) there exists an $\delta \hat{g}$-open set A and B such that $\mathrm{x} \in \mathrm{A}$ and $X-V \subset B$. That is $X-B \subset V$. Since every open set is \hat{g} open, V is $\hat{\mathrm{g}}$-open. $\mathrm{X}-\mathrm{B}$ is $\delta \hat{\mathrm{g}}$-closed. Therefore $\mathrm{cl}_{\delta}(\mathrm{X}-$ B) $\subset V$. Since $A \cap B=\varphi, A \subset X-B$. Hence $x \in A \subset c l_{\delta}$ (A) $\subset \mathrm{cl}_{\delta}(\mathrm{X}-\mathrm{B}) \subset \mathrm{V}$ Thus $\mathrm{x} \in \mathrm{A} \subset \mathrm{cl} \delta(\mathrm{A}) \subset(\mathrm{V})$. (ii) $\Rightarrow(\mathrm{i})$ Let F be a closed set and $x \notin F$. This implies that $X-F$ is open set containing x . By (ii), there exists an $\delta \widehat{\mathrm{g}}$-open set A such that $x \in A \subset c_{\delta}(A) \subset X-F$.That is $F \subset X$ $\mathrm{cl}_{\delta}(\mathrm{A})$. Since every closed set is $\delta \widehat{\mathrm{g}}$-closed, $\mathrm{cl}_{\delta}(\mathrm{A})$ is $\delta \hat{\mathrm{g}}-$ closed and $\mathrm{X}-\mathrm{cl} \delta(\mathrm{A})$ is $\delta \hat{\mathrm{g}}$-open. Therefore, A and X$\mathrm{cl}_{\delta}(\mathrm{A})$ are the required $\delta \hat{\mathrm{g}}$-open sets.

Theorem: 5.5. Let $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ is a continuous and $\delta \hat{\mathrm{g}}$-closed, bijection map and (X, τ) is a regular space then (Y, σ) is $\delta \hat{\mathrm{g}}$-regular.

Proof: let $\mathrm{y} \in \mathrm{Y}$ and B be an open set containing y of (Y, σ) Let x be a point of (X, τ) such that $y=f(x)$. Since f is continuous, $\mathrm{f}^{-1}(\mathrm{~V})$ is open in (X, τ). since (X, τ) is regular, there exists an open set U such that $x \in U \subset c l(U)$ $\subset f^{-1}(\mathrm{~V})$. Hence $\mathrm{y}=\mathrm{f}(\mathrm{x}) \in \mathrm{f}(\mathrm{U}) \subset \mathbf{f}(\mathrm{cl}(\mathrm{U})) \subset \mathrm{V}$. Since f is an $\delta \widehat{\mathrm{g}}$-closed map, $\mathrm{f}(\mathrm{cl}(\mathrm{U}))$ is an $\delta \widehat{\mathrm{g}}$-closed set Contained in the open set V, which is \hat{g}-open. Hence we have $\mathrm{cl}_{\delta}\left(\mathrm{f}(\mathrm{cl}(\mathrm{U})) \subset \mathrm{V}\right.$. Therefore $\mathrm{y} \in \mathrm{f}(\mathrm{U}) \subset \mathrm{cl}_{\delta}(\mathbf{f}(\mathrm{U}))$ $\subset \mathrm{cl}_{\delta}\left(\mathbf{f}(\mathrm{cl}(\mathrm{U})) \subset(\mathrm{V})\right.$.This implies $\mathrm{y} \in \mathrm{f}(\mathrm{U}) \subset \mathrm{cl}_{\delta}(\mathrm{f}(\mathrm{U}))$ $\subset V$. Since f is $\delta \widehat{g}$-closed map, U^{c} is closed in $X, f\left(U^{c}\right)$ is $\delta \widehat{\mathrm{g}}$-closed in (Y, σ). But $\mathrm{f}\left(\mathrm{U}^{\mathrm{c}}\right)=[\mathbf{f}(\mathrm{U})]^{\mathrm{c}}$ is $\delta \widehat{\mathrm{g}}$-closed in (Y, σ). Hence $f(U)$ is $\delta \hat{g}$-open in (Y, σ). Thus for every point y of (Y, σ) and every open set V containing y there exists an $\delta \widehat{g}$-open set $f(U)$ such that

$$
\mathrm{y} \in \mathrm{f}(\mathrm{U}) \subset \mathrm{cl}_{\delta}(\mathrm{f}(\mathrm{U})) \subset \mathrm{V} .
$$

Hence by the above theorem, (Y, σ) is $\delta \hat{\mathrm{g}}$-regular.
Theorem: 5.6. If $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ is a continuous and weakly $\delta \hat{\mathrm{g}}$-closed bijective map and if (X, τ) is $\hat{\mathrm{T}}_{3 / 4}$ space and regular space then (Y, σ) is $\delta \hat{\mathrm{g}}$-regular

Proof: let $\mathrm{y} \in(\mathrm{Y}, \sigma)$ and V be an open set containing y . Let x be a point of (X, τ), such that $y=f(x)$. Since f is continuous, $\mathrm{f}^{-1}(\mathrm{~V})$ is open in ($\left.\mathrm{X}, \tau\right)$. By assumptions and theorem 5.3, there exists an $\delta \hat{g}$-open set U such that $x \in U \subset \operatorname{cl}_{\delta}(U) \subset f^{-1}(V)$. Then

$$
\mathrm{y} \in \mathrm{f}(\mathrm{U}) \subset \mathrm{f}\left(\mathrm{cl}_{\delta}(\mathrm{U}) \subset \mathrm{V}\right.
$$

We know that
$\mathrm{cl}_{\delta}(\mathrm{U})$ is δ-closed. Since f is weakly $\delta \hat{\mathrm{g}}$-closed, $\mathrm{f}\left(\mathrm{cl}_{\delta}\right.$ (U) is $\delta \hat{\mathrm{g}}$-closed set in (Y, σ). Every open set is $\hat{\mathrm{g}}$-open
and hence V is $\hat{\mathrm{g}}$-open. Therefore we get $\mathrm{cl}_{\delta}\left(\mathbf{f}\left(\mathrm{cl}_{\delta}(\mathrm{U})\right)\right)$ $\subset V$. This implies $y \in f(U) \subset \operatorname{cl}_{\delta}(f(U)) \subset \operatorname{cl}_{\delta}\left(f\left(\mathrm{cl}_{\delta}(U)\right)\right)$ $\subset V$. That is $y \in f(U) \subset c_{\delta}(\mathbf{f}(U)) \subset V$. Now U is $\delta \widehat{g}-$ open implies $U^{c} \quad$ is $\delta \widehat{g}$-closed in (X, τ). Since (X, τ) is $\hat{\mathrm{T}}_{3 / 4}$ and f is weakly $\delta \hat{\mathrm{g}}$-closed map $\mathrm{f}\left(\mathrm{U}^{\mathrm{c}}\right)$ is $\delta \hat{\mathrm{g}}$-closed in (Y, σ). But $\mathrm{f}\left(\mathrm{U}^{\mathrm{c}}\right)=[\mathrm{f}(\mathrm{U})]^{\mathrm{c}}$. That is $[\mathrm{f}(\mathrm{U})]^{\mathrm{c}}$ is $\delta \hat{\mathrm{g}}-$ closed in (Y, σ). This implies $f(U)$ is $\delta \widehat{g}$-open in (Y, σ). Thus for every point y of (Y, σ) and every open set V containing y , there exists an $\delta \hat{\mathrm{g}}$-open set $\mathrm{f}(\mathrm{U})$ such that $\mathrm{y} \in \mathrm{f}$ $(\mathrm{U}) \subset \mathrm{cl}_{\delta}(\mathbf{f}(\mathrm{U})) \subset \mathrm{V}$. Hence by theorem 5.3, (Y, σ) is $\delta \hat{\mathrm{g}}$ regular.

REFERENCES:

[1] Devi. R, Balachandran. K, Maki. H, "Generalized α closed maps and α-generalized closed maps", Indian J. Pure. Appl. Math., 29 (1) (1998), 37-49.
[2] Dontchev. J and Ganster.M,"On δ-generalized closed sets and T $3 / 4$ - spaces" Mem. Fac.Sci.Kochi Univ. Ser. A, Math., 17(1996), 15-31.
[3] Levine.N, "Semi-open sets and semi-continuity in topological spaces", Amer Math. Monthly, 70(1963), 36-41.
[4] Levine.N, "Generalized closed sets in topology", Rend. Circ. Mat. Palermo, 19(1970) 89-96.
[5] Lellis Thivagar.M, Meera Devi.B," Some new class of generalized continuous functions". Communicated.
[6] M. E Abd El-Monsef, S.Rose Mary and M. Lellis Thivagar "On $\alpha \hat{g}$ - closed sets in topological spaces", Assiut University Journal of Mathematics and Computer Science, Vol. 36(1), P-P. 43-51(2007).
[7] Malghan. S.R, "Generalized closed map s", J. Karnatak Univ, Sci., 27(1982), 82-88.
[8] Njastad, O., "On some classes of nearly open sets", Pacific JMath. 15(1965), 961-970.
[9] Noiri. T, "A generalization of perfect functions", J.Korean Math. Soc. 17 (1978), 540-544.
[10] Noiri.T, "On δ-continuous functions", J. Korean Math.soc. 18 (1980), 161-166.
[11] Stone.M, "Application of the theory of Boolian rings to general topology" Trans. Amer. Math. Soc. 41(1937), 374-481.
[12] Veera Kumar.M.K.R.S, " \widehat{g}-closed sets in topologycal spaces", Bull.Allah. Math.Soc, 18(2003), 99-112.
[13] Velicko.N.V, "H-closed topological spaces" Amer. Math. Soc. Transl., 78(1968), 103-118.

[^0]: *Corresponding author: ${ }^{* *}$ B. Meera Devi
 E-mail: abmeeradevi@gmail.com

