SOME NEW CLASS OF FUNCTIONS VIA $\delta \hat{g}$ -SETS

^{*}M. Lellis Thivagar and ^{**}B. Meera Devi

*Department of Mathematics, Arul Anandar College, Karumathur, Madurai-625514, Tamil Nadu

E -mail: mlthivagar@yahoo.co.in

**Department of Mathematics, Sri. S. R. N. M. College, Sattur-626203, Tamil Nadu, INDIA.
E -mail: abmeeradevi@gmail.com

(Received on 03-01-11: Accepted on: 18-01-11)

ABSTRACT

In this paper we introduce a new class of functions called $\delta \hat{g}$ -closed maps. We obtain several characterizations and some their properties. We also investigate its relationship with other types of functions. Further we introduce and study a new class of functions namely weaker forms of $\delta \hat{g}$ -closed maps.

Keywords and Phrases: $\delta \hat{g}$ -closed sets, $\delta \hat{g}$ -continuous, $\delta \hat{g}$ -closed maps, $\delta \hat{g}$ -regular, $\alpha \hat{g}$ -closed sets.

AMS subject classification: 54C05, 54C10

1.INTRODUCTION:

Malghan [7] introduced generalised closed functions and Devi et al.[1] intro- duced αg -closed functions. T. Noiri [9] and Veerakumar[12] introduced δ -closed functions and \hat{g} closed functions in topological spaces. In this present paper we use $\delta \hat{g}$ -closed sets to define a new class of functions called $\delta \hat{g}$ -closed functions and obtain some properties of these functions. We further introduce and study a new class of functions namely weakly $\delta \hat{g}$ -closed functions and we introduce a new space called $\delta \hat{g}$ -regular space.

2. PRELIMINARIES:

Throughout this paper (X, τ) and, (Y, σ)and (Z, η) represent non-empty topological spaces on which no separation axioms are assumed unless or otherwise mentioned. For a subset A of X, cl(A), int(A) and A ^c denote the closure of A, the interior of A and the complement of A respectively. Let us recall the following definitions, which are useful in the sequel.

Definition: 2.1A subset A of a space (X, τ) is called a

- (i) semi-open set [3] if $A \subseteq cl(int(A))$.
- (ii) α -open set [8] if $A \subseteq int(cl(int(A)))$.
- (iii) regular open set [11] if A = int(cl(A)).
- (iv) δ -open set [13] if A= δ int(A).

The complement of a semi-open (resp. α -open, regular open) set is called semi- closed (resp. α -closed, regular closed).

**

*Corresponding author: ***B. Meera Devi

E-mail: abmeeradevi@gmail.com

The δ -interior [13] of a subset A of X is the union of all regular open set of X contained in A and is denoted by Int δ (A). The subset A is called δ -open [13] if A =Int $_{\delta}$ (A), i.e. a set is δ -open if it is the union of regular open sets. the complement of a δ -open is called δ -closed. Alternatively, a set A \subseteq (X, τ) is called δ -closed [13] if A= cl_{\delta} (A), where cl_{\delta} (A) = { x \in X: int(cl(U)) \cap A = \phi, U \in \tau and x \in U }.

Definition: 2.2 A subset A of (X, τ) is called (i) generalized closed (briefly g-closed) set[4] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open set in (X, τ) .

(ii) δ -generalized closed (briefly δg -closed) set[2] if cl_{δ} (A)

 \subseteq U whenever A \subseteq U and U is open set in (X, τ).

(iii) \hat{g} -closed set [12] if cl(A) \subseteq U whenever A \subseteq U and U is a semi-open set in (X, τ).

(iv) $\alpha - \hat{g}$ -closed (briefly $\alpha \hat{g}$ -closed) set [6] if $\alpha \operatorname{cl}(A) \subseteq U$ whenever $A \subseteq U$ and U is a \hat{g} -open set in (X, τ) .

(v) $\delta \hat{g}$ -closed set [5] if $cl_{\delta}(A) \subseteq U$ whenever $A \subseteq U$ and U is a \hat{g} -open in (X, τ) .

The complement of a g -closed (resp. δg -losed, \hat{g} -closed, $\alpha \hat{g}$ -closed and $\delta \hat{g}$ -closed) set is called g -open (resp. δg - open, \hat{g} -open, $\alpha \hat{g}$ -open and $\delta \hat{g}$ -open).

Definition: 2.3 A function $f: (X, \tau) \rightarrow (Y, \sigma)$ is called:

(i) δ -closed [9] if f(V) is δ -closed in (Y, σ) for every δ -closed set V of (X, τ) ..

(ii) δ -continuous [10] if $f^{-1}(V)$ is δ -open in (X, τ) for every δ -open set V of (Y, σ) .

(iii) $\delta \hat{g}$ -continuous [5] if $f^{-1}(V)$ is $\delta \hat{g}$ -closed in (X, τ) for every closed set V of (Y, σ) .

(iv) $\delta \hat{g}$ -irresolute [5] if $f^{-1}(V)$ is $\delta \hat{g}$ -closed in (X, τ)

International Journal of Mathematical Archive- 2 (1), Jan. – 2011

M. LellisT hivagar and* **B. Meera Devi/ Some New Class of functions via \delta \hat{g}-sets /IJMA- 2(1), Jan.-2011, Page: 169-173* for every $\delta \hat{g}$ closed set V of (Y, σ) . **Proof: It is true that every $\delta \hat{g}$ -closed set is δg -closed.

(v) generalized closed (briefly g-closed) (resp.g-open) [7] if the image of every closed (resp. Open) set in (X, τ) is g-closed (resp. g-open) in (Y, σ) .

(vi) \hat{g} -open [12] if f(V) is \hat{g} -open in (Y, σ) for every open set V of (X, τ).

 $(vii)\alpha \hat{g}$ -closed [6] if the image of every closed set in (X, τ) is $\alpha \hat{g}$ -closed in (Y, σ) .

3. δĝ-CLOSED MAPS:

We introduce the following definitions:

Definition: 3.1 A map $f: (X, \tau) \rightarrow (Y, \sigma)$ is called $\delta \hat{g}$ closed (resp. $\delta \hat{g}$ -open) if the image of each closed (resp. Open) set in (X, τ) is $\delta \hat{g}$ -closed (resp. $\delta \hat{g}$ -open) in (Y, σ) .

Remark: 3.2 $\delta \hat{g}$ -openness and δg^{\uparrow} -continuity are independent as shown by the following examples.

Example: 3.3 Let $X = \{a, b, c\} = Y; \tau = \{\phi, \{a\}, \{c\}, \{a, c\}, \{b, c\}, X\}$ and, $\sigma = \{\phi, \{b\}, Y\}$. Define f: $(X, \tau) \rightarrow (Y, \sigma)$ by f(a) = b, f(b) = c and f(c) = a. Then f is $\delta \hat{g}$ -continuous but not $\delta \hat{g}$ -open, because $\{b, c\}$ is open in (X, τ) but $f(\{b, c\}) = \{a, c\}$ is not $\delta \hat{g}$ -open in (Y, σ) .

Example: 3.4 Let $X = \{a, b, c\} = Y$ with topologies $\tau = \{\phi, \{a\}, \{b, c\}, X\}$ and, $\sigma = \{\phi, \{a\}, Y\}$. Define f: $(X, \tau) \rightarrow (Y, \sigma)$ by f(a) = b, f(b) = a and f(c)=c. Then f is $\delta \hat{g}$ -open but not $\delta \hat{g}$ -continuous, because $\{b, c\}$ is closed in (Y, σ) bu $f^{-1}(\{b, c\}) = \{a, c\}$ is not $\delta \hat{g}$ -closed in (X, τ) .

Remark: 3.5 The composite mapping of two $\delta \hat{g}$ -closed maps is not in $\delta \hat{g}$ -closed maps as shown in following example.

Example: 3.6 Let $X = \{a, b, c\} = Y = Z$; $\tau = \{\phi, \{a\}, \{c\}, \{a, c\}, X\}$, $\sigma = \{\phi, \{a\}, Y\}$ and $\eta = \{\phi, \{a\}, \{a, b\}, \{a, c\}, Z\}$. Define a map f: $(X, \tau) \rightarrow (Y, \sigma)$ by f(a) = a, f(b) = c and f(c)= b and let g: $(Y, \sigma) \rightarrow (Z, \eta)$ be the identity function. Clearly f and g are δg^{-} -closed maps. But $g \circ f$: $(X, \tau) \rightarrow (Z, \eta)$ is not an $\delta \hat{g}$ -closed map because $(g \circ f)$ ($\{b\}$) = {c} is not an $\delta \hat{g}$ -closed set of (Z, η) where {b} is a closed set of (X, τ) .

Theorem:3.7 If $f:(X, \tau) \to (Y, \sigma)$ is closed and $g:(Y, \sigma) \to (Z, \eta)$ is $\delta \hat{g}$ -closed map then $g \circ f:(X, \tau) \to (Z, \eta)$ is $\delta \hat{g}$ -closed.

Proof: Let G be a closed subset of X. Since f is closed, f(G) is closed set of Y. On the

other hand, $\delta \hat{g}$ -closeness of g implies g(f(G)) is $\delta \hat{g}$ -closed in Z. Hence

 $g \circ f:(X, \tau) \rightarrow (Z, \eta)$ is $\delta \hat{g}$ -closed map.

Remark: 3.8. If $f:(X, \tau) \to (Y, \sigma)$ is $\delta \hat{g}$ -closed and $g:(Y, \sigma) \to (Z, \eta)$ is closed map then $g \circ f:(X, \tau) \to (Z, \eta)$ may not be $\delta \hat{g}$ -closed. In an example 3.6, f is $\delta \hat{g}$ -closed and g is closed but $g \circ f$ is not $\delta \hat{g}$ -closed map.

Definition: 3.9. A map $f:(X, \tau) \to (Y, \sigma)$ is called δg -closed. (resp. δg -open) if the image of each closed (resp. open) set in (X, τ) is δg -closed in (Y, σ)

Theorem 3.10. Every δĝ-closed map is δg-closed. **© 2011**, *IJMA*. *All Rights Reserved*

Remark: 3.11. The converse of theorem 3.10 need not be true as shown in the following example.

Example: 3.12. Let $X = \{a, b, c\} = Y$ with topologies $\tau = \{\phi, \{b, c\}, X\}$ and $\sigma = \{\phi, \{c\}, \{a, b\}, Y\}$. Define a function $f:(X, \tau) \rightarrow Y, \sigma$) by f(a) = b, f(b)=a, f(c) = c. Then f is not $\delta \hat{g}$ -closed map because $\{a\}$ is closed in (X, τ) but $f(\{a\}) = \{b\}$ is not $\delta \hat{g}$ -closed in (Y, σ) . However f is $\delta \hat{g}$ -closed.

Theorem: 3.13. Every $\delta \hat{g}$ -closed map is $\alpha \hat{g}$ -closed. **Proof:** It is true that every $\delta \hat{g}$ -closed set is $\alpha \hat{g}$ -closed.

Remark: 3.14. The converse of Theorem 3.13 need not be true as shown in the following example.

Example: 3.15. Let $X = \{a, b, c\} = Y$ with topologies $\tau = \{\phi, \{b\}, \{b, c\}, X\}$ and $\sigma = \{\phi, \{b\}, \{a, b\}, \{b, c\}, Y\}$.Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be a function defined by f(a) = c, f(b) = b and f(c)=a. Then f is not $\delta \hat{g}$ -closed map because $\{a\}$ is closed

in (X, τ) but $f(\{a\}) = \{c\}$ is not $\delta \hat{g}$ -closed in (Y, σ) . However f is $\alpha \hat{g}$ -closed.

Theorem: 3.16. Every $\delta \hat{g}$ -closed map is g-closed. **Proof:** It is true that every $\delta \hat{g}$ -closed set is g-closed.

Remark: 3.17. The converse of the above theorem need not be true as shown in the following example.

Example: 3.18. Let $X = \{a, b, c\} = Y$ with topologies $\tau = \{\phi, \{b\}, \{a, c\}, X\}$ and $\sigma = \{\phi, \{a\}, \{a, b\}, \{a, c\}, Y\}$. Define a map f: $(X, \tau) \rightarrow (Y, \sigma)$ be a function defined by f(a) = c, f(b) = c and f(c)=b. Then f is $\delta \hat{g}$ -closed map. However it is not $\delta \hat{g}$ -closed because $\{b\}$ is closed in (X, τ) but $f(\{b\}) = \{c\}$ is not $\delta \hat{g}$ -closed in (Y, σ) .

Remark: 3.19 The following examples show that $\delta \hat{g}$ - closeness and \hat{g} -closeness are independent notions.

Example: 3.20. Let $X = \{a, b, c\} = Y$ with topologies $\tau = \{\phi, \{a\}, \{a, b\}, X\}$ and $\sigma = \{\phi, \{a\}, Y\}$. Define a function $f:(X, \tau) \rightarrow (Y, \sigma)$ by f(a) = a, f(b) = c and f(c) = b. Then f is $\delta \hat{g}$ -closed map but not \hat{g} - closed because $f(\{c\} = \{b\} \text{ is not} \hat{g}$ - closed in (Y, σ) where $\{c\}$ is closed set in (X, τ) .

Example: 3.21. Let $X = \{a, b, c\} = Y$ with topologies $\tau = \{\phi, \{a\}, \{a, b\}, X\}$ and $\sigma = \{\phi, \{a\}, \{b, c\}, Y\}$. Define a function f: $(X, \tau) \rightarrow (Y, \sigma)$ by f(a) = a, f(b) = c and f(c)=b. Then f is \hat{g} -closed map, However f is not $\delta \hat{g}$ -closed because $\{c\}$ is not closed in (X, τ) but $f(\{c\}) = \{b\}$ is not $\delta \hat{g}$ -closed in (Y, σ) .

Remark: 3.22. The following table shows the relationships of $\delta \hat{g}$ -closed maps with other known existing maps. The symbol"1"in a cell means that a map implies the other maps. Finally the symbol" 0" means that a map not implies the other maps.

M. LellisT hivagar and* *B. Meera Devi/ Some New Class of functions via \delta \hat{g}-sets /IJMA- 2(1), Jan.-2011, Page: 169-173* TABLE-1 $g \circ f : (X, \tau) \to (Z, \eta)$

closed functions	δĝ	δg	g	αĝ	(c)
δĝ	1	1	1	1	0
δg	0	1	1	0	0
g	0	0	1	0	0
αĝ	0	0	0	1	0
60	0	0	1	0	1

Theorem: 3.23. A map $f:(X, \tau) \to (Y, \sigma)$ is $\delta \hat{g}$ -closed if and only if for each subset G of (Y, σ) and for each open set U of (X, τ) containing $f^{-1}(G)$, there exists an $\delta \hat{g}$ -open set B of (Y, σ) such that $G \subset V$ and $f^{-1}(V) \subset U$.

Proof: Let f be an $\delta \hat{g}$ -closed map and let G be an subset of (Y, σ) and U be an open set of (X, τ) containing f⁻¹ (G). Then X-U is closed in (X, τ) . Since f is $\delta \hat{g}$ -closed map, f(X-U) is $\delta \hat{g}$ -closed set in (Y, σ) . Hence Y-f(X - U) is $\delta \hat{g}$ -open set in (Y, σ) . Take V = Y- f(X - U). Then V is $\delta \hat{g}$ -open set in (Y, σ) containing G. Such that f⁻¹ $(V) \subset U$. Conversely, let F be an closed subset of (X, τ) . Then f⁻¹ $(Y-f(F)) \subset X$ -F and X - F is open. By hypothesis there is an $\delta \hat{g}$ -open set V of (Y, σ) such that Y- f(F) $\subset V$ and f⁻¹ $(V) \subset X$ -F. Therefore, $F \subset X$ -f⁻¹ (V). Hence Y-V $\subset f(F) \subset f(X - f^{-1}(V)) \subset Y$ -V which implies f (F) = Y - Vand hence f (F) is $\delta \hat{g}$ - closed in (Y, σ) . Thus f is an $\delta \hat{g}$ closed map.

Theorem: 3.24. Let $f:(X, \tau) \rightarrow (Y, \sigma)$ and $g:(Y, \sigma) \rightarrow (Z, \eta)$ be any two maps:

(i) If $g \circ f : (X, \tau) \rightarrow (Z, \eta)$ is $\delta \hat{g}$ -closed map and g is $\delta \hat{g}$ -irresolute injective map then f is $\delta \hat{g}$ closed

(ii) If $g \circ f : (X, \tau) \to (Z, \eta)$ is $\delta \hat{g}$ -irresolute and g is $\delta \hat{g}$ -closed injective map then f is $\delta \hat{g}$ -continuous.

Proof: (i) Let U be closed in (X, τ) . Since $g \circ f$ is $\delta \hat{g}$ -closed, $(g \circ f)$ (U) is $\delta \hat{g}$ -closed in (Z, η) . Therefore g(f(U)) is $\delta \hat{g}$ -closed in (Z, η) . Since g is irresolute, $g^{-1}(g(f(U)))$ is $\delta \hat{g}$ -closed in (Y, σ) . That is f(U) is $\delta \hat{g}$ -closed in (Y, σ) . That is f(U) is $\delta \hat{g}$ -closed in (Y, σ) . That is f(U) is $\delta \hat{g}$ -closed in (Y, σ) . Since g is $\delta \hat{g}$ -closed, g(U) is $\delta \hat{g}$ -closed in (Z, η) . Since g is $\delta \hat{g}$ -closed, g(U) is $\delta \hat{g}$ -closed in (Z, η) . Since g of is $\delta \hat{g}$ -irresolute, $(g \circ f)^{-1}(g(U))$ is $\delta \hat{g}$ -closed in (X, τ) .

Therefore, $(f^{-1} \circ g^{-1}) g(U)$ is $\delta \hat{g}$ -closed in (X, τ) . Hence $f^{-1}(U)$ is $\delta \hat{g}$ -closed in (X, τ) . This shows that f is $\delta \hat{g}$ -continuous. **Theorem: 3.25.** Let $f:(X, \tau) \to (Y, \sigma)$ and $g:(Y, \sigma) \to (Y, \sigma)$. (Z, η) be any two maps and $g \circ f : (X, \tau) \to (Z, \eta)$ be an $\delta \hat{g}$ - closed map. If f is continuous then g is $\delta \hat{g}$ closed.

Proof: Let V be closed in (Y, σ) . Since f is continuous, $f^{-1}(V)$ is closed in (X, τ) . Since $g \circ f$ is $\delta \hat{g}$ -closed, $(g \circ f)(f^{-1}(V))$ is $\delta \hat{g}$ -closed in (Z, η) . That is g(V) is $\delta \hat{g}$ -closed in (Z, η) . Hence g is $\delta \hat{g}$ -closed.

Theorem: 3.26. A bijection $f:(X, \tau) \to (Y, \sigma)$ is $\delta \hat{g}$ -closed map iff f(U) is $\delta \hat{g}$ -open in (Y, σ) for every open set U in (X, τ) .

Proof: Let $f: (X, \tau) \rightarrow (Y, \sigma)$ be an $\delta \hat{g}$ -closed map and U be an open set in (X, τ) . Then U^c is closed in (X, τ) . Since f is $\delta \hat{g}$ -closed map, $f(U^c)$ is $\delta \hat{g}$ -closed set in (Y, σ) . But $f(U^c) = [f(U)]^c$ and hence $[f(U)]^c$ is $\delta \hat{g}$ -closed in (Y, σ) . Hence f(U) is $\delta \hat{g}$ -open in (Y, σ) . Conversely, f(U)is $\delta \hat{g}$ -open in (Y, σ) for every open set U of (X, τ) then U^c is closed set in (X, τ) and $[f(U)]^c$ is $\delta \hat{g}$ -closed in (Y, σ) . But $[f(U)]^c = f(U^c)$ and hence $f(U^c)$ is $\delta \hat{g}$ closed in (Y, σ) . Therefore, f is $\delta \hat{g}$ -closed map.

4.WEAKLY δĝ-CLOSED MAPS

We introduce the following definition:

Definition: 4.1 A map $f:(X, \tau) \rightarrow (Y, \sigma)$ is called weakly $\delta \hat{g}$ -closed (resp. weakly $\delta \hat{g}$ -open) if the image of every δ - closed (resp. δ -open) set in (X, τ) is $\delta \hat{g}$ -closed (resp. $\delta \hat{g}$ - open) set in (Y, σ) .

Theorem: 4.2 Every $\delta \hat{g}$ -closed map is weakly $\delta \hat{g}$ - closed.

Proof: Let $f:(X, \tau) \to (Y, \sigma)$ be an $\delta \hat{g}$ -closed map and G be a δ -closed set in (X, τ) . Every δ -closed set is closed, G is closed set in (X, τ) . Since f is $\delta \hat{g}$ -closed, f(G) is $\delta \hat{g}$ -closed in (Y, σ) . Hence f is weakly $\delta \hat{g}$ -closed map.

Remark: 4.3. The converse of the above theorem need not be true as shown in the following example.

Example:4.4. Let $X = \{a, b, c\} = Y$; $\tau = \{\phi, \{a\}, \{b\}, \{a, c\}, X\}, \sigma = \{\phi, \{b\}, \{a, c\}, Y\}$. Let $f:(X, \tau) \rightarrow (Y, \sigma)$ be the identity map. Then f is weakly $\delta \hat{g}$ -Closed map but f is not $\delta \hat{g}$ -closed. Since $f(\{b, c\}) = \{b, c\}$ is not $\delta \hat{g}$ -closed in (Y, σ) where $\{b, c\}$ is closed in (X, τ) .

Theorem: 4.5 Every δ -closed map is weakly $\delta \hat{g}$ -closed map

Proof: It is true that every δ -closed set is $\delta \hat{g}$ -closed.

Remark: 4.6 The converse of the above theorem need not be true as shown in the following example.

Example: 4.7 Let X = {a, b, c} = Y ; $\tau = {\varphi, {a}, {b}, {b}, {a, c}, X}$, $\sigma = {\varphi, {a}, Y}$. Let f :(X, τ) \rightarrow (Y, σ) be the identity map. Then f is weakly $\delta \hat{g}$ -closed map but f is not δ -closed map because f ({a, c}) = {a, c} is not δ –

** *M. LellisT hivagar and* ** *B. Meera Devi/Some New Class of functions via \delta \hat{g}-sets /IJMA-2(1), Jan.-2011, Page: 169-173* closed in (Y, σ) where $\{a, c\}$ is closed in (X, τ) .

Proposition: 4.8. The composite mapping of weakly $\delta \hat{g}$ -closed maps need not be weakly $\delta \hat{g}$ -closed as shown in the following example.

Example 4.9. Let $X = \{a, b, c\} = Y = Z$ with topologies $\tau = \{\phi, \{a\}, \{b\}, \{a, b\}, \{a, c\}, X\}$ and $\sigma = \{\phi, \{b\}, \{c\}, \{a, b\}, \{b, c\}, Y\}$, $\eta = \{\phi, \{c\}, \{a, b\}, Z\}$. Define a function $f : (X, \tau) \rightarrow (Y, \sigma)$ by f(a) = a, f(b) = a and f(c) = b and let $g : (Y, \sigma) \rightarrow (Z, \eta)$ be the identity function. Clearly f and g are weakly $\delta \hat{g}$ -closed map but the $g \circ f : (X, \tau) \rightarrow (Z, \eta)$ is not an weakly $\delta \hat{g}$ -closed map because $\{b\}$ is δ -closed in (X, τ) but $(g \circ f)(\{b\}) = g(f(\{b\})) = \{a\}$ is not $\delta \hat{g}$ -closed set in (Z, η) .

Theorem : 4.10 Let $f : (X, \tau) \to (Y, \sigma)$ and $g : (Y, \sigma) \to (Z, \eta)$ be any two maps. Then

(i) $g \circ f:(X, \tau) \to (Z, \eta)$ is weakly $\delta \hat{g}$ -closed map, if f is δ -closed map and g is weakly $\delta \hat{g}$ -closed map.

(ii) If $g \circ f : (X, \tau) \to (Z, \eta)$ is weakly $\delta \hat{g}$ -closed and g is $\delta \hat{g}$ -irresolute injective map then f is weakly $\delta \hat{g}$ -closed.

Proof: (i) Let V be δ -closed in (X, τ) . Since f is δ -closed map, f(V) is δ -closed in (Y, σ) . Since g is weakly $\delta \hat{g}$ -closed map, g(f(V)) is $\delta \hat{g}$ -closed in (Z, η) . That is $(g \circ f)(V)$ is $\delta \hat{g}$ -closed in (Z, η) . Hence $(g \circ f)$ is weakly $\delta \hat{g}$ -closed map.

(ii) Let U be the δ -closed in (X, τ) . Since $g \circ f$ is weakly $\delta \hat{g}$ -closed map, $(g \circ f)(U)$ is $\delta \hat{g}$ -closed in (Z, η) . Therefore g(f(U)) is $\delta \hat{g}$ -closed in (Z, η) . Since g is $\delta \hat{g}$ -irresolute, $g^{-1}(g(f(U)))$ is $\delta \hat{g}$ -closed in (Y, σ) . That is f(U) is $\delta \hat{g}$ -closed in (Y, σ) . Hence f is weakly $\delta \hat{g}$ -closed map.

Remark: 4.11 Weakly $\delta \hat{g}$ -closeness and $\delta \hat{g}$ - irresoluteness are independent notions as shown in the following example.

Example: 4.12 Let $X = \{a, b, c\} = Y$ with topologies $\tau = \{\phi, \{a, b\}, X\}, \sigma = \{\phi, \{b\}, Y\}$. Define a function $f : (X, \tau) \to (Y, \sigma)$ by f(a) = b, f(b)=c and f(c) = a. Then f is weakly $\delta \hat{g}$ -closed map but not $\delta \hat{g}$ -irresolute because $f^{-1}(\{b, c\}) = \{a, b\}$ is not $\delta \hat{g}$ -closed in (X, τ) where $\{b, c\}$ is $\delta \hat{g}$ -closed in (Y, σ) .

Example: 4.13. Let $X = \{a, b, c\} = Y$ with topologies $\tau = \{\phi, \{a\}, \{c\}, \{a, c\}, X\}, = \{\phi, \{a\}, \{c\}, \{a, b\}, \{a, c\}, Y\}$. Let $f : (X, \tau) \rightarrow (Y, \sigma)$ be an identity function. Clearly f is $\delta \hat{g}$ -irresolute but not weakly $\delta \hat{g}$ -closed map because f $(\{c\}) = \{c\}$ is not $\delta \hat{g}$ -closed in (Y, σ) where $\{c\}$ is δ -closed in (X, τ) .

Theorem: 4.14. A bijection $f : (X, \tau) \rightarrow (Y, \sigma)$ is weakly $\delta \hat{g}$ -closed map, iff f(U) is $\delta \hat{g}$ -open in (Y, σ) for every δ -open set U in (X, τ) .

Proof: Let $f:(X, \tau) \to (Y, \sigma)$ is weakly $\delta \hat{g}$ -closed map and U be an δ -open set in (X, τ) . Then U^C is δ -closed set in (X, τ) . Since f is weakly $\delta \hat{g}$ -closed map, $f(U^{C})$ is $\delta \hat{g}$ -closed set in (Y, σ) . But $f(U^{C}) = [f(U)]^{C}$ and @ 2011, IJMA. All Rights Reserved

hence $[f(U)] \stackrel{c}{}$ is $\delta \hat{g}$ -closed set in $(Y,\,\sigma)$. Hence f(U) is $\delta \hat{g}$ - open in $(Y,\,\sigma)$. Conversely, f(U) is $\delta \hat{g}$ -open in $(Y,\,\sigma)$ for every δ -open set U of $(X,\,\tau)$. Then $U \stackrel{c}{}$ is δ -closed set in $(X,\,\tau)$ and $[f(U)] \stackrel{c}{}$ is $\delta \hat{g}$ -closed in $(Y,\,\sigma)$. Hence $f(U \stackrel{c}{})$ is $\delta \hat{g}$ -closed in $(Y,\,\sigma)$. Thus f is weakly $\delta \hat{g}$ -closed map.

Theorem: 4.15. A map $f:(X, \tau) \to (Y, \sigma)$ is weakly $\delta \hat{g}$ -closed map, iff for each subset B of (Y, σ) and for each δ -open set U of (X, τ) containing $f^{-1}(B)$, there exists an $\delta \hat{g}$ -open set V of (Y, σ) such that $B \subset V$ and $f^{-1}(V) \subset U$

Proof: Necessity, suppose f is weakly δĝ -closed map. Let B be any subset of (Y, σ) and U be an δ -open set of (X, τ) containing f⁻¹(B). Then X – U is δ -closed subset o f (X, τ). Since f is weakly δĝ - closed map, f (X –U) is δĝ closed set in (Y, σ). That is Y–f(X–U) is δĝ -open in (Y, σ). Put V = Y-f(X-U). Then V is an δĝ -open set in (Y, σ) containing B such that f⁻¹(V) ⊂ U. Sufficiency. Let F be any δ - closed subset of (X, τ). Then f⁻¹(Y –f(F)) ⊂X – F a nd X-F is δ -open in (X, τ). Put B = Y-f(F). Then f⁻¹(B)⊂ X –F There exists an δĝ -open set V of (Y, σ) such that B = Y- f(F) ⊂V and f⁻¹(V) ⊂ X – F. Therefore we obtain f(F)= Y - V and hence f(F) is δĝ -closed in (Y, σ). Thus f is weakly δĝ -closed map.

5. APPLICATIONS:

Definition: 5.1. [5] A space (X, τ) is called $\hat{T}_{3/4}$ -space if every $\delta \hat{g}$ -Closed set in it is-closed.

Theorem: 5.2. Let $f : (X, \tau) \to (Y, \sigma)$ and $g : (Y, \sigma) \to (Z, \eta)$ two functions. Let (Y, σ) be $\hat{T}_{3/4}$ spaces. Then

(i) $g \circ f:(X, \tau) \to (Z, \eta)$ is $\delta \hat{g}$ -closed map if g is $\delta \hat{g}$ -closed and f is $\delta \hat{g}$ -closed map.

(ii) $g \circ f : (X, \tau) \to (Z, \eta)$ is weakly $\delta \hat{g}$ -closed map if g is weakly $\delta \hat{g}$ -closed and f is weakly $\delta \hat{g}$ -closed.

Proof: (i) Let V be closed in (X, τ) . Since f is $\delta \hat{g}$ -closed map, f (V) is $\delta \hat{g}$ -closed set in (Y, σ) . Since Y is $\hat{T}_{3/4}$ space, f(V) is δ -closed in Y. Since g is $\delta \hat{g}$ -closed map, g(f (V)) in (Z, η). That is (g \circ f)(V) is $\delta \hat{g}$ -closed in (Z, η). Hence (g \circ f) is $\delta \hat{g}$ -closed map.

(ii)Let U be the δ -closed in (X,τ) . Since f is weakly $\delta \widehat{g}$ -closed map, f(U) is $\delta \widehat{g}$ -closed in (Y,σ) . since Y is $\widehat{T}_{3/4}$ space, f(U) is δ -closed in (Y,σ) . Since g is weakly $\delta \widehat{g}$ -closed, g(f(U)) is $\delta \widehat{g}$ -closed in (Z,η) . That is $g \circ f(U)$ is $\delta \widehat{g}$ -closed in (Z,η) . Hence $g \circ f$ is weakly δ g° -closed map.

We introduce the following definition:

Definition: 5.3. A space (X, τ) is said to be $\delta \hat{g}$ -regular if for each closed set F of X and each point $x \notin F$ there exists disjoint $\delta \hat{g}$ -open sets U and V such that $F \subset U$ and $x \in V$.

Theorem: 5.4. In a topological space (X, τ) , the 172

^{*}M. LellisT hivagar and ^{**}B. Meera Devi/ Some New Class of functions via δĝ-sets /IJMA- 2(1), Jan.-2011, Page: 169-173

following statements are equiv- alent. (i) (X, τ) is $\delta \hat{g}$ -regular.

(ii) For every point of (X, τ) and every open set V containing x there exists an $\delta \hat{g}$ -open set A such that $x \in A \subset cl_{\delta}(A) \subset V$.

Proof: (i) \Rightarrow (ii) Let $x \in X$ and V be an open set containing x. Then X-V is closed and $x \notin X - V$. By (i) there exists an $\delta \hat{g}$ -open set A and B such that $x \in A$ and X-V $\subset B$. That is X-B $\subset V$. Since every open set is \hat{g} -open, V is \hat{g} -open. X-B is $\delta \hat{g}$ -closed. Therefore cl_{δ} (X-B) $\subset V$. Since A $\cap B = \phi$, A $\subset X-B$. Hence $x \in A \subset cl_{\delta}$ (A) $\subset cl_{\delta}$ (X-B) $\subset V$ Thus $x \in A \subset cl_{\delta}$ (A) $\subset (V)$.(ii) \Rightarrow (i) Let F be a closed set and $x \notin F$. This implies that X-F is open set containing x. By (ii), there exists an $\delta \hat{g}$ -open set A such that $x \in A \subset cl_{\delta}$ (A) $\subset X - F$. That is $F \subset X$ -cl_{δ}(A). Since every closed set is $\delta \hat{g}$ -closed, cl_{δ}(A) is $\delta \hat{g}$ -closed and X-cl_{δ}(A) is $\delta \hat{g}$ -open sets.

Theorem: 5.5. Let $f : (X, \tau) \to (Y, \sigma)$ is a continuous and $\delta \hat{g}$ -closed, bijection map and (X, τ) is a regular space then (Y, σ) is $\delta \hat{g}$ -regular.

Proof: let $y \in Y$ and B be an open set containing y of (Y, σ) Let x be a point of (X, τ) such that y = f(x). Since f is continuous, $f^{-1}(V)$ is open in (X, τ) . since (X, τ) is regular, there exists an open set U such that $x \in U \subset cl(U) \subset f^{-1}(V)$. Hence $y = f(x) \in f(U) \subset f(cl(U)) \subset V$. Since f is an $\delta \hat{g}$ -closed map, f(cl(U)) is an $\delta \hat{g}$ -closed set Contained in the open set V, which is \hat{g} -open. Hence we have $cl_{\delta}(f(cl(U)) \subset V$. Therefore $y \in f(U) \subset cl_{\delta}(f(U)) \subset V$. Since f is $\delta \hat{g}$ -closed map, U^{c} is closed in X, $f(U^{c})$ is $\delta \hat{g}$ -closed in (Y, σ) . But $f(U^{c}) = [f(U)]^{c}$ is $\delta \hat{g}$ -closed in (Y, σ) . Thus for every point y of (Y, σ) and every open set V containing y there exists an $\delta \hat{g}$ -open set f(U) such that

$$y \in f(U) \subseteq cl_{\delta}(f(U)) \subseteq V.$$

Hence by the above theorem, (Y, σ) is $\delta \hat{g}$ -regular.

Theorem: 5.6. If $f:(X, \tau) \to (Y, \sigma)$ is a continuous and weakly $\delta \hat{g}$ -closed bijective map and if (X, τ) is $\hat{T}_{3/4}$ space and regular space then (Y, σ) is $\delta \hat{g}$ -regular

Proof: let $y \in (Y, \sigma)$ and V be an open set containing y. Let x be a point of (X, τ) , such that y = f(x). Since f is continuous, $f^{-1}(V)$ is open in (X, τ) . By assumptions and theorem 5.3, there exists an $\delta \hat{g}$ -open set U such that $x \in U \subset cl_{\delta}(U) \subset f^{-1}(V)$. Then

$$y \in f(U) \subset f(cl_{\delta}(U) \subset V$$

We know that

cl $_{\delta}$ (U) is δ -closed. Since f is weakly $\delta \hat{g}$ -closed, f(cl $_{\delta}$ (U) is $\delta \hat{g}$ -closed set in (Y, σ). Every open set is \hat{g} -open

and hence V is \hat{g} -open. Therefore we get cl_{δ} (f (cl_{δ} (U))) \subset V. This implies $y \in f(U) \subset cl_{\delta}$ (f (U)) $\subset cl_{\delta}$ (f (cl_{δ} (U))) \subset V. That is $y \in f(U) \subset cl_{\delta}$ (f (U)) \subset V. Now U is $\delta \hat{g}$ open implies U^c is $\delta \hat{g}$ -closed in (X, τ) Since (X, τ) is $\hat{T}_{3/4}$ and f is weakly $\delta \hat{g}$ -closed map f(U^c) is $\delta \hat{g}$ -closed in (Y, σ). But f(U^c) = [f(U)]^c. That is [f(U)]^c is $\delta \hat{g}$ closed in (Y, σ). This implies f(U) is $\delta \hat{g}$ -open in (Y, σ). Thus for every point y of (Y, σ) and every open set V containing y, there exists an $\delta \hat{g}$ -open set f(U) such that $y \in f$ (U) $\subset cl_{\delta}$ (f (U)) \subset V. Hence by theorem 5.3, (Y, σ) is $\delta \hat{g}$ regular.

REFERENCES:

[1] Devi. R, Balachandran. K, Maki. H, "Generalized α - closed maps and α -generalized closed maps", Indian J. Pure. Appl. Math., 29(1) (1998), 37-49.

[2] Dontchev. J and Ganster. M, "On δ -generalized closed sets and T $_{3/4}$ – spaces" Mem. Fac.Sci.Kochi Univ. Ser. A, Math., 17(1996), 15-31.

[3] Levine.N, "Semi-open sets and semi-continuity in topological spaces", Amer Math. Monthly, 70(1963), 36-41.

[4] Levine.N, "Generalized closed sets in topology", Rend. Circ. Mat. Palermo, 19(1970) 89-96.

[5] Lellis Thivagar.M, Meera Devi.B," Some new class of generalized continuous functions". Communicated.

[6] M. E Abd El-Monsef, S.Rose Mary and M. Lellis Thivagar "On $\alpha \hat{g}$ - closed sets in topological spaces", Assiut University Journal of Mathematics and Computer Science, Vol. 36(1), P-P. 43-51(2007). [7] Malghan. S.R, "Generalized closed maps", J. Karnatak Univ, Sci., 27(1982), 82-88.

[8] Njastad, O., "On some classes of nearly open sets", Pacific J Math. 15(1965), 961-970.

[9] Noiri. T, "A generalization of perfect functions", J.Korean Math. Soc.17 (1978), 540-544.

[10] Noiri.T, "On δ -continuous functions", J. Korean Math.soc.18 (1980), 161-166.

[11] Stone.M, "Application of the theory of Boolian rings to general topology" Trans. Amer. Math. Soc. 41(1937), 374-481.

[12] Veera Kumar.M.K.R.S, " \hat{g} -closed sets in topologycal spaces", Bull.Allah. Math.Soc, 18(2003), 99-112.

[13] Velicko.N.V, "H-closed topological spaces" Amer. Math. Soc. Transl., 78(1968), 103-118.