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ABSTRACT 
The effect of homogeneous and heterogeneous reactions on the dispersion of a solute in a magnetohydrodynamic two 
fluid flow between two parallel plates is studied. The fluids in both the regions of the channel are incompressible and 
transport properties are assumed to be constant. The results are tabulated for various values of viscosity ratio, 
pressure gradient and Hartmann number on the effective dispersion coefficient and volumetric flow rate. The effective 
dispersion coefficient decreases with increase in the Hartmann number in the absence of chemical reactions. It is found 
that for first order homogeneous and heterogeneous chemical reaction, the effective dispersion coefficient decreases as 
the reaction rate parameter and Hartmann number increases. The validity of the results obtained for 
magnetohydrodyanmic two fluid model is compared with the available one fluid model for clear viscous fluid and good 
agreement is found. 
 
Key Words: Taylor dispersion, immiscible fluids, horizontal channel, MHD, homogeneous and heterogeneous chemical 
reaction. 
 
 
1. INTRODUCTION 
 
Taylor [22-24] initiated the investigation of the dispersion of a soluble matter in a non-conducting viscous fluid flowing 
through a circular tube under laminar conditions. His results show that the soluble matter can be regarded as dispersing 
along the tube with an apparent diffusion coefficient 2 2 48R Vx D , where R  is the radius of the circular tube and D  is 
the molecular diffusion coefficient. He has also shown that the condition under which his analysis is valid is 
4 6.4L R VxR D  , L  being the length in the flow direction. Aris [1] extended Taylor’s results and established that 
the rate of growth of variance of the solute distribution is proportional to the sum of the molecular diffusion coefficient 
and Taylor diffusion coefficient. His analysis removed the restrictions imposed by Taylor. Subsequently Taylor’s 
analysis was extended to the case of different models of non-Newtonian fluids by Fan and Hwang [5], Fan and Wang 
[6], Ghoshal [7], and Ghoshal et al. [8]. Gupta and Chatterjee [9] investigated the dispersion of soluble matter in the 
hydromagnetic laminar flow between two parallel plates. All the investigations mentioned above deal with flows where 
the solute does not chemically react with the liquid through which it dispersed. 
 
Chemical reactions can be classified as either homogenous or heterogeneous processes. A homogeneous reaction is one 
that occurs uniformly through a given phase. In contrast, a heterogeneous reaction takes place in a restricted region or 
within the boundary of a phase. A reaction is said to be the first order if the rate of reaction is directly proportional to 
the concentration itself. In many chemical engineering processes, a chemical reaction between a foreign mass and the 
fluid does occur. 
 
However, the diffusion process, combined with homogeneous and heterogeneous chemical reactions of a solute is 
important in hydrolysis of ester, gas absorption in an agitated tank with chemical reaction and so on (Bird et al. [2]). 
Cleland and Wilhelm [3] discussed the problem of a finite first-order homogeneous reaction in a pipe under laminar 
flow conditions by a finite difference method. He supported his results with experimental data. Katz [11] investigated 
the effect of homogeneous reaction at the wall on the concentration profiles. While combined first order heterogeneous 
and homogeneous reactions were studied by Walker [30] and Solomon and Hudson [20]. 
 
All the investigations on dispersion of a solute, however, carried out to chemical reactions under steady state conditions 
until when Gupta and Gupta [10] discussed for the unsteady case. They have analyzed the unsteady dispersion of solute 
with simultaneous chemical reaction in a liquid flowing in a channel by adopting Taylor’s method. Dutta et al. [4] also  
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discussed the non-Newtonian fluid with simultaneous chemical reaction. The influence of an applied magnetic field on 
the dispersion has been discussed by Narasimha Murthy and Krishna Murthy [15]. They found that the solute in an 
electrically conducting solvent can regulate rate of diffusion. In 1975, Narasimha Murthy and Ali [16] analyzed the 
problem including the effects of homogenous and heterogeneous chemical reactions of a solute in a porous medium. 
 
All the above studies were analyzed for one fluid model. Most of the problems relating to petroleum industry, 
geophysics, plasma physics, magneto-fluid dynamics etc. involve multi-fluid flow situations. There have been studies 
on hydrodynamic aspects of the two-phase reported in the literature. The first investigations were associated with the        
LM-MFM generator project at the Argon National Laboratory. Packham and Shail [17] analyzed a stratified laminar 
flow of two immiscible liquids in a horizontal pipe. Shail [19] found that an increase of order 30% could be achieved in 
the flow rate with a layer of conducting fluid in the lower layer and a layer of non-conducting in the upper channel 
wall. Umavathi et al. [25-29] analyzed steady and unsteady flow and heat transfer of two immiscible fluids in a 
horizontal channel. Malashetty and Umavathi [12] and Malashetty et al. [13-14] studied the free convective flow and 
heat transfer of conducting two fluid flows in a vertical and inclined channels. Recently Prathap Kumar et al. [18] 
analyzed mixed convection of immiscible fluids in a vertical channel. 
 
In the present paper we have studied the dispersion of a solute in the laminar flow of conducting and non-conducting 
immiscible liquids between two parallel plates in the absence and in the presence of first order chemical reactions. 

 
2. MATHEMATICAL FORMULATION OF THE PROBLEM 
 
The physical configuration considered in this study is shown in figure 1. Consider the laminar flow of two immiscible 
fluids between two parallel plates distant 2h  apart, taking X -axis along the mid-section of the channel and Y -axis 
perpendicular to the walls. Region-1 ( )0h Y− ≤ ≤  is filled with the conducting fluid with conductivity eσ , density 1ρ , 

viscosity 1µ , under a uniform pressure gradient 1dP
dX

 whereas region-2 ( )0 Y h≤ ≤  is filled with non-conducting fluid 

of density 2ρ , viscosity 2µ , under a uniform pressure gradient 2dP
dX

. The fluids in both the regions are Newtonian 

fluids.   
 

 
 

It is assumed that the flow is steady, laminar, fully developed, and that fluid properties are constant. The flow in both 
regions is assumed to be driven by a common constant pressure gradient. Under these assumptions, the governing 
equations of motion for incompressible fluids are 
 
Region-1 
 

2
21 1

1 0 12 0e
d U dP B U

dXdY
µ σ− − =                        (1) 

 
 
 
 

Region-1 

h−  

h  

Region-2 
0 

X  

Y  

Fig. (1): Physical configuration and coordinate system 
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Region-2 
 

2
2 2

2 2 0
d U dP

dXdY
µ − =                         (2) 

 
where iU  is the X -component of fluid velocity and iP  is the pressure.  The subscripts 1 and 2 denote the values for 
region-1 and region-2 respectively. 
 
The boundary conditions on velocity are no-slip conditions requiring that the velocity must vanish at the walls. In 
addition, continuity of velocity and shear stress at the interface is assumed.  With these assumptions, the boundary and 
interface conditions on velocity become 
 

1 0U at Y h= = −  
 

2 0U at Y h= =                                                                                             (3) 
 

1 2 0U U at Y= =  
 

1 2
1 2 0

dU dU at Y
dY dY

µ µ= =  

 
Using the non-dimensional parameters,  
 

  Y
h

η = , 1
1 1

1

hu Uρ
µ

= , 2
2 2

2

hu Uρ
µ

= , Xx
h

= , 1
1 2

1 1( / )
Pp

hρ ν
∗ = , 2

2 2
2 2( / )

Pp
hρ ν

∗ = , 0
1

eM B h
σ
µ

= .               (4) 

 
the equations (1) to (3) become 
 
Region-1 
 

2
21 1

12 0
d u dp M u

dxdη

∗

− − =                                       (5) 

 
Region-2 
 

2
2 2
2 0

d u dp
dxdη

∗

− =                                        (6) 

 
1 0 at 1u η= = −  

 
2 0 at 1u η= =                                                                               (7) 

 
21 2

1 2 ; at 0
du duu mnu m n
d d

η
η η

= = =  

 
3. SOLUTIONS 
 
Solutions of equations (5) and (6) using boundary and interface conditions (7) become 
 

( ) ( ) 1
1 1 2 2cosh sinh

pu a M a M
M

η η= + −                                                                             (8) 

 
22

2 3 42
pu a aη η= + +                                                                 (9) 
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From equations (8) and (9) the average velocities become 
 

0

1 1
1

1
2

u u dη
−

= ∫                                      (10) 

 
1

2 2
0

1
2

u u dη= ∫                                      (11) 

 
Case 1a: Diffusion of a tracer in the absence of homogeneous first-order chemical reaction. 
 
The equation for the concentration 1C  of the solute for the region-1 satisfies 
 

2 2
1 1 1 1

1 1 2 2

C C C Cu D
t X X Y

 ∂ ∂ ∂ ∂
+ = + ∂ ∂ ∂ ∂ 

                                                                                               (12) 

 
Similarly, the equation for the concentration 2C  of the solute for the region-2 satisfies 
 

2 2
2 2 2 2

2 2 2 2

C C C Cu D
t X X Y

 ∂ ∂ ∂ ∂
+ = + ∂ ∂ ∂ ∂ 

                                                                                             (13) 

  
in which 1D  and 2D  are the molecular diffusion coefficients (assumed constants) for the region-1 and region-2 
respectively .   
 
If we now consider convection across a plane moving with the mean speed of the flow, then relative to this plane the 
fluid velocities are given by 
 
Region-1 
 

( ) ( )1 1 1 2 1cosh sinhxu u u a M a M lη η= − = + +                                                            (14) 
 
Region-2 

2
2

2 2 3 22x
pu u u a lη

η= − = + +                                                              (15) 

 
where u  is the sum of average velocities of region-1 and region-2. Introducing the dimensionless quantities 
 

1 1 1 1 2 2 2 2
1 1 1 2 2 2

1 1 2 2

, , , , ,
t L x u t t L x u tt t
t u L t u L

θ ξ θ ξ
− −

= = = = = =                                                           (16) 

 
and using equations (14) and (15), the equations (12) and (13) become ( using the assumption that  
 

2 2
1 1
2 2

C C
X Y

∂ ∂
<<

∂ ∂
   and   

2 2
2 2
2 2

C C
X Y

∂ ∂
<< ∂ ∂ 

 

 
Region-1 
 

2
11 1 1 1

2 2
1 1

1 xuC C D C
t L hθ ξ η
∂ ∂ ∂

+ =
∂ ∂ ∂

                                                                               (17) 

 
Region-2 
 

2
22 2 2 2

2 2
2 2

1 xuC C D C
t L hθ ξ η
∂ ∂ ∂

+ =
∂ ∂ ∂

                                                                             (18) 
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where L  is the typical length along the flow direction. Following Taylor [22], we now assume that partial equilibrium 
is established in any cross-section of the channel so that the variations of 1C  and 2C  with η  are calculated from 
equations (17) and (18) as 
 
Region-1 
 

2 2
1 1

12
1 1

x
C Ch u

D L ξη
∂ ∂

=
∂∂

                                                                              (19) 

 
Region-2 
 

2 2
2 2

22
2 2

x
C Ch u

D L ξη
∂ ∂

=
∂∂

                                                                                          (20) 

 
To solve these equations we use the following boundary and interface conditions,  
 

1 0
C
η

∂
=

∂
  at  1η = −   and  2 0

C
η

∂
=

∂
   at  1η =                                                      (21) 

 
Equations (19) and (20) are solved for 1C  and 2C  which are given by  
 
Region-1 
 

( ) ( ) 21 2 1
1 1 1 22 2cosh sinh

2
a a lC Z M M b b

M M
η η η η = + + + + 

 
                                                    (22) 

 
Region-2 
 

34
232 2

2 2 3 424 6 2
aP lC Z b b
ηη

η η
 

= + + + + 
 

                                               (23) 

 
where 2b  and 4b  being constants to be determined using the entry conditions. 
 
The volumetric flow rates at which the solute is transported across a section of the channel of unit breadth 1Q (region-1) 
and 2Q  (region-2) using equations (14), (15) and (22), (23), respectively are given by 
 

0 0

1 1 1 1 11 1
1 1

x xQ h C u d Z h C u dη η
− −

= = −∫ ∫                                                                                                               (24) 

 

 
1 1

2 2 2 2 22 2
0 0

x xQ h C u d Z h C u dη η= = −∫ ∫                                                                                                               (25)   

where ( ) ( ) 2
1 2 1

11 12 2

cosh sinh
2

a M a M lC b
M M

η η η
η= − − + − , 

34 2
32 2

22 324 6 2
aP lC b
ηη η

η= − − − − . 

 
Following Taylor [22], we assume that the variations of 1C  and 2C  with η  are small compared with those in the 
longitudinal direction, and if 1mC  and 2mC  are the mean concentration over a section, 1 1C ξ∂ ∂  and 2 2C ξ∂ ∂  are 
indistinguishable from 1 1mC ξ∂ ∂  and 2 2mC ξ∂ ∂  respectively so that equations (24) and (25) may be written as  
 
Region-1 
 

* 1
1 1

1

mC
Q D

ξ
∂

= −
∂

                                                    (26) 
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Region-2 
 

* 2
2 2

2

mC
Q D

ξ
∂

= −
∂

                                                  (27) 

 
The fact that no material is lost in the process is expressed by the continuity equation for 1mC  and 2mC , namely  
 
Region-1 
 

11

1

2 mCQ
tξ

∂∂
= −

∂ ∂
                                                       (28) 

 
Region-2 
 

22

2

2 mCQ
tξ

∂∂
= −

∂ ∂
                                                       (29) 

 
Equations (28) and (29) using equations (24) and (25) become 
 
Region-1 
 

2*
1 11

2
12

m mC CD
t ξ

∂ ∂
=

∂ ∂
                                        (30) 

 
Region-2 
 

2*
2 22

2
22

m mC CD
t ξ

∂ ∂
=

∂ ∂
                                         (31) 

 
which are the equations governing the longitudinal dispersion, where 
 

( )
02 2

*
1 11 1 1 1 2

1 11

, , , ,
2 2x
h hD C u d F M p p m n
D D

η
−

= =∫ ;  ( )
02 2

*
2 12 1 2 1 2

2 21

, , , ,
2 2x
h hD C u d F M p p m n
D D

η
−

= =∫ . 

 
Equations (30) and (31) are the well known heat equations which can be solved easily for a given initial conditions. 
 
Case 1b: Diffusion of a tracer in the absence of first order chemical reaction for purely viscous fluid (two fluid 
model) 
 
To validate the results of the present model, the problem is solved in the absence of magnetic field and compared with 
the results of Gupta and Gupta [10].  
 
The non-dimensional equations of motion for incompressible, viscous fluids are 
 
Region-1 
 

2
1 1

2 0
d u dp

dxdy

∗

− =                                                   (32) 

 
Region-2 
 

2
2 2

2 0
d u dp

dxdy

∗

− =                                                   (33) 

 
The boundary and interface conditions are defined as in equation (7).  Using equation (7) in equations (32) and (33), the 
solutions become 
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2
1

1 1 22
pu a aη

η= + +                                     (34) 

 
2

2
2 3 42

pu a aη
η= + +                                     (35) 

 
The average velocities become 
 

1 1
1 2

1
2 6 2

p au a = − + 
 

                                    (36) 

 

31
2 4

1
2 6 2

apu a = + + 
 

                                    (37) 

 
The solutions of equations (19) and (20) in the absence of magnetic field 0B  yields 
 

4 3 22
1 1 1 1

1 1 01
1 1 24 6 2

C p a lchC b C
D L

η η η
η

ξ
 ∂

= + + + + ∂  
                                                   (38) 

 
34 22

32 2 2
2 3 02

2 2 24 6 2
aC p lchC b C

D L
ηη η

η
ξ

 ∂
= + + + + ∂  

                                                   (39) 

 
where 01C  and 02C  being constants to be determined using entry conditions. 
 
The volumetric rates at which the solute is transported across a section of the channel of unit breadth 1Q  (region-1) and 

2Q  (region-2) and the evaluation of effective dispersion coefficients iiF  are evaluated as explained in the case 1a. The 
values of ( )1 2, , ,iF p p m n  are computed for different values of the dimensionless parameters ip  and m  and are shown 
in Table-2. 
 
Case 1c: Diffusion of a tracer in the absence of first order chemical reaction for purely viscous fluid (one fluid 
model) 
 
The non-dimensional equation of motion is 
 

2

2

d u dp
dxdη

=                                       (40) 

 
along with boundary conditions  
 

0 1u at η= = ±                                     (41) 
 
The solution of equation (40) is  
 

2(1 ) 2u p η= − −  
 
The average velocity is given by 
 

3u p= −  
 
The concentration equation for one fluid model using Taylor [22] become 
 

2 2

2 x
C h C u

DL ξη
∂ ∂

=
∂∂

                                                       (42) 

where 
2

2 6x
p pu η

= −  
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The solution of equation (42) using boundary conditions 0C
η
∂

=
∂

  at  1η =±  is  

 
2

4 2
024 12

h C p pC C
DL

η η
ξ
∂  = − + ∂  

                                                     (43) 

 
where 0C  being  a constant to be determined using entry conditions. 
 
The volumetric flow rate in which the solute is transported across a section of the channel of unit breadth is 
 

1 2 2

1

2
945x

h p CQ h C u d
D

η
ξ−

∂  = = −  ∂  ∫                                                      (44) 

so that the value for  *D  can be written as 
2 2 2

945
h p

D
 by comparing with Fick’s law of diffusion which agrees with the 

results of Wooding [31] where p  is the non-dimensional pressure gradient. *D  is also the effective dispersion co-
efficient obtained by Gupta and Gupta [10] in the absence of chemical reactions. 
 
Case 2a: Diffusion of a tracer in the presence of homogeneous first-order chemical reaction. 
 
The physical model and the assumptions made in case1 are true here, except that we have the chemical reaction. In this 
case we assume that the chemical reaction is first order and it occurs under such conditions that the gas film resistance 
is negligible. This means that the reaction term is 1KC−  (region-1- -3 -1mol cm s ) and 2KC−  (region-2- -3 -1mol cm s ), 
which represents the volume rate of disappearance of the solute due to chemical reaction. Here K  represents the first-
order reaction rate constant. 
 
The velocity and average velocity are exactly the same as in equations (8)-(11). The equations for concentration, 
instead of equations (12) and (13), are 
 
Region-1 
 

2 2
1 1 1 1

1 1 1 12 2

C C C Cu D K C
t X X Y

 ∂ ∂ ∂ ∂
+ = + − ∂ ∂ ∂ ∂ 

                                                                          (45) 

 
Region-2 
 

2 2
2 2 2 2

2 2 2 22 2

C C C Cu D K C
t X X Y

 ∂ ∂ ∂ ∂
+ = + − ∂ ∂ ∂ ∂ 

                                                                          (46) 

 
Along with boundary conditions (21), the continuity of concentration and continuity of mass flux at the interface is 
considered to evaluate the integrating constants i.e., 
 

1 2 2
1 2

1

and at 0
C D CC C

D
η

η η
∂ ∂

= = =
∂ ∂

                                                                                                (47) 

 
Following the analysis of case 1, the non-dimensional form of equations (45) and (46) are 
 
Region-1 
 

2 2
21 1

1 1 12
1 1

x
C ChC u

D L
α

ξη
∂ ∂

− =
∂∂

                                                                           (48) 

 
Region-2 
 

2 2
22 2

2 2 22
2 2

x
C ChC u

D L
α

ξη
∂ ∂

− =
∂∂

                                                             (49) 
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where 1 1 1h K Dα =  and 2 2 2h K Dα = . 
 
The solutions of equations (48) and (49) using boundary and interface conditions as in equations (21) and (47) become 
 
Region-1 

( ) ( ) ( ) ( ) 21 2 1
1 1 1 2 1 1 2 2 2 2 2

1 1 1

cosh sinh cosh sinh
a a lC b b Z M M

M M
α η α η η η η

α α α
 

= + + + + − − 
             (50) 

Region-2 
 

( ) ( ) ( )2
2 3 2 4 2 2 3 4 5cosh sinhC b b Z l l lα η α η η η= + + + +                                              (51) 

 
The expressions for 1C  and 2C  can also written as 
 

2 2
1 2

1 11 12
1 1 2 2

C Ch hC C C
D L D Lξ ξ

∂ ∂
= +

∂ ∂
 

 
2 2

1 2
2 21 22

1 1 2 2

C Ch hC C C
D L D Lξ ξ

∂ ∂
= +

∂ ∂
 

 
The volumetric flow rates at which the solute is transported across a section of the channel of unit breadth 1Q (region-1) 
and 2Q  (region-2) using equations (14), (15) and (50), (51), respectively are given by 
 
Region-1 
 

( )
0

1 1 1 11 12
1

xQ h C u d Q Qη
−

= = − +∫                                                                                                                (52) 

 
Region-2 

( )
1

2 2 2 21 22
0

xQ h C u d Q Qη= = − +∫                                                      (53) 

 

where 
0

11 1 11 1
1

xQ Z h C u dη
−

= − ∫ , 
0

12 2 12 1
1

xQ Z h C u dη
−

= − ∫ , 
1

21 1 21 2
0

xQ Z h C u dη= − ∫ , 
1

22 2 22 2
0

xQ Z h C u dη= − ∫ .   

 
Following the procedure explained in case 1 and using the fact that no material is lost in the process expressed by the 
continuity equation for 1C  and 2C , given by equations (52) and (53), we obtain an effective dispersion coefficient *D  
in the form 
 

( )
02 2

*
11 11 1 11 1 2 1 2

1 11

, , , , , ,
2 2x
h hD C u d F M p p m n
D D

η α α
−

= =∫ ,  

( )
02 2

*
12 12 1 12 1 2 1 2

2 21

, , , , , ,
2 2x
h hD C u d F M p p m n
D D

η α α
−

= =∫ ,     

( )
02 2

*
21 21 2 21 1 2 1 2

1 11

, , , , , ,
2 2x
h hD C u d F M p p m n
D D

η α α
−

= =∫ ,  

( )
02 2

*
22 22 2 22 1 2 1 2

2 21

, , , , , ,
2 2x
h hD C u d F M p p m n
D D

η α α
−

= =∫ .                                                                                            (54) 

 
Values of iiF  are computed for different values of dimensionless parameters such as Hartman number M , viscosity 
ratio m  and pressure gradients 1 2,p p  for variations of 1 2andα α . Volumetric flow rate is also computed for variations 
of Hartman number, viscosity ratio, pressure gradients and height of the channel. 
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Case 2b: Diffusion of a tracer with combined homogeneous and heterogeneous first-order chemical reaction. 
 
We now discuss the problem of diffusion in a channel with a first-order chemical reaction taking place both in the bulk 
of the fluid as well as at the walls which are assumed to be catalytic.  In this case the diffusion equations remain the 
same as defined in equations (48) and (49) subject to the dimensionless boundary and interface conditions as 
 

1
1 1 0 1

C C atβ η
η

∂
− = = −

∂
                                                                   

2
2 2 0 1

C C atβ η
η

∂
+ = =

∂
                                   (55) 

1 2 0C C at η= =  

1 2
1 2 0

C CD D at η
η η

∂ ∂
= =

∂ ∂
 

 
where 1 1f hβ =  and 2 2f hβ =  are the heterogeneous reaction rate parameters corresponding to catalytic reaction at the 
walls. 
 
The solutions of equations (48) and (49) are same as in equations (50) and (51). The integrating constants 1 2 3, ,b b b  and 

4b  are obtained using boundary and interface conditions as defined in equation (55) and given as follows  
 

1 1 11 2 12b Z b Z b= + , 2 1 21 2 22b Z b Z b= + , 3 1 31 2 32b Z b Z b= + , 4 1 41 2 42b Z b Z b= + . 
 
The procedure of evaluating the volumetric flow rate and effective dispersion coefficient is same as in equations (52) to 
(55). 
 
Case 2c: Diffusion of a tracer in the presence of homogeneous first-order chemical reaction in the absence of 
magnetic field for purely viscous fluid (two fluid model). 
 
We justify our results by comparing with the results obtained by Gupta and Gupta [10] (one fluid model) with first 
order chemical reaction for purely viscous fluid. 
 
The solutions of velocities and average velocities are same as in equations (34) to (37). 
 
The solutions of equations (48) and (49) for purely viscous fluid yields 
 

( ) ( ) ( )2
1 1 1 2 1 1 1 2 3cosh sinhC b b Z l l lα η α η η η= + + + +                                                                          (56) 

 
( ) ( ) ( )2

2 3 2 4 2 2 4 5 6cosh sinhC b b Z l l lα η α η η η= + + + +                                                           (57) 
 
The volumetric rates at which the solute is transported across a section of the channel of unit breadth 1Q  (region-1) and 

2Q  (region-2) and the evaluation of effective dispersion coefficients iiF  are evaluated as explained in the case1a. The 
values of ( )1 2 1 2, , , , ,iiF p p m nα α  are computed for different values of the dimensionless reaction rate parameters iα , 

ip  and m  and are shown in Table-2. 
 
Case 2d: The channel filled with only viscous fluid (one fluid model) for homogeneous chemical reaction. 
 
The solutions of velocities and average velocities are given in case 1c. 
The concentration equation for one fluid model using Taylor [22] become 
 

2 2
2

2 x
C h CC u

DL
α

ξη
∂ ∂

− =
∂∂

                                                              (58) 

 

where 
2

2 6x
p pu η

= −  
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The solution of equation (58) using boundary conditions  0C
η
∂

=
∂

  at  1η =±  is  

( )
2

2
2 2cosh

2 6
h C p p pC A
DL

αη η
ξα α
∂  = − − + ∂  

                                                                         (59) 

 
The volumetric flow rate in which the solute is transported across a section of the channel of unit breadth is  
 

( )1 2 2

2 4 2
1

coth1 1 1
453x

h p CQ h C u d
D

α
η

ξ αα α α−

 ∂
= = + − − 

∂  
∫                                                      (60) 

 
Comparing equation (60) with Fick’s law of diffusion, we find that the solute is dispersed relative to a plane moving 
with the mean speed of the flow with an effective dispersion coefficient D∗  given by 
 

2 2

( )h pD F
D

α∗ =  

where 
( )

2 4 2

coth1 1 1 1( )
453

F
α

α
αα α α

 
= − − + 

 
                                                                         (61) 

 
Values of ( )F α  are computed for different values of the dimensionless reaction rate parameter α  and are shown in 
Table 2. When 0α → , Eqn. (61) gives 
 

( )
0

2lim
945

F
α

α
→

=  

 

so that the value for D∗  can be written as 
2 2 2

945
h p

D
 which agrees with the results of Wooding [31] where p  is the 

non-dimensional pressure gradient. 
 
The solution for heterogeneous chemical reaction is also found for two fluid and one fluid model for purely viscous 
fluid and the results are shown in Table-2. 
 
The constants appeared in all the above equations are given in the Appendix. 
 
4. RESULTS AND DISCUSSION 
 
The problem under the study is the longitudinal dispersion of a solute subject to molecular diffusion when it is 
introduced into a channel filled with conducting and non-conducting immiscible fluid. The dispersion of a solute is 
analyzed in the absence and in the presence of an irreversible first-order chemical reaction following Taylor diffusion 
model. 
 
The average velocities in both the regions are evaluated using no-slip conditions at the boundaries and continuity of 
velocity and shear stress at the interface. The volumetric flow rate and effective Taylor dispersion coefficient in each 
region is evaluated for various governing parameters. 
 
Case 1: Diffusion of a tracer in the absence of homogeneous first-order chemical reaction: 
 
The effect of Hartman number M  on the velocity is shown in figure 2. We observe that an increase in the value of the 
Hartman number M  decreases the velocity. This is the classical Hartman effect. The fluid in region-1 is being 
conducting experiences the effect of magnetic field more. The fluid in region-2 is electrically non-conducting, and the 
flow in this region is affected by the applied fields through the coupling. 
 
Table-1 illustrate the effects of Hartman number M , viscosity ratio m  and pressure gradient p ( )1 2p p= =  on the 
effective Taylor dispersion coefficient (ETDC) in each region. It is evident from Table-1 that the ETDC decreases with 
increase in the Hartman number M . The results are compatible with the physics of the problem. In Hartman flow, it is 
seen that the velocity profile becomes flatter (Fig. 2) with the increase of Hartman number M , when compared to the 
profiles of non-magnetic case. This means for a fixed pressure gradient and viscosity ratio the flow rate decreases with 
increase in M .  
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As the viscosity ratio m  increases ETDC decreases for values of 1m <  and increases in magnitude for values of 

1m > . This is due to the fact that viscosity ratio m  has significant effect on velocity in region-2 i.e., the region 
containing non-conducting fluid. As m  becomes small, the velocity profiles become flat in region-1 and parabolic in 
region-2 which causes for reduction in F  for values of 1m <  and increases F  for values of 1m > . The values of 
ETDC ( )F  is symmetric for pressure gradient 0p >  and for 0p < . Further as p  increases, F  increases for values of 

0p >  and decreases as p  increases for values of 0p < . This is due to the fact that as p  increases for values of 

0p > , velocity increases which causes an increase in F . ( It should be noted here that p  is defined as dp
dx

∗ 
− 


. 

The effects of Hartmann number M , viscosity ratio m , pressure gradient p  and height of the channel h  on the 
volumetric flow rate Q  is shown in figure 3.  As the Hartmann number increases, volumetric flow rate decreases for 

3M =  and remains constant for 3M ≥ .  The viscosity ratio increases the flow rate in magnitude for values of m  up to 
0.9 (approximately) and remains invariant.  Volumetric flow rate is symmetric for negative and positive values of 
pressure gradient p and the optimal flow rate is attained in the absence of pressure gradient.  As the height ratio h  
increases, flow rate decreases in magnitude. 
 
The results obtained (two-fluid model) in the absence of first order chemical reactions agree with the results obtained 
by Gupta and Chatterjee [9] for the effect of Hartmann number on effective Taylor dispersion co-efficient.  That is, as 
M  increases F  decreases.  Letting 0M →  and fixing 1, 1m p= =  and 1h =  (i.e., considering same fluid in both the 
regions) we obtain Gupta and Gupta [10] results in the absence of first order chemical reactions which are also the 
results of Wooding [31] as shown in Table-2. 
 
Case 2: Diffusion of a tracer with combined homogeneous and heterogeneous first-order chemical reaction. 
 
The ETDC 1F  (region-1) and 2F  (region-2) for different values of viscosity ratio m , pressure gradient p  and  
Hartmann number M  for homogeneous reaction is shown in Table-3.  As the reaction rate parameter 

1 2( )α α α= = increases, 1F  and 2F  decreases in both regions for all values of  ,m p  and  M .  This is due to the fact 
that, increase in α  signifies that increasing number of moles of solute undergoing chemical reaction resulting in a drop 
in dispersion coefficient.   
 
As the viscosity ratio m  increases, the total effective dispersion co-efficient 1 2( )F F F= =  decreases for values of 

1m ≤  and increases for 1m ≥ . F  decreases as p  increases for 1p <  and increases as p  increases for values of 
1p > . As the Hartmann number M   increases ETDC decreases in both the regions. However the values of 1F  are less 

when compared to 2F , which again signifies the compatibility with the physics of the problem.  In the Hartmann flow, 
the velocity profiles become flatter, when compared to the profiles of non-magnetic case. 
 
From Table-4, we find the variations of ETDC and the wall catalytic parameter β , on the viscosity ratio m , pressure 
gradient p  and Hartmann number M  for fixed value of homogeneous reaction rate parameter 1 2( )α α α= = . As the 
wall catalytic parameter 1 2( )β β β= =  increases, ETDC decreases for all values of ,m p  and M  (similar results 
observed for homogeneous chemical reaction).  Further the effects of ,m p  and M  on ETDC are the similar results 
observed for homogeneous chemical reaction. 
 
The effect of viscosity ratio m , pressure gradient p  and height of the channel on the volumetric flow rate for both 
homogeneous and heterogeneous chemical reaction shows the similar result as observed for the diffusion without 
chemical reaction (caase-1), whereas the  Hartmann number increases, volumetric flow rate increases for 4M =  and 
remains constant for 4M >  as shown in figure 4.  
 
The effects of Hartmann number on the ETDC, reaction rate parameter and wall catalytic parameter for homogeneous 
and heterogeneous chemical reactions of the present model (two-fluid) agree with Sudhanshu et al [21] (one fluid 
model). That is, as the Hartman number M  increases, the reaction rate parameter α , wall catalytic parameter β  and 
ETDC decreases.  Letting 0, 1M m→ = and 1p =  agree with the results of Gupta and Gupta [10] as shown in Table-2. 
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5. CONCLUSIONS 
 
1. The ETDC decreases with increase in Hartman number with or without chemical reactions. 
 
2. The ETDC decreases for 1m ≤  and 1p <  whereas it increases for 1m >  and 1p >  as m  and p  increases in the 

presence or in the absence of chemical reactions. The results for two fluid model agree with the results for one 
fluid models of Gupta and Chatterjee [9],  Sudhanshu et al [21] and Gupta and Gupta [10]. 

 
3. As the homogeneous reaction rate parameter and wall catalytic parameter increases, the ETDC decreases for all 

values of viscosity ratio, pressure gradient and Hartman number. 
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Fig. (2): Velocity profiles for different values of Hartman number M . 
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Fig. (3): Volumetric flow rate Q  versus Hartman number M , viscosity ratio m , pressure gradient p  and height of the 
channel h  in the absence of first order chemical reaction. 
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Fig. (4): Volumetric flow rate Q  versus Hartman number M , viscosity ratio m , pressure gradient p  and height of the 
channel h  in the presence of first order chemical reaction. 
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Table-1: Values of effective dispersion coefficient for variations of Hartman number, viscosity ratio, and pressure 
gradients in the absence of first order chemical reaction. 
 

M  ( )1 , ,F M m p  ( )2 , ,F M m p  ( ), ,F M m p  
0.1 -0.722669 0.001051 -0.721618 
2 8.8431E-4 1.9282E-4 0.001077 
4 7.3578E-4 2.2678E-4 9.6255E-4 
6 5.8713E-4 3.1839E-4 9.0552E-4 
8 5.1204E-4 3.6054E-4 8.7257E-4 
m   

0.1 0.028582 0.012176 0.040758 
0.5 0.001054 4.5133E-4 0.001505 
1 8.8431E-4 1.9282E-4 0.001077 
2 -3.4833E-4 7.7197E-4 4.2364E-4 
3 -0.006858 0.002919 -0.003939 
4 -0.020934 0.007164 -0.013770 
p   

-15 0.198970 0.043385 0.242355 
-10 0.088431 0.019282 0.107713 
-5 0.022108 0.004821 0.026928 
0.1 8.8431E-6 1.9282E-6 1.0771E-5 
5 0.022108 0.004821 0.026928 
10 0.088431 0.019282 0.107713 
15 0.198970 0.043385 0.242355 

 
Table-2: Values of effective dispersion coefficient. 

 

 Two fluid model (present model) One fluid model 
Gupta and Gupta [10] 

m p=  ( )1 ,F m p  ( )2 ,F m p  ( ),F m p  ( ),F m p  
 In the absence of first-order chemical reaction 
1 0.0010582 0.0010582 0.0021164 0.0021164 
 In the presence of first-order homogeneous chemical reaction 
α  ( )1 1 2,F α α  ( )2 1 2,F α α  ( )1 2,F α α  ( )F α  
0.4 0.0010099 0.0010099 0.0020199 0.00201987 
0.8 9.1846E-4 9.1846E-4 0.0018369 0.00183692 
1.2 8.2952E-4 8.2952E-4 0.0016590 0.00165904 
1.6 7.474E-4 7.474E-4 0.0014948 0.00149480 
2 6.70579E-4 6.70579E-4 0.0013412 0.00134116 
 In the presence of first-order combined homogeneous and heterogeneous chemical reaction 
β  ( )1 ,i iF α β  ( )2 ,i iF α β  ( ),i iF α β  ( ),F α β  
2 8.48463E-4 8.48463E-4 0.00169693 0.0016969 
4 8.30289E-4 8.30289E-4 0.00166058 0.0016606 
6 8.22866E-4 8.22866E-4 0.00164573 0.0016457 
8 8.18832E-4 8.18832E-4 0.00163766 0.0016377 

10 8.16298E-4 8.16298E-4 0.00163260 0.0016326 
 
Table-3: Values of effective dispersion coefficient for variations of reaction rate parameter α , Hartman number M , 
viscosity ratio m , and pressure gradients p  in the presence of first order chemical reaction. 
 

 0.1m =  1m =  
α  ( )1 1 2,F α α  ( )2 1 2,F α α  ( )1 2,F α α  ( )1 1 2,F α α  ( )2 1 2,F α α  ( )1 2,F α α  
0.4 0.00372143 0.00319035 0.00691178 4.780674E-4 3.225716E-4 8.00639E-4 
0.8 0.00316900 0.00286012 0.00602911 4.103112E-4 2.881178E-4 6.98429E-4 
1.2 0.00254787 0.00247189 0.00501976 3.333973E-4 2.477554E-4 5.811527E-4 
1.6 0.00200757 0.00211124 0.00411881 2.65561E-4 2.104516E-4 4.760121E-4 
2.0 0.00158479 0.00180496 0.00338975 2.11585E-4 1.789711E-4 3.905567E-4 

 2m =  1 2 5p p= = −  
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0.4 6.96851E-4 2.410362E-4 9.378872E-4 0.01195168 0.00806429 0.02001598 
0.8 6.19891E-4 2.273203E-4 8.472109E-4 0.01025778 0.00720295 0.01746073 
1.2 5.28997E-4 2.087085E-4 7.377051E-4 0.00833493 0.00619388 0.01452882 
1.6 4.44242E-4 1.882975E-4 6.325399E-4 0.00663901 0.00526129 0.01190030 
2.0 3.7227E-4 1.680401E-4 5.403097E-4 0.00528964 0.00447428 0.00976392 

 1 2 0.1p p= =  1 2 5p p= =  
0.4 4.780674E-6 3.225716E-6 8.00639E-6 0.01195168 0.00806429 0.02001598 
0.8 4.10311E-6 2.881178E-6 6.98429E-6 0.01025778 0.00720295 0.01746073 
1.2 3.333973E-6 2.477554E-6 5.811527E-6 0.00833493 0.00619388 0.01452882 
1.6 2.655605E-6 2.104516E-6 4.760121E-6 0.00663901 0.00526129 0.01190030 
2.0 2.1158E-6 1.789711E-6 3.905566E-6 0.00528964 0.00447428 0.00976392 

 0.1M =  5M =  
0.4 0.001038 0.001036 0.002074 4.624221E-4 3.475333E-4 8.099554E-4 
0.8 9.91158E-4 9.89435E-4 0.001981 3.945474E-4 3.053233E-4 6.998707E-4 
1.2 9.21798E-4 9.20548E-4 0.001842 3.179332E-4 2.568271E-4 5.747602E-4 
1.6 8.39725E-4 8.38873E-4 0.001679 2.50917E-4 2.132239E-4 4.641409E-4 
2.0 7.53668E-4 7.53113E-4 0.001507 1.981353E-4 1.776012E-4 3.757365E-4 

 10M =  15M =  
0.4 4.048575E-4 3.828985E-4 7.87756E-4 3.72265E-4 3.782103E-4 7.504753E-4 
0.8 3.436994E-4 3.298954E-4 6.735949E-4 3.15931E-4 3.248135E-4 6.407445E-4 
1.2 2.750242E-4 2.700146E-4 5.450388E-4 2.527028E-4 2.646192E-4 5.173221E-4 
1.6 2.154077E-4 2.175091E-4 4.329169E-4 1.978524E-4 2.120171E-4 4.098695E-4 
2.0 1.688915E-4 1.759473E-4 3.448388E-4 1.550896E-4 1.70565E-4 3.256546E-4 

 
Table-4: Values of effective dispersion coefficient for variations of wall catalytic parameter β , Hartman number M , 
viscosity ratio m , and pressure gradients p  in the presence of first order chemical reaction. 
 

 0.1m =  1m =  
β  ( )1 ,i iF α β  ( )2 ,i iF α β  ( ),i iF α β  ( )1 ,i iF α β  ( )2 ,i iF α β  ( ),i iF α β  
2 0.001209 0.002834 0.004043 1.60494E-4 2.92623E-4 4.53117E-4 
4 8.55809E-4 0.002830 0.003686 1.15092E-4 2.93554E-4 4.08646E-4 
6 7.00217E-4 0.002824 0.003524 9.50742E-5 2.93553E-4 3.88627E-4 
8 6.12538E-4 0.002820 0.003433 8.37906E-5 2.93447E-4 3.77238E-4 
10 5.56254E-4 0.002817 0.003373 7.65464E-5 2.93341E-4 3.69887E-4 

 2m =  1 2 5p p= = −  
2 3.34959E-4 2.80205E-4 6.15164E-4 0.004012 0.007316 0.011328 
4 2.84299E-4 2.91222E-4 5.75521E-4 0.002877 0.007339 0.010216 
6 2.62049E-4 2.95864E-4 5.57913E-4 0.002377 0.007339 0.009716 
8 2.49528E-4 2.98427E-4 5.47955E-4 0.002095 0.007336 0.009431 
10 2.41497E-4 3.00052E-4 5.41549E-4 0.001914 0.007334 0.009247 

 1 2 0.1p p= =  1 2 5p p= =  
2 1.60494E-6 2.92623E-6 4.53117E-6 0.004012 0.007316 0.011328 
4 1.15092E-6 2.93554E-6 4.08646E-6 0.002877 0.007339 0.010216 
6 9.50742E-7 2.93553E-6 3.88627E-6 0.002377 0.007339 0.009716 
8 8.37906E-7 2.93447E-6 3.77238E-6 0.002095 0.007336 0.009431 
10 7.65464E-7 2.93341E-6 3.69887E-6 0.001914 0.007334 0.009247 

 0.1M =  5M =  
2 8.44147E-4 8.45444E-4 0.001690 1.61016E-4 2.77462E-4 4.38478E-4 
4 8.25776E-4 8.27622E-4 0.001653 1.18231E-4 2.722E-4 3.90431E-4 
6 8.18267E-4 8.2035E-4 0.001639 9.92856E-5 2.69455E-4 3.68741E-4 
8 8.14184E-4 8.16399E-4 0.001631 8.85857E-5 2.678E-4 3.56386E-4 
10 8.11618E-4 8.13918E-4 0.001626 8.17084E-5 2.66698E-4 3.48407E-4 

 10M =  15M =  
2 1.61621E-4 2.42691E-4 4.04311E-4 1.55111E-4 2.26121E-4 3.81231E-4 
4 1.27764E-4 2.26304E-4 3.54067E-4 1.25052E-4 2.07607E-4 3.32659E-4 
6 1.12633E-4 2.1869E-4 3.31323E-4 1.11579E-4 1.99085E-4 3.10664E-4 
8 1.04053E-4 2.143E-4 3.18352E-4 1.03928E-4 1.9419E-4 2.98118E-4 
10 9.85249E-5 2.11444E-4 3.09969E-4 9.89956E-5 1.91013E-4 2.90009E-4 
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NOMENCLATURE 

0B  applied magnetic field 

iC  concentration of the solute         

iD  molecular diffusion coefficient   
D  ratio of molecular diffusion coefficient  
( )2 1/D D         
h  distance between the plates  

iK  first-order reaction rate constant  
L  typical length along the flow direction 

iQ  volumetric flow rate   

iU         velocity        

iu          non-dimensional average velocity 

iu          non-dimensional velocity   

i

i

dP
dX

 pressure gradient 

M  Hartman number           

m  viscosity ratio ( )2 1µ µ  

n  density ratio ( )1 2ρ ρ  

ip  non-dimensional pressure gradient 
 
GREEK SYMBOLS  

iα    dimensionless reaction rate parameters  

iβ  wall catalytic parameter  
 iµ  dynamic viscosity   

eσ  electrical conductivity 
η  dimensionless length 

iρ  density of the fluid  
 
SUBSCRIPTS 

1, 2i =  where 1, 2 –quantities for region-1 and region-2, 
respectively. 

 
Appendix 
 
Case 1a: Diffusion of a tracer in the absence of homogeneous first-order chemical reaction. 
 

1
1
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dx
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3 2
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M m n M m n M

− −
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+
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4 3 2
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2
1 1

2 2
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M a M p
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M M

−
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1
1 42
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1 12
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, 

2
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1 1
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∂
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∂
, 

2
2

2
2 2
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∂
=

∂
, ( ) ( )1 2

1 1 1sinh cosh
a ab Z M M l
M M

 = − + 
 

, 32
3 2 26 2

aPb Z l = − + + 
 

. 

 
Case 1b: Diffusion of a tracer in the absence of first order chemical reaction for purely viscous fluid (two fluid 
model) 
 

( )
1 2

3 2 1
p p mna

m mn
−

=
+

, 2
4 32

pa a= − − , 2 4a mna= , 2
1 3a m na= . 

 
Case 2a: Diffusion of a tracer in the presence of homogeneous first-order chemical reaction. 
 

( ) ( ) ( ) ( ) 21 2 1
11 11 1 21 1 2 2 2 2 2

1 1 1
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a a lC b b M M
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α α α
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22 32 2 42 2 3 4 5cosh sinhC b b l l lα η α η η η= + + + + , 2

3 2
22

pl
α

= − , 3
4 2

2

a
l

α
= − , 2

5 22 2
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( ) ( ) ( ) ( )2
2 1 2 1 2 1 2cosh sinh sinh coshDr Dα α α α α α α= − − , 

( ) ( ) ( ) ( )( )41 2 1 2 2 3 2 1 2 1 2 2
1 sinh cosh sinh sinhb g g b

Dr
α α α α α α α α= − + , 
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Dr
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Case 2b: Diffusion of a tracer with combined homogeneous and heterogeneous first-order chemical reaction. 
 

( ) ( )4 1 1 1 1sinh coshg α α β α= − − , ( ) ( )5 1 1 1 1cosh sinhg α α β α= + , 
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Case 2c: Diffusion of a tracer in the presence of homogeneous first-order chemical reaction in the absence of 
magnetic field for purely viscous fluid (two fluid model). 
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