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ABSTRACT 
For a given range Hermitian matrix B, conditions are obtained for all matrices A that lie below B (above B) A ≤ B (A 
≥ B) to  b e range Hermitian under a given partial ordering on matrices.  As an application, it is shown that the 
monotonicity of the constitutive operators in linear electro-mechanical systems having the same structure operator is 
preserved for the corresponding transfer impedances. 
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1 INTRODUCTION 
 
Let Cnxn be the set of all complex matrices of order n and Cn be the set of all Complex vectors.  For A ∈  Cnxn, let R(A), 
N(A), A*, A+, A- and rk(A) be the range space, null space, conjugate transpose, Moore – Penrose inverse, generalized 
inverse (A- is a solution of the matrix equation A X A = A) and rank of A respectively.  A ∈  Cnxn is said to be almost 
definite (a.d [3]) if for x ∈  Cn, x*Ax = 0 ⇒Ax = 0.  A ∈  Cnxn is said to be positive semi definite (p.s.d [6]) if 
Re(x*Ax) ≥ 0 for x ∈  Cn.  If A is also Hermitian, then A is Hermitian positive semi definite (h.p.s.d) and is denoted as 
A ≥ 0.  A matrix A ∈  Cnxn is said to be Almost positive semi definite (a.p.d) if it is both a.d and p.s.d.  Mitra and Puri 
[9] have introduced and developed the concept of quasi positive definite (q.p.d) matrix.  A ∈  Cnxn is said to be q.p.d if 
A is p.s.d and Re(x*Ax) = 0 ⇒Ax = 0 and they have proved that a q.p.d matrix is always a.p.d.  For properties of a.d, 
a.p.d and q.p.d matrices, one may refer [3, 9].  These special types of matrices are widely used in the study of electrical 
networks and in linear electromechanical systems.  It was pointed out by Duffin and Morley [3] that the unique transfer 
impedance in a general linear electromechanical system exists for every structure operator if and only if the constitutive 
operator is a.d.  For terminology and representation of a general linear electromechanical system by a pair of equations, 
one may refer [3]. 
 
For A, B ∈  Cnxn, A ≥ B ⇔ A – B ≥ 0 ⇔  A – B is Hermitian positive semi definite (h.p.s.d).  It is well known that 
for nonsingular matrices A, B, if A ≥ B ≥ 0, then B -1 ≥ A-1 ≥ 0.  This was extended to generalized inverses of certain 
types of pairs of singular matrices A ≥ B ≥ 0 by Hans J. Werner [4] and independently by Hartwig [5].  In [8], their 
results were extended for a wider class of a.p.d matrices.  For a pair of Complex a.p.d matrices A and B such that A ≥ 
B, conditions are obtained for B+ ≥ A+.  Here, we have extended our results found in [8] on partial orderings of almost 
definite matrices and some well known matrix inequalities on a pair of h.p.s.d matrices available in the literature [1, 2, 
7, 9], for a wider class of range Hermitian matrices.  A ∈  Cnxn is said to be range Hermitian if R(A) = R(A*).  The 
concept of range Hermitian matrices are introduced by Schwerdtfeger [11] for complex matrices.  Since, for A ∈  Cnxn, 
R(A*) = N(A) ⊥ , R(A) = R(A*) is equivalent to N(A) = N(A*).  Later, Pearl [10] has proved that A ∈  Cnxn is range 
Hermitian ⇔  AA+ = A+A, that is projectors are equal, hence Equi-projector matrix, that is, EP matrix in short.  The 
class of EP matrices is a larger class that includes nonsingular matrices, Hermitian matrices.  In [9] it is shown that the 
class of q.p.d matrices ⊆  class of  a.p.d matrices ⊆  class of EP matrices. 
 
2. PARTIAL ORDERING ON EP MATRICES 
 
We are concerned with h.p.s.d partial ordering on EP matrices.  A ∈  Cnxn is EP means that A is an EP matrix.  For A, B 
∈  Cnxn,   A ≥ B ⇔ A – B ≥ 0 ⇔  A – B is h.p.s.d matrix.  In this section; conditions for all those matrices that lie 
below (or) above a given EP matrix relative to h.p.s.d ordering to be EP are determined.  First we shall prove certain 
lemmas, which will simplify the proof of the main result. 
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Lemma 2.1: If A ∈  Cnxn is EP, then N(A) ⊆  N(Sym A), where Sym A = 
2
1

(A + A*) is the symmetric part of A. 

 
Proof: Since A is EP, N (A) = N (A*).  For x ∈  Cn, Ax=0 ⇔  A*x=0.  Hence, (Sym A)x = 0.  Thus N(A) ⊆  N(Sym 
A). 
 
Lemma 2.2: Let A ∈  Cnxn.   Then A is EP and rk(A) = rk(Sym A) ⇔  N(A) =  N(Sym A). 
 
Proof: (⇒ ) Since A is EP, by Lemma (2.1) N(A) ⊆  N(Sym A) and together with rk(A) = rk(Sym A) it follows that 
N(A) =  N(Sym A).  
 
Conversly, if N(A) =  N(Sym A), then rk(A) = rk(Sym A) automatically holds.  To prove A is EP,  
 

if possible, let us assume the contrary, that is, for 0 ≠ x ∈  Cn, Ax=0 and A*x ≠ 0. Then, (Sym A)x =
2
1

(Ax + A*x) ≠ 0.  

Hence x ∉  N(Sym A). This contradicts that, N(A) =  N(Sym A). Hence A is EP. 
 
Remark 2.3: In particular, for a q.p.d matrix A, by Lemma (2.8) in [9], the condition rk(A) = rk(Sym A) automatically 
holds.  Further, by Lemma (2.1) in [9], the q.p.d matrix A is also EP.  
 
Hence Lemma (2.2) reduces to the following: 
 
Lemma 2.4: Let A ∈  Cnxn  be q.p.d.  Then, N(A) = N(Sym A). 
 
Remark 2.5: We observe that, in Lemma(2.2), both the conditions on A are essential. This is illustrated in the 
following example: 

Example 2.1: Let us consider B = 







−

−
10

21
 ∈ C2x2.  B is EP, being nonsingular, N(B) = {0} = N(B*).  For B, Sym 

B = 
2
1

(B + B*) = 







−

−
11

11
.  Here, rk(Sym B) = 1≠ rk B and N(Sym B)≠ N(B).  Hence, the Lemma (2.2) fails. 

 
Theorem 2.6: Let A, B ∈ Cnxn such that A ≥  B, then the following hold: 
(i) If B is EP and N(A) ⊆  N(B), then A is EP. 
(ii) If A is EP and N(B) ⊆  N(A), then B is EP. 
 
Proof:  
(i) Since A≥B, A-B≥ 0.  Hence A – B is Hermitian.  For any x ∈ N(A),  since B is EP  and N(A) ⊆  N(B); Ax = 0 
⇒  Bx = B*x = 0 ⇒  A*x = Ax – Bx + B*x =0.  Hence N(A) ⊆  N(A*).  Since rk(A) = rk(A*), N(A) = N(A*).  Thus 
A is EP. 
 
(ii) Can be proved in a similar manner. 
 
Hence the Theorem. 
 
Corollary 2.7: Let A, B ∈ Cnxn such that A ≥ B.  If B is EP, then N(A) ⊆  N(B) ⇔  R(B) ⊆  R(A). 
 
Proof: If B is EP and N(A) ⊆  N(B), then By Theorem (2.6) (i) A is EP.  Hence, N(A) ⊆  N(B) ⇔  N(A*) ⊆  
N(B*) ⇔  R(B) ⊆ R(A).  Hence the corollary. 
 
Remark 2.8: In particular, if A ≥ B and B is a . p.d then N(A) ⊆  N(B) automatically holds and corollary (2.7) reduces 
to Lemma (2) in [8]. 
 
Theorem 2.9: Let A, B ∈Cnxn such that A ≥ B.  If B is EP and N(A) ⊆  N(B), then the following are equivalent: 
(i)  N(A) = N(Sym B) 
(ii) R(A) = R(Sym B) 
(iii) rk(A) = rk(Sym B) 
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Proof: Since B is EP and N(A)⊆  N(B), by Theorem (2.6)(i) A is EP.  Further, by Lemma (2.1), N (B) ⊆  N(Sym B).  
Hence N(A) ⊆  N(B) ⊆  N(Sym B).  Then by (iii), N(A) = N(Sym B).  Thus (i) holds. (i) ⇒  (iii) is trivial.  Thus (i) 
⇔  (iii).  The equivalence of (i) and (ii) follows from the fact that A and sym B are EP matrices.  Hence the Theorem. 
 
Theorem 2.10: Let A, B ∈ Cnxn such that A ≥ B.  If B is EP and Sym B ≥ 0 then the following are equivalent: 
(i) R(Sym A) = R(Sym B) 
(ii) (Sym B)+  ≥ (Sym A)+ 

 
Proof: (i) ⇒  (ii): A ≥ B ⇒  A* ≥ B*⇒  A + A* ≥ B + B*⇒Sym A ≥ Sym B.  Thus Sym A ≥ Sym B ≥ 0.  Now by 
Theorem (1) of [5], R(Sym A) = R(Sym B) ⇔  (Sym B)+ ≥ (Sym A)+.  Hence the Theorem. 
 
Remark 2.11: In particular if B is q.p.d, then the condition N(A) ⊆ N(B) in Theorem (2.9) and Sym B ≥ 0 in Theorem 
(2.10) automatically hold.  Further by Lemma (2.4), N(Sym B) = N(B).  Hence, Theorem (2.9) and Theorem (2.10), 
reduce the following: 
 
Corollary 2.12 (Theorem 2 in [8]): Let A, B ∈ Cnxn such that A ≥ B and B is q.p.d. Then the following are equivalent: 
(i) R(A) = R(B) 
(ii) rk(A) = rk(B) 
(iii)  (Sym B)+ ≥ (Sym A)+ 
 
Remark 2.13: In particular if A ≥ B ≥ 0, then Sym A = A and Sym B = B. Theorem (2.9) and Theorem (2.10) reduce to 
the following known results: 
 
Corollary 2.14 (Theorem 1 in [5]): Let A, B ∈ Cnxn such that A ≥ B ≥ 0 then B+ ≥ A+⇔ R(A) = R(B). 
 
Corollary 2.15 (Theorem 1 in [4]): For A, B ∈ Cnxn any two of the following conditions imply the other one. 
(i)   A ≥ B ≥ 0 
(ii) rk(A) = rk(B) 
(iii) B+  ≥ A+  ≥ 0. 
 
Proof: (i) and (ii) ⇒  (iii), (i) and (iii) ⇒  (ii) follow from Theorem (2.10) using Sym A = A and Sym B = B. The 
proof for (ii) and (iii) ⇒  (i) runs as follows: 
 
Since rkA = rkA+ and rkB = rkB+; B+ ≥ A+ ≥ 0 and rkA+ = rkB+  ⇒  (A+)+ ≥ (B+)+ ≥ 0 ⇒  A ≥ B ≥ 0.  Thus(i) holds.   
Hence the corollary. 
 
Remark 2.16: We observe that in Theorem (2.9) the condition N(A) ⊆  N(B) is essential. This is illustrated in the 
following: 

Example 2.2: Let A = 







00
20

and B = 







−

−
10

21
.  Here A is not EP and B is EP being nonsingular  

A – B = 







10
01

 ≥ 0 ⇒  A ≥ B 

N(A) = {x = 







0

1x
/Ax = 0}.  N(A) ⊄  N(B). 

Sym B =1/2(B* + B) = 







−

−
11

11
. rk(Sym B) = 1 = rkA 

N(Sym B) = {x = 








1

1

x
x

/ (Sym B)x = 0}. 

 
Hence N(A) ≠  N(Sym B) but rk(Sym B) = rkA. 
 
Thus in Theorem (2.9) statement (i) fails and statement (iii) holds. Thus the condition N(A) ⊆N(B) is essential in 
Theorem (2.9). 
 
 
 



AR. Meenakshi*/ On The Partial Ordering of Range Hermitian Matrices/ IJMA- 3(5), May-2012, Page: 1779-1783 

© 2012, IJMA. All Rights Reserved                                                                                                                                                                   1782   

 
3. PARTIAL ORDERING ON BLOCK EP MATRICES 
 
In this section, we shall discuss the h.p.s.d. orderings on EP block matrices, involving Schur complements.  For a 

Partitioned matrix M = 







DC
BA

, the matrix denoted as M/A = D – CA+ B is called generalized Schur complement of 

A in M [2].  In our earlier work [7], we have determined conditions for a Schur complement in an EP matrix to be EP 
for the case when rk(M) ≠ rk(A).  When rk(M) = rk(A), M/A = 0. 
 
Lemma 3.1: Let H, K ∈Cn x n be p.s.d and EP such that H ≥ -K.  Let X and Y be n x m matrices satisfying. 
(3.1)     N(H) ⊆  N(X*); N(K) ⊆  N(Y*) and  
(3.2)  X*H+ = (H+ X)*; Y*K+ = (K+ Y)*.  
 
Then the following hold:  
(i) There exist matrices L, M ∈C(n+m) (n+m)  such that both are p.s.d and EP. 
(ii) L + M ≥ 0.  
(iii) L + M/H + K ≥ 0. 
 

Proof: Let us consider L = 







+ XHXX

XH
**

 
and M= 








+YKYY

YK
**  

 
Since H is EP, N(H*) = N (H) ⊆  N(X*).  Further the generalized Schur complement of H in L, that is, L/H = X*H+X – 
X*H+X = 0.  Hence, by Corollary under Theorem 1 of [2], rk(L) = rk(H).  By applying Theorem 3 of [7], using H is EP 

and X*H+ = (H+X*), we get L is EP.  Further, L can be factorized as L = P 







00
0H

P*, where P = 







+ IHX

I
*

0
.  

Since H is p.s.d, L is also p.s.d.  Thus L is EP and p.s.d.  Similarly we can see that M is EP and p.s.d.  Then (i) holds.  

Since L and M are p.s.d, L + M is p.s.d .L+M = 







++
++

++ YKYXHXYX
YXKH

***)(
)(

.  Since H ≥ -K, H + K ≥ 0, which 

implies H + K is Hermitian.  By (3.2) X*H+X + Y*K+Y is Hermitian.  Hence L + M is Hermitian and together with 
p.s.d, it follows that L + M ≥ 0.  Thus (ii) holds.  Now, by a result of Albert [1], H + K ≥ 0 yields that L+M / H+M ≥ 0.  
Thus (iii) holds.  Hence the Lemma. 
 
Theorem 3.2: Let H and K be EP as well as p.s.d matrices of order n such that H≥-K, partitioned in the form  

H = 








2221

1211

HH
HH

 and K = 








2221

1211

KK
KK

Satisfying  

 
(3.3) N(H11) ⊆ N(H21) ; N(H/H11) ⊆ N(H12)   
 
(3.4) N(K11) ⊆ N(K21) ; N(K/K11) ⊆ N(K12)   
 
(3.5) H21H11

+ = (H11
+H12)* = (H11

+H21
*)* 

 
(3.6) K21K11

+ = (K11
+K12)* = (K11

+K21
*)*.   

 
Then H + K/ H11+K11 ≥ H/H11 + K/K11 ≥ 0. 
 
Proof: Since H is EP satisfying (3.3), by Theorem 1 and Remark 2 of [7], H11 and H/H11 are EP.  Similarly K is EP 
satisfying (3.4) implies K11 and K/K11 are EP.  Since H ≥ -K, H11 ≥ -K11 and H+K/H11+K11 ≥ 0 by result Albert[1].  By 
definition of generalized Schur complement [2], we have H+K/H11+K11 = H22 + K22 – (H21 +K21) (H11 + K11)+ (H12 + 
K12).  By using (3.5), (3.6) and H+K/H11 + K11 is Hermitian we get  
 
H+K/H11+K11 ≥ H22+K22 - (H21H11

+H21
*+ K21K11

+K21
*) 

 
                       = H22+K22 - H21H11

+H21
* -  K21K11

+K21
* 

 
                       = (H22 - H21H11

+H12) + (K22 - K21K11
+K12) 

 
                       = H/H11 + K/K11. 
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Thus H+K/H11+K11 ≥ H/H11 + K/K1.  Since H21H11

+ = (H11
+H12)* and K21K11

+ = (K11
+K12)* by applying Theorem 3 of [7] 

for the p.s.d and EP matrices H and K, we see that H/H11 and K/K11 are both EP and p.s.d.  Since H ≥ -K, H+K is 
Hermitian.  By using (3.5), H21H11

+H12 is Hermitian and by using (3.6), K21k11
+k12 is Hermitian.  Hence,   H/H11 + K/K11 

= H22+K22 - H21H11
+H12 - K21K11

+K22 is Hermitian.  Since H/H11 and  K/K11 are p.s.d. H/H11 + K/K11  is p.s.d.  Hence, 
H/H11 + K/K11 is Hermitian and p.s.d.  Therefore H/H11 + K/K11 ≥ 0.  Thus H+K/ H11+ K11 ≥ H/H11 + K/K11 ≥ 0. Hence 
the Theorem. 
 
4. APPLICATION TO LINEAR ELECTROMECHANICAL SYSTEMS: 
 
Let us consider two linear electromechanical system with constitutive operators H and K having the same structure 
operator A.  For terminology and notation one may refer [3]. The transfer impendence ψ (H) and ψ (K) exist by 
Theorem 7 of [3]. 
 

ψ (H) = (A+)*(H22 - H21H11
+H12)A+ = (A+)*(H/H11)A+ 

 

ψ (K) = (A+)*(K22 - K21K11
+K12)A+ = (A+)*(K/K11)A+. 

 
If we assume that the constitutive operators H and K satisfies (3.5) and (3.6) respectively and H ≥ -K, then by Theroem 
(3.2), H/H11 ≥ -K/K11 ⇒ψ (H) ≥ -ψ (K).  Thus the monotonicity of the constitutive operators is preserved for the 
corresponding transfer impedances. 
 
CONCLUSION 
 
We have extended matrix inequalities on a pair of h.p.s.d matrices in the references [1, 2, 4, 5] and on a.p.d matrices in 
[8,9] for a wider class of range Hermitian matrices. 
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