
International Journal of Mathematical Archive-3(4), 2012, Page: 1743-1753 
 Available online through www.ijma.info ISSN 2229 – 5046 

International Journal of Mathematical Archive- 3 (4), April – 2012                                                                                             1743 

 
ON PARTIAL SUMS OF CERTAIN NEW CLASS OF ANALYTIC  

AND UNIVALENT FUNCTIONS 
 

*Oladipo, A. T. 
 

Department of Pure and Applied Mathematics, Ladoke Akintola University of Technology, Ogbomoso 
P. M. B. 4000, Ogbomoso, Nigeria, E-mail: atlab_3@yahoo.com 

 
(Received on: 21-03-12; Revised & Accepted on: 09-04-12) 

________________________________________________________________________________________________ 
 

ABSTRACT 
Let ω  be an arbitrary fixed point in the open unit disk { }1: <= zzU . Let )(zΨ  be a fixed analytic and univalent 

functions of the form ( ) ( ) ( ) ( )δωψωωψ ,,
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In the present investigation the author determines the sharp lower bounds for
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where ( ) ( ) ( )kn

k kn zazzf ωω −+−= ∑ =2
 be the sequence of the partial sums of a function 

( ) ( ) ( )kn

k k zazzf ωω −+−= ∑ =2  
belonging to the class ( ), ,kH bω δΨ and ( ),mI lω λ  denotes the Aouf 

derivative operator [2]. This investigation does not only extends the results in [4.5.12.15] but also provides some 
conditions as remedy for the results of Frasin in [4] and [5]. Our present investigations also give rise to many new 
classes with new results. 
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1. INTRODUCTION  
 
Let A denote the class of functions of the form 

     ( ) ∑
∞

=

+=
2k

k
k zazzf                                                            (1) 

where are analytic in the open unit disk { }1: <= zzU and normalized with {0} = 0 and ( ) .010 =−′f  

Furthermore, we denote by S the class of functions is A which are univalent in U. A function ( )zf in S is said to be 

starlike of order ( )10 <≤ αα , denoted by  ( )α∗S  if it satisfies 
( )
( ) ( )Uz
zf
zfzR ∈>






 ′

,α . A function ( )zf  in 

S  is said to be convex of order ( )10 <≤ αα , denoted by ( )αK  if it satisfies 
( )
( ) ( )Uz
zf
zfzR ∈>






 ′
+ ,1 α . 

Several authors have discussed these aforementioned classes as we can see in many existing literatures. 
 
Now, let ω be an arbitrary fixed point in U. Let ( ) AA ⊂ω denotes the class of functions of the form 
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   ( ) ( ) ( )k
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k zazzf ωω −+−= ∑

∞

=2

                                 (2) 

which are analytic in the open unit disk U and normalized with ( ) ( ) 010 =−′= ωω fandf  [6]. We denote by 

( ) SS ⊂ω the class of functions which are univalent in U. A function ( ) ( )ωSzf ∈  is said to be −ω starlike of 

order ( ),10 <≤ αα  denoted by ( )αω,∗S  if it satisfies 
( ) ( )

( ) ( )Uz
zf

zfzR ∈>






 ′− ,αω

 and a function 

( ) ( )ωSzf ∈  is said to be convex of order ( ),10 <≤ αα  denoted by ( )αω,cS , if it satisfies 

( ) ( )
( ) ( )Uz
zf

zfzR ∈>








′
′′−

+ ,1 αω
 where ω  is an arbitrary fixed point in U. This is deduce able in [8, 10, 11] 

 
Let ( )ωT denote the subclass of ( )ωS whose elements can be represented in the form 

   ( ) ( ) ( ) ( ),,0,
2

Uzazazzf k
k

k
k ∈≥−−−= ∑
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=
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and ω  is arbitrary fixed point in U [9,11].  
 
Here we denote by ( )αω,H  and ( )αω,K  respectively the subfamilies of ( ) ( )αωαω ,,* cSandS  obtained by 

taking the intersection of ( )αω,*S and ( )αω,*S  with ( ),ωT [9, 11] 
 
A sufficient condition for a function of the form (2) to be in ( )αω,*S  and ( )αω,cS  are respectively given by 

   ( ) ( )∑
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− −≤−+
2

1 1
k

k
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and   ( ) ( )∑
∞

=
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2

1 1
k

k
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which is deduceable in [8]. Furthermore, for the functions of the form (3), the above conditions are also necessary [11]. 
At 00 =⇒= ωd that is, if f  is of the form (1) we have the results of Silverman [14] 
 
Now, let ( ) ( )ωSz ∈Ψ be a fixed function of the form 

   ( ) ( ) ( ) ( ).2,0,
2

2∑
∞

=

≥≥≥−+−=Ψ
k

k
k

k kbbzbzz ωω                               (6) 

 
Here, we define the class ( )δω kbH ,Ψ consisting of function of the form (2) which satisfies the inequality 

   ( ) .,,
2

1 drzabdr
k

kk
k ==≤+∑

∞

=

− ωδ                                 (7) 

 
where .0>δ This class of functions is the analogue by extension of the one defined by Frasin in [5]. 

In the present paper, the author wishes to determine sharp lower bounds for 
( ) ( )
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where 

   ( ) ( ) ( )
2
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n k

k
f z z a zω ω

∞

=

= − + −∑                                  (8) 

be the sequence of partial sums of a function ( ) ( ) ( )∑
∞

=

−−−=
2k

k
k zazzf ωω  belonging to the class 

[ ]δωψ ,, kbH  and the operator ( )lI m ,λω  denote the Aouf et al derivative operator introduced in [2], and  it is defined 

as follows ( ) ( ) ( ) ( ) ( ) ( )zfzflIthatsuchAAlI m =→ ,:, 0 λωωλ ωω  
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and in general 
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{ } ,0,0...,3,2,1,00 −≥≥=∈ lUNm λ and ω is an arbitrary fixed point in U. 
 
Remark A: At 0=ω we have Catas et al derivative operator [3], if 00 == landω we obtain A1-Oboundi 
operator [1]. setting 10,0 === λω andl we obtain Salagean derivative operator [13]. 
 
The present investigation does not only extends the results of Frasin [4] and [5]. Rossy et al [12] and Silverman [15], 
but also pointed out some conditions that are must for the result of Frasin [4] and [5], but which are neglected, not only 
these, the present investigation also give rise to new classes of analytic and univalent functions with new results. 
 
2. MAIN RESULTS  
 
Theorem 2.1: If ( ) ( ),,, δωψ kbHzf ∈
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The results (9) and (10) are sharp with the function given by 
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Proof: To prove (i) we define the function ◊ (z) by 
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It suffices to show that ( ) ,1≤Φ z  from (12) we can write 
 

( ) ( )
( ) ( )

( ) ( )
( )

( ) ( )
.

1
11

1
1122

1
11

1
111

2

1
1

1

∑∑

∑
∞

+=

−+−

=

−∞

+=
+

−







+
+−+

+
+−








+
+−+

+

−







+

+−+
+

=Φ

nk
k

k

m

mn
nk

k

m
n

k

k
k

m

nkmn
n

za
l

lk
dr
b

za
l

lk

za
l

lk
dr
b

z
ωλ

δσ
ωλ

ω
λ

δσ

Hence,  

( ) ( )
( ) ( )

( ) ( )
( )

( ) ( )

11
1

1 11
2 1

1 1
1

1 1 1 1
2 2

1 1

m
kn

kn k nm

m m
n k kn

k knk k nm

k lb r d a
lr d

z
k l k lbr d a r d a

l lr d

λ

σ δ

λ λ

σ δ

∞ −+
= +

∞− −+
= = +

 + − +
+ ++  Φ ≤

   + − + + − +
− + − +   + ++   

∑

∑ ∑
 
 
( ) 1≤Φ z  if  

( )
( ) ( ) ( ) ( )1 1

1 2

1 1 1 1
2 2 2

1 1

m m
n

k kn i
k kn m

k n k

k l k lb r d a r d a
l lr d

λ λ

σ δ

∞
− −+

= + =

   + − + + − +
+ ≤ − +   + ++    

∑ ∑  

   
 
Or equivalently, 

( ) ( )
( )

( ) ( )1 1

2 1

1 1 1 1
1

1 1

m m
n

k kn i
k kn m

k k n

k l k lbr d a r d a
l lr d

λ λ

σ δ

∞
− −+

= = +

   + − + + − +
+ + + ≤   + ++   

∑ ∑         (13) 

  
 
It is sufficient to show that the L.H.S of (13) is bounded above by 
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To see that the function given by (11) gives the sharp results, we observed that for ( ) ( ) n
i

edrwz
π

+=−  
 

( ) ( )
( ) ( ) ( ) ( ) ( )

1

1

11

11
,
,

+

+

++

+−
=+−→++=

n

nm
nnm

n

nm

nn
m
w

m
w

b
drb

dr
b

dr
bzflI

zflI δσ
σδσδ

λ
λ

 

 
To prove (ii) of our theorem, we write 
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Equality is equivalent to 
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Making use of (7) to get (14). Equality holds in (10) for the function ( )zf  given by (11) and the proof of Theorem 2.1 
is complete. 
 
If we choose d = 0 which implies that −→= 1,0 rω (i. e for ( )zf  defined as in (1)), then we obtain the following: 
 
Corollary A: If ( )0, kf H b δΨ∈ , and ( )zf  is of the form (1), then 
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with m
nb
σ

δ 10 +≤<  and the results (15) and (16) are sharp for functions given by (11). 

 
This result is completely new and the operator ( )ll m ,λ  the same as Catas et al derivative operator [3]. 
 
Putting 0,0 == lω  in Theorem 2.1, we have 
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The result are sharp with functions given by (11) with 
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Putting 1=λ  in corollary B we have 
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The results are sharp with functions given by (11) with 
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≤< +δ  and the ( )0,10
mI  is the same as Salagean 

operator [3], this result is new. 
 
Taking m = 0 in corollary C we obtain the result given by Frasin [5] 
 
Corollary D: If ( )0, kf H bψ δ∈ , then 
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The results are sharp with the function given by (11). 
 
If we choose 0,0,1,1 ==== ωλ lm  in Theorem 2.1 we have 
 
Corollary E: If ( )0, kf H bψ δ∈  and for f of the form (1), then 
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The results in corollary E are sharp with function given by (11). 
 
Remark B: Frasin in [5] showed in his Theorem 2.7 that for ( )0, kf H bψ δ∈ , inequalities in Corollary E hold with 
the condition that 
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If we take 
( ) ( )[ ]
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==

k
kkbm k

1
1

1,0
τ

α
ραρ

, where 1,0,11,0,0 ==<≤−≥≥ λαρτ l  and 

1=δ in Theorem 2.1, we obtain the following results given by Rosy et al. in [12].  
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Corollary F: If Af ∈  is of the form (1) and the condition 1
2

≤∑∞

= kk k ab  is satisfied, where  

 

                                           
( ) ( )[ ]








 −+
−

+−+
=

k
kkbk

1
1

1 τ
α

ραρ
 

 
and .0,1,0,11,0,0 ===<≤−≥≥ ll λαρτ Then 

                                           
( )
( ) ( )Uz

b
b

zf
zfR

n

n

n
e ∈

−
≥









+

+ ,
1

1

1  

and 

                                           
( )
( ) ( )Uz

b
b

zf
zf

R
n

nn
e ∈

+
≥









+

+ ,
11

1  

 
The results are sharp with function given by 
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 + − + + −  = ≥ ≥ − ≤ < −  
 in 

Theorem 2.1, we have 
 

Corollary G: If f of the form (1) and satisfies 1
2
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= kk k ab , then 
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The results are sharp with the function given by (18). With αδαµτ −=−== 1,,0 kkkbm  where 

,0,0,10 ≥≥<≤ kk µτα and ( ) 1,0,2 ==≥≥ λµτ lkkk in Theorem 2.1 we have the following by Frasin [4]. 
 

Corollary H: If f is of the form (1) with and satisfies ( )∑∞
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The results are sharp with the function given by 
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If we take 0,1,0,0,10,1,,0,1 ==≥≥<≤−=−=== lbm kkkkk λµτααδαµτω  and ( )2≥≥ kkk µτ  
in Theorem 2.1 we have 
 

Corollary I: If f is of the form (1) and satisfy ( )∑∞
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The results are sharp with function given by (19). 
 
Remark C: Frasin obtained the inequalities in Corollary I in his Theorem 2 of [4] under the condition that 
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But this paper critically looked at the proof of his Theorem 2 of [4] and find out that the last inequality of the theorem, 
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It is seen that the inequality (20) of [4] Theorem 2) cannot hold with function given by (19) to support the sharpness of 
the results in Corollary I. This paper provides remedy in our corollary I for the condition (2.25) of Theorem 2 in [4]. 
Additionally, with ( ) ( ) ,10,1,,0,1,,0,0 <≤−=−===−=== ααδαλαω kkblkbm kk  in our 

Theorem 2.1, we have Theorem 1-3 given by Silverman in [15], also, if 1=m  and other parameters remain as in this 
paragraph, we would have Theorem 4-5 given by Silverman in [15]. 
 
The second parts of the corollaries are the ones which give rise to the new classes and new results. Putting 0=l  in 
Theorem 2.1 then we have 
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where 
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The results are sharp with the function given by (11) where 
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If we let 0,1 == lλ  in Theorem 2.1 we have 
 
Corollary K: If ( )1, kf H w bψ δ∈ , then 
 

( ) ( ) ( )
( ) ( )

( ) ( )
1

11 1
0,1
0,1

+

+ ++−
≥









n

mn
n

n
m
w

m
w

b
ndrb

zfI
zfI

Ri
δ

 

And 

( ) ( ) ( )
( ) ( ) ( ) ( ) 11

1

10,1
0,1

δmn
n

n
m
w

n
m
w

ndrb
b

zfI
zfI

Rii
+++

≥








+

+  

The results are sharp with the function given in (11) where 
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If we continue with various special choices of the parameters involved, many new results shall be obtained. 
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