ON THE PARTIAL ORDERING OF RANGE HERMITIAN MATRICES

AR. Meenakshi*
M-1, May Flower Metropolis, K. M. Kovil Street, UDAYAMPALAYAM, COIMBATORE - 641 028, INDIA

(Received on: 15-04-12; Accepted on: 30-04-12)

Abstract

For a given range Hermitian matrix B, conditions are obtained for all matrices A that lie below B (above B) $A \leq B$ (A $\geq B)$ to be range Hermitian under a given partial ordering on matrices. As an application, it is shown that the monotonicity of the constitutive operators in linear electro-mechanical systems having the same structure operator is preserved for the corresponding transfer impedances.

Key words: Hermitian matrix, Almost definite matrix, quasi positive definite matrix, Positive semi definite matrix, Hermitian positive semi definite matrix, Range Hermitian matrix.

AMS Subject Classification: 15B57, 15A24.

1 INTRODUCTION

Let $C_{n x n}$ be the set of all complex matrices of order n and C_{n} be the set of all Complex vectors. For $A \in C_{n \times n}$, let $R(A)$, $N(A), A^{*}, A^{+}, A^{-}$and $r k(A)$ be the range space, null space, conjugate transpose, Moore - Penrose inverse, generalized inverse (A^{-}is a solution of the matrix equation $\mathrm{AXA}=\mathrm{A}$) and rank of A respectively. $\mathrm{A} \in \mathrm{C}_{\mathrm{nxn}}$ is said to be almost definite (a.d [3]) if for $x \in C_{n}$, $x^{*} A x=0 \Rightarrow A x=0$. $A \in C_{n x n}$ is said to be positive semi definite (p.s.d [6]) if $\operatorname{Re}\left(x^{*} A x\right) \geq 0$ for $x \in C_{n}$. If A is also Hermitian, then A is Hermitian positive semi definite (h.p.s.d) and is denoted as $A \geq 0$. A matrix $A \in C_{n x n}$ is said to be Almost positive semi definite (a.p.d) if it is both a.d and p.s.d. Mitra and Puri [9] have introduced and developed the concept of quasi positive definite (q.p.d) matrix. $A \in C_{n \times n}$ is said to be q.p.d if A is p.s.d and $\operatorname{Re}\left(x^{*} A x\right)=0 \Rightarrow A x=0$ and they have proved that a q.p.d matrix is always a.p.d. For properties of a.d, a.p.d and q.p.d matrices, one may refer [3, 9]. These special types of matrices are widely used in the study of electrical networks and in linear electromechanical systems. It was pointed out by Duffin and Morley [3] that the unique transfer impedance in a general linear electromechanical system exists for every structure operator if and only if the constitutive operator is a.d. For terminology and representation of a general linear electromechanical system by a pair of equations, one may refer [3].

For $A, B \in C_{n \times n}, A \geq B \Leftrightarrow A-B \geq 0 \Leftrightarrow A-B$ is Hermitian positive semi definite (h.p.s.d). It is well known that for nonsingular matrices A, B, if $A \geq B \geq 0$, then $B^{-1} \geq A^{-1} \geq 0$. This was extended to generalized inverses of certain types of pairs of singular matrices $\mathrm{A} \geq \mathrm{B} \geq 0$ by Hans J . Werner [4] and independently by Hartwig [5]. In [8], their results were extended for a wider class of a.p.d matrices. For a pair of Complex a.p.d matrices A and B such that $A \geq$ B, conditions are obtained for $\mathrm{B}^{+} \geq \mathrm{A}^{+}$. Here, we have extended our results found in [8] on partial orderings of almost definite matrices and some well known matrix inequalities on a pair of h.p.s.d matrices available in the literature [1, 2, 7, 9], for a wider class of range Hermitian matrices. $A \in C_{n \times n}$ is said to be range Hermitian if $R(A)=R\left(A^{*}\right)$. The concept of range Hermitian matrices are introduced by Schwerdtfeger [11] for complex matrices. Since, for $A \in C_{n x n}$, $R\left(A^{*}\right)=N(A)^{\perp}, R(A)=R\left(A^{*}\right)$ is equivalent to $N(A)=N\left(A^{*}\right)$. Later, Pearl [10] has proved that $A \in C_{n \times n}$ is range Hermitian $\Leftrightarrow \mathrm{AA}^{+}=\mathrm{A}^{+} \mathrm{A}$, that is projectors are equal, hence Equi-projector matrix, that is, EP matrix in short. The class of EP matrices is a larger class that includes nonsingular matrices, Hermitian matrices. In [9] it is shown that the class of q.p.d matrices \subseteq class of a.p.d matrices \subseteq class of EP matrices.

2. PARTIAL ORDERING ON EP MATRICES

We are concerned with h.p.s.d partial ordering on EP matrices. $A \in C_{n \times n}$ is EP means that A is an EP matrix. For A, B $\in C_{n x n}, \quad A \geq B \Leftrightarrow A-B \geq 0 \Leftrightarrow A-B$ is h.p.s.d matrix. In this section; conditions for all those matrices that lie below (or) above a given EP matrix relative to h.p.s.d ordering to be EP are determined. First we shall prove certain lemmas, which will simplify the proof of the main result.

Corresponding author: AR. Meenakshi*

M-1, May Flower Metropolis, K. M. Kovil Street, UDAYAMPALAYAM, COIMBATORE - 641 028, INDIA

Lemma 2.1: If $A \in C_{n \times n}$ is $E P$, then $N(A) \subseteq N(\operatorname{Sym} A)$, where $\operatorname{Sym} A=\frac{1}{2}\left(A+A^{*}\right)$ is the symmetric part of A.
Proof: Since A is $E P, N(A)=N\left(A^{*}\right)$. For $x \in C_{n}, A x=0 \Leftrightarrow A^{*} x=0$. Hence, $(\operatorname{Sym} A) x=0$. Thus $N(A) \subseteq N(S y m$ A).

Lemma 2.2: Let $A \in C_{n \times n}$. Then A is EP and $r k(A)=r k(\operatorname{Sym} A) \Leftrightarrow N(A)=N(\operatorname{Sym} A)$.
Proof: (\Rightarrow) Since A is EP, by Lemma $(2.1) N(A) \subseteq N(\operatorname{Sym} A)$ and together with $r k(A)=r k(\operatorname{Sym} A)$ it follows that $N(A)=N(S y m A)$.

Conversly, if $N(A)=N(\operatorname{Sym} A)$, then $r k(A)=\operatorname{rk}(\operatorname{Sym} A)$ automatically holds. To prove A is EP,
if possible, let us assume the contrary, that is, for $0 \neq x \in C_{n}, A x=0$ and $A * x \neq 0$. Then, $(\operatorname{Sym} A) x=\frac{1}{2}(A x+A * x) \neq 0$.
Hence $x \notin N(\operatorname{Sym} A)$. This contradicts that, $N(A)=N(S y m A)$. Hence A is EP.
Remark 2.3: In particular, for a q.p.d matrix A, by Lemma (2.8) in [9], the condition $r k(A)=r k(S y m A)$ automatically holds. Further, by Lemma (2.1) in [9], the q.p.d matrix A is also EP.

Hence Lemma (2.2) reduces to the following:
Lemma 2.4: Let $A \in C_{n x n}$ be q.p.d. Then, $N(A)=N(S y m A)$.
Remark 2.5: We observe that, in Lemma(2.2), both the conditions on A are essential. This is illustrated in the following example:
Example 2.1: Let us consider $B=\left[\begin{array}{cc}-1 & 2 \\ 0 & -1\end{array}\right] \in C_{2 \times 2}$. B is EP, being nonsingular, $N(B)=\{0\}=N\left(B^{*}\right)$. For B, Sym $B=\frac{1}{2}\left(B+B^{*}\right)=\left[\begin{array}{cc}-1 & 1 \\ 1 & -1\end{array}\right]$. Here, $r k(\operatorname{Sym} B)=1 \neq r k$ B and $N(\operatorname{Sym} B) \neq N(B)$. Hence, the Lemma (2.2) fails.

Theorem 2.6: Let $A, B \in C_{n x n}$ such that $A \geq B$, then the following hold:
(i) If B is EP and $N(A) \subseteq N(B)$, then A is EP.
(ii) If A is $E P$ and $N(B) \subseteq N(A)$, then B is $E P$.

Proof:

(i) Since $A \geq B, A-B \geq 0$. Hence $A-B$ is Hermitian. For any $x \in N(A)$, since B is $E P$ and $N(A) \subseteq N(B)$; $A x=0$ $\Rightarrow B x=B^{*} x=0 \Rightarrow A^{*} x=A x-B x+B^{*} x=0$. Hence $N(A) \subseteq N\left(A^{*}\right)$. Since $r k(A)=r k\left(A^{*}\right), N(A)=N\left(A^{*}\right)$. Thus A is $E P$.
(ii) Can be proved in a similar manner.

Hence the Theorem.
Corollary 2.7: Let $A, B \in C_{n x n}$ such that $A \geq B$. If B is $E P$, then $N(A) \subseteq N(B) \Leftrightarrow R(B) \subseteq R(A)$.
Proof: If B is EP and $N(A) \subseteq N(B)$, then By Theorem (2.6) (i) A is EP. Hence, $N(A) \subseteq N(B) \Leftrightarrow N\left(A^{*}\right) \subseteq$ $N\left(B^{*}\right) \Leftrightarrow R(B) \subseteq R(A)$. Hence the corollary.

Remark 2.8: In particular, if $A \geq B$ and B is a. p.d then $N(A) \subseteq N(B)$ automatically holds and corollary (2.7) reduces to Lemma (2) in [8].

Theorem 2.9: Let $A, B \in C_{n x n}$ such that $A \geq B$. If B is $E P$ and $N(A) \subseteq N(B)$, then the following are equivalent:
(i) $\mathrm{N}(\mathrm{A})=\mathrm{N}($ Sym B)
(ii) $\mathrm{R}(\mathrm{A})=\mathrm{R}($ Sym B)
(iii) $\operatorname{rk}(\mathrm{A})=\operatorname{rk}($ Sym B)

Proof: Since B is EP and $N(A) \subseteq N(B)$, by Theorem (2.6)(i) A is EP. Further, by Lemma (2.1), $N(B) \subseteq N(S y m B)$. Hence $\mathrm{N}(\mathrm{A}) \subseteq \mathrm{N}(\mathrm{B}) \subseteq \mathrm{N}($ Sym B). Then by (iii), $\mathrm{N}(\mathrm{A})=\mathrm{N}($ Sym B). Thus (i) holds. (i) \Rightarrow (iii) is trivial. Thus (i) \Leftrightarrow (iii). The equivalence of (i) and (ii) follows from the fact that A and sym B are EP matrices. Hence the Theorem.

Theorem 2.10: Let $A, B \in C_{n x n}$ such that $A \geq B$. If B is $E P$ and $\operatorname{Sym} B \geq 0$ then the following are equivalent:
(i) $\mathrm{R}(\operatorname{Sym} \mathrm{A})=\mathrm{R}(\operatorname{Sym} \mathrm{B})$
(ii) $(\text { Sym B) })^{+} \geq(\operatorname{Sym~A})^{+}$

Proof: (i) \Rightarrow (ii): $A \geq B \Rightarrow A^{*} \geq B^{*} \Rightarrow A+A^{*} \geq B+B^{*} \Rightarrow \operatorname{Sym} A \geq \operatorname{Sym} B$. Thus Sym $A \geq \operatorname{Sym} B \geq 0$. Now by Theorem (1) of [5], $R(\operatorname{Sym} A)=R(\operatorname{Sym} B) \Leftrightarrow(\operatorname{Sym} B)^{+} \geq(\operatorname{Sym} A)^{+}$. Hence the Theorem.

Remark 2.11: In particular if B is q.p.d, then the condition $N(A) \subseteq N(B)$ in Theorem (2.9) and Sym $B \geq 0$ in Theorem (2.10) automatically hold. Further by Lemma (2.4), $\mathrm{N}(\mathrm{Sym} \mathrm{B})=\mathrm{N}(\mathrm{B})$. Hence, Theorem (2.9) and Theorem (2.10), reduce the following:

Corollary 2.12 (Theorem 2 in [8]): Let $A, B \in C_{n \times n}$ such that $A \geq B$ and B is q.p.d. Then the following are equivalent:
(i) $\quad \mathrm{R}(\mathrm{A})=\mathrm{R}(\mathrm{B})$
(ii) $\quad \operatorname{rk}(\mathrm{A})=\operatorname{rk}(\mathrm{B})$
(iii) $\left(\right.$ Sym B) ${ }^{+} \geq(\operatorname{Sym~A})^{+}$

Remark 2.13: In particular if $A \geq B \geq 0$, then Sym $A=A$ and Sym $B=B$. Theorem (2.9) and Theorem (2.10) reduce to the following known results:

Corollary 2.14 (Theorem 1 in [5]): Let $A, B \in C_{n x n}$ such that $A \geq B \geq 0$ then $B^{+} \geq A^{+} \Leftrightarrow R(A)=R(B)$.
Corollary 2.15 (Theorem 1 in [4]): For $A, B \in C_{n x n}$ any two of the following conditions imply the other one.
(i) $\mathrm{A} \geq \mathrm{B} \geq 0$
(ii) $\operatorname{rk}(\mathrm{A})=\operatorname{rk}(\mathrm{B})$
(iii) $\mathrm{B}^{+} \geq \mathrm{A}^{+} \geq 0$.

Proof: (i) and (ii) \Rightarrow (iii), (i) and (iii) \Rightarrow (ii) follow from Theorem (2.10) using Sym A = A and Sym B = B. The proof for (ii) and (iii) \Rightarrow (i) runs as follows:

Since rkA $=r k A^{+}$and $r k B=r k B^{+} ; \mathrm{B}^{+} \geq \mathrm{A}^{+} \geq 0$ and $r k A^{+}=r k B^{+} \Rightarrow\left(\mathrm{A}^{+}\right)^{+} \geq\left(\mathrm{B}^{+}\right)^{+} \geq 0 \Rightarrow \mathrm{~A} \geq \mathrm{B} \geq 0$. Thus(i) holds. Hence the corollary.

Remark 2.16: We observe that in Theorem (2.9) the condition $N(A) \subseteq N(B)$ is essential. This is illustrated in the following:
Example 2.2: Let $\mathrm{A}=\left[\begin{array}{ll}0 & 2 \\ 0 & 0\end{array}\right]$ and $\mathrm{B}=\left[\begin{array}{cc}-1 & 2 \\ 0 & -1\end{array}\right]$. Here A is not EP and B is EP being nonsingular
$A-B=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right] \geq 0 \Rightarrow A \geq B$
$\mathrm{N}(\mathrm{A})=\left\{\mathrm{x}=\left[\begin{array}{c}x_{1} \\ 0\end{array}\right] / \mathrm{Ax}=0\right\} . \mathrm{N}(\mathrm{A}) \not \subset \mathrm{N}(\mathrm{B})$.
Sym B $=1 / 2\left(B^{*}+B\right)=\left[\begin{array}{cc}-1 & 1 \\ 1 & -1\end{array}\right] \cdot r k(\operatorname{Sym} B)=1=r k A$
$\mathrm{N}(\operatorname{Sym} B)=\left\{\mathrm{x}=\left[\begin{array}{l}x_{1} \\ x_{1}\end{array}\right] /(\operatorname{Sym} B) \mathrm{x}=0\right\}$.
Hence $\mathrm{N}(\mathrm{A}) \neq \mathrm{N}($ Sym B) but rk(Sym B) $=$ rkA.
Thus in Theorem (2.9) statement (i) fails and statement (iii) holds. Thus the condition $\mathrm{N}(\mathrm{A}) \subseteq \mathrm{N}(\mathrm{B})$ is essential in Theorem (2.9).

3. PARTIAL ORDERING ON BLOCK EP MATRICES

In this section, we shall discuss the h.p.s.d. orderings on EP block matrices, involving Schur complements. For a Partitioned matrix $\mathrm{M}=\left[\begin{array}{ll}A & B \\ C & D\end{array}\right]$, the matrix denoted as $\mathrm{M} / \mathrm{A}=\mathrm{D}-\mathrm{CA}^{+} \mathrm{B}$ is called generalized Schur complement of A in M [2]. In our earlier work [7], we have determined conditions for a Schur complement in an EP matrix to be EP for the case when $\operatorname{rk}(M) \neq \operatorname{rk}(A)$. When $\operatorname{rk}(M)=\operatorname{rk}(A), M / A=0$.

Lemma 3.1: Let $H, K \in C_{n \times n}$ be p.s.d and EP such that $H \geq-K$. Let X and Y be $n x m$ matrices satisfying.
(3.1) $\quad \mathrm{N}(\mathrm{H}) \subseteq \mathrm{N}\left(\mathrm{X}^{*}\right) ; \mathrm{N}(\mathrm{K}) \subseteq \mathrm{N}\left(\mathrm{Y}^{*}\right)$ and
(3.2) $\quad \mathrm{X}^{*} \mathrm{H}^{+}=\left(\mathrm{H}^{+} \mathrm{X}\right)^{*} ; \mathrm{Y}^{*} \mathrm{~K}^{+}=\left(\mathrm{K}^{+} \mathrm{Y}\right)^{*}$.

Then the following hold:
(i) There exist matrices $L, M \in C_{(n+m)(n+m)}$ such that both are p.s.d and EP.
(ii) $\mathrm{L}+\mathrm{M} \geq 0$.
(iii) $\mathrm{L}+\mathrm{M} / \mathrm{H}+\mathrm{K} \geq 0$.

Proof: Let us consider $\mathrm{L}=\left[\begin{array}{cc}H & X \\ X^{*} & X^{*} H^{+} X\end{array}\right]$ and $\mathrm{M}=\left[\begin{array}{cc}K & Y \\ Y^{*} & Y^{*} K^{+} Y\end{array}\right]$
Since H is $E P, N\left(H^{*}\right)=N(H) \subseteq N\left(X^{*}\right)$. Further the generalized Schur complement of H in L, that is, $L / H=X^{*} H^{+} X-$ $\mathrm{X}^{*} \mathrm{H}^{+} \mathrm{X}=0$. Hence, by Corollary under Theorem 1 of [2], $\mathrm{rk}(\mathrm{L})=\mathrm{rk}(\mathrm{H})$. By applying Theorem 3 of [7], using H is EP and $\mathrm{X}^{*} \mathrm{H}^{+}=\left(\mathrm{H}^{+} \mathrm{X}^{*}\right)$, we get L is EP. Further, L can be factorized as $\mathrm{L}=\mathrm{P}\left[\begin{array}{cc}H & 0 \\ 0 & 0\end{array}\right] \mathrm{P}^{*}$, where $\mathrm{P}=\left[\begin{array}{cc}I & 0 \\ X^{*} H^{+} & I\end{array}\right]$. Since H is p.s.d, L is also p.s.d. Thus L is EP and p.s.d. Similarly we can see that M is EP and p.s.d. Then (i) holds. Since L and M are p.s.d, $\mathrm{L}+\mathrm{M}$ is p.s.d. $\mathrm{L}+\mathrm{M}=\left[\begin{array}{cc}H+K & (X+Y) \\ (X+Y)^{*} & X^{*} H^{+} X+Y^{*} K^{+} Y\end{array}\right]$. Since $\mathrm{H} \geq-\mathrm{K}, \mathrm{H}+\mathrm{K} \geq 0$, which implies $\mathrm{H}+\mathrm{K}$ is Hermitian. By (3.2) $\mathrm{X}^{*} \mathrm{H}^{+} \mathrm{X}+\mathrm{Y}^{*} \mathrm{~K}^{+} \mathrm{Y}$ is Hermitian. Hence $\mathrm{L}+\mathrm{M}$ is Hermitian and together with p.s.d, it follows that $\mathrm{L}+\mathrm{M} \geq 0$. Thus (ii) holds. Now, by a result of Albert [1], $\mathrm{H}+\mathrm{K} \geq 0$ yields that $\mathrm{L}+\mathrm{M} / \mathrm{H}+\mathrm{M} \geq 0$. Thus (iii) holds. Hence the Lemma.

Theorem 3.2: Let H and K be EP as well as p.s.d matrices of order n such that $H \geq-K$, partitioned in the form
$\mathrm{H}=\left[\begin{array}{ll}H_{11} & H_{12} \\ H_{21} & H_{22}\end{array}\right]$ and $\mathrm{K}=\left[\begin{array}{ll}K_{11} & K_{12} \\ K_{21} & K_{22}\end{array}\right]$ Satisfying
(3.3) $\mathrm{N}\left(\mathrm{H}_{11}\right) \subseteq \mathrm{N}\left(\mathrm{H}_{21}\right) ; \mathrm{N}\left(\mathrm{H} / \mathrm{H}_{11}\right) \subseteq \mathrm{N}\left(\mathrm{H}_{12}\right)$
(3.4) $\mathrm{N}\left(\mathrm{K}_{11}\right) \subseteq \mathrm{N}\left(\mathrm{K}_{21}\right) ; \mathrm{N}\left(\mathrm{K} / \mathrm{K}_{11}\right) \subseteq \mathrm{N}\left(\mathrm{K}_{12}\right)$
(3.5) $\mathrm{H}_{21} \mathrm{H}_{11}{ }^{+}=\left(\mathrm{H}_{11}{ }^{+} \mathrm{H}_{12}\right)^{*}=\left(\mathrm{H}_{11}{ }^{+} \mathrm{H}_{21}{ }^{*}\right)^{*}$
(3.6) $\mathrm{K}_{21} \mathrm{~K}_{11}{ }^{+}=\left(\mathrm{K}_{11}{ }^{+} \mathrm{K}_{12}\right)^{*}=\left(\mathrm{K}_{11}{ }^{+} \mathrm{K}_{21}{ }^{*}\right)^{*}$.

Then $\mathrm{H}+\mathrm{K} / \mathrm{H}_{11}+\mathrm{K}_{11} \geq \mathrm{H} / \mathrm{H}_{11}+\mathrm{K} / \mathrm{K}_{11} \geq 0$.
Proof: Since H is EP satisfying (3.3), by Theorem 1 and Remark 2 of [7], H_{11} and $\mathrm{H} / \mathrm{H}_{11}$ are EP. Similarly K is EP satisfying (3.4) implies K_{11} and $\mathrm{K} / \mathrm{K}_{11}$ are EP. Since $\mathrm{H} \geq-\mathrm{K}, \mathrm{H}_{11} \geq-\mathrm{K}_{11}$ and $\mathrm{H}+\mathrm{K} / \mathrm{H}_{11}+\mathrm{K}_{11} \geq 0$ by result Albert[1]. By definition of generalized Schur complement [2], we have $\mathrm{H}+\mathrm{K} / \mathrm{H}_{11}+\mathrm{K}_{11}=\mathrm{H}_{22}+\mathrm{K}_{22}-\left(\mathrm{H}_{21}+\mathrm{K}_{21}\right)\left(\mathrm{H}_{11}+\mathrm{K}_{11}\right)^{+}\left(\mathrm{H}_{12}+\right.$ K_{12}). By using (3.5), (3.6) and $\mathrm{H}+\mathrm{K} / \mathrm{H}_{11}+\mathrm{K}_{11}$ is Hermitian we get

$$
\begin{aligned}
\mathrm{H}+\mathrm{K} / \mathrm{H}_{11}+\mathrm{K}_{11} & \geq \mathrm{H}_{22}+\mathrm{K}_{22}-\left(\mathrm{H}_{21} \mathrm{H}_{11}{ }^{+} \mathrm{H}_{21}{ }^{*}+\mathrm{K}_{21} \mathrm{~K}_{11}{ }^{+} \mathrm{K}_{21}{ }^{*}\right) \\
& =\mathrm{H}_{22}+\mathrm{K}_{22}-\mathrm{H}_{21} \mathrm{H}_{11}{ }^{+} \mathrm{H}_{21}{ }^{*}-\mathrm{K}_{21} \mathrm{~K}_{11}{ }^{+} \mathrm{K}_{21}{ }^{*} \\
& =\left(\mathrm{H}_{22}-\mathrm{H}_{21} \mathrm{H}_{11}{ }^{+} \mathrm{H}_{12}\right)+\left(\mathrm{K}_{22}-\mathrm{K}_{21} \mathrm{~K}_{11}{ }^{+} \mathrm{K}_{12}\right) \\
& =\mathrm{H} / \mathrm{H}_{11}+\mathrm{K} / \mathrm{K}_{11} .
\end{aligned}
$$

Thus $\mathrm{H}+\mathrm{K} / \mathrm{H}_{11}+\mathrm{K}_{11} \geq \mathrm{H} / \mathrm{H}_{11}+\mathrm{K} / \mathrm{K}_{1}$. Since $\mathrm{H}_{21} \mathrm{H}_{11}{ }^{+}=\left(\mathrm{H}_{11}{ }^{+} \mathrm{H}_{12}\right)^{*}$ and $\mathrm{K}_{21} \mathrm{~K}_{11}{ }^{+}=\left(\mathrm{K}_{11}{ }^{+} \mathrm{K}_{12}\right)^{*}$ by applying Theorem 3 of [7] for the p.s.d and EP matrices H and K , we see that $\mathrm{H} / \mathrm{H}_{11}$ and $\mathrm{K} / \mathrm{K}_{11}$ are both EP and p.s.d. Since $\mathrm{H} \geq-\mathrm{K}, \mathrm{H}+\mathrm{K}$ is Hermitian. By using (3.5), $\mathrm{H}_{21} \mathrm{H}_{11}{ }^{+} \mathrm{H}_{12}$ is Hermitian and by using (3.6), $\mathrm{K}_{21} \mathrm{k}_{11}{ }^{+} \mathrm{k}_{12}$ is Hermitian. Hence, $\mathrm{H} / \mathrm{H}_{11}+\mathrm{K} / \mathrm{K}_{11}$ $=\mathrm{H}_{22}+\mathrm{K}_{22}-\mathrm{H}_{21} \mathrm{H}_{11}{ }^{+} \mathrm{H}_{12}-\mathrm{K}_{21} \mathrm{~K}_{11}{ }^{+} \mathrm{K}_{22}$ is Hermitian. Since $\mathrm{H} / \mathrm{H}_{11}$ and $\mathrm{K} / \mathrm{K}_{11}$ are p.s.d. $\mathrm{H} / \mathrm{H}_{11}+\mathrm{K} / \mathrm{K}_{11}$ is p.s.d. Hence, $\mathrm{H} / \mathrm{H}_{11}+\mathrm{K} / \mathrm{K}_{11}$ is Hermitian and p.s.d. Therefore $\mathrm{H} / \mathrm{H}_{11}+\mathrm{K} / \mathrm{K}_{11} \geq 0$. Thus $\mathrm{H}+\mathrm{K} / \mathrm{H}_{11}+\mathrm{K}_{11} \geq \mathrm{H} / \mathrm{H}_{11}+\mathrm{K} / \mathrm{K}_{11} \geq 0$. Hence the Theorem.

4. APPLICATION TO LINEAR ELECTROMECHANICAL SYSTEMS:

Let us consider two linear electromechanical system with constitutive operators H and K having the same structure operator A. For terminology and notation one may refer [3]. The transfer impendence $\psi(\mathrm{H})$ and $\psi(\mathrm{K})$ exist by Theorem 7 of [3].

$$
\begin{aligned}
& \psi(\mathrm{H})=\left(\mathrm{A}^{+}\right)^{*}\left(\mathrm{H}_{22}-\mathrm{H}_{21} \mathrm{H}_{11}{ }^{+} \mathrm{H}_{12}\right) \mathrm{A}^{+}=\left(\mathrm{A}^{+}\right)^{*}\left(\mathrm{H} / \mathrm{H}_{11}\right) \mathrm{A}^{+} \\
& \psi(\mathrm{K})=\left(\mathrm{A}^{+}\right)^{*}\left(\mathrm{~K}_{22}-\mathrm{K}_{21} \mathrm{~K}_{11}{ }^{+} \mathrm{K}_{12}\right) \mathrm{A}^{+}=\left(\mathrm{A}^{+}\right)^{*}\left(\mathrm{~K} / \mathrm{K}_{11}\right) \mathrm{A}^{+} .
\end{aligned}
$$

If we assume that the constitutive operators H and K satisfies (3.5) and (3.6) respectively and $\mathrm{H} \geq-\mathrm{K}$, then by Theroem (3.2), $\mathrm{H} / \mathrm{H}_{11} \geq-\mathrm{K} / \mathrm{K}_{11} \Rightarrow \psi(\mathrm{H}) \geq-\psi(\mathrm{K})$. Thus the monotonicity of the constitutive operators is preserved for the corresponding transfer impedances.

CONCLUSION

We have extended matrix inequalities on a pair of h.p.s.d matrices in the references [1, 2, 4,5] and on a.p.d matrices in [8,9] for a wider class of range Hermitian matrices.

ACKNOWLEDGEMENT

This work was done when the author visited the Department of Mathematics, Avinashilingam University for women, Coimbatore, India.

REFERENCES

1. A. Albert, Conditions for positive and negative definiteness in terms of pseudo inverse, SIAM J. Appl. Math 17(1969)434-440.
2. D. Carlson, E. Haynsworth, Th. Markham, Generalization of Schur Complement by means of Moore-Penrose inverse, SIAM. J. Appl. Math. 26(1974) 169-175.
3. R.J Duffin, T.D Morley, Almost definite operators and electromechanical systems, SIAM. J. Appl. Math. 35(1978)21-30.
4. Hans. J. Werner, On the matrix monotonicity of generalized inversion, J. lin. Alg. and Appln.27(1979)21-30.
5. R.E. Hartwig, A note on the partial orderings on positive semidefinite matrices, J. Lin. and Multilinear Algebra, 6(1978)223-226.
6. T.O. Lewis, T.G. Neuman, Pseudo inverses of positive semi definite matrices, SIAM. J. Appl. Math 10(1968)701-703.
7. A.R Meenakshi, On schur complements in an EP matrix. Periodica Math. Hungarica, Vol. 16(3) (1985)193200.
8. A.R Meenakshi, On the partial ordering of almost definite matrices, Czechoslowak. Math .J. 39(1989)-169175.
9. S.K Mitra, M.L Puri, The fundamental bordered matrix of linear estimation and the Duffin- Morley general linear electromechanical systems, J, Applicable Analysis, 14 (1983)241-258.
10. M.H. Pearl, On generalized inverses of matrices, Proc. Cambridge Phil. Soc. 62(1966)673-677.
11. H. Schwerdtfeger, Introduction to linear algebra and the theory of matrices, Noordhoff, Groningen, 1950.
