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ABSTRACT 
The mixed convective heat and mass transfer flow of a viscous fluid through a porous medium in cylindrical annulus is 
considered. The non coupled equations governing the heat and mass transfer are solved by employing a finite element 
analysis. The effect of various fluid forces on the velocity, temperature, concentration is analyzed. The rate of heat and 
mass transfer on the inner and outer cylinders are evaluated numerically for different parametric values. 
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1. INTRODUCTION 
 
Free convection in a vertical porous annulus has been extensively studied by Prasad [7] both theoretically and 
experimentally.   Convection through annulus region under steady state conditions has also been discussed with two 
cylindrical surface kept at different temperatures [8]. This work has been extended in temperature dependent 
convection flow as well as convection flows through horizontal porous channel whose inner surface is maintained at 
constant temperature while the other surface is maintained at circumferentially varying sinusoidal temperature[9]. Free 
convection flow and heat transfer in hydromagnetic case is important in nuclear and space technology.   
  
Chen and Yuh [3] have investigated the heat and mass transfer characteristics of natural convection flow along a 
vertical cylinder under the combined buoyancy effects of thermal and species diffusion. Sivanjaneya Prasad [11] has 
investigated the free convection flow of an incompressible, viscous fluid through a porous medium in the annulus 
between the porous concentric cylinders under the influence of a radial magnetic field.  Antonio[2] has investigated the 
laminar flow, heat transfer in a vertical cylindrical duct by taking into account both viscous dissipation and the effect of 
buoyancy, The limiting case of fully developed natural convection in porous annuli is solved analytically for steady and 
transient cases by E.  Sharawi and Al-Nimir[10] and Al-Nimir [1].  Philip [6] has obtained solutions for the annular 
porous media valid for low modified Reynolds number.  Ravi [8] has analysed the unsteady convective heat and mass 
transfer through a cylindrical annulus with constant heat sources.  Sreevani [13] has studied the convective heat and 
mass transfer through a porous medium in a cylindrical annulus under radial magnetic field with Soret effect.  Prasad 
[7] has analysed the convective heat and mass transfer in an annulus in the presence of heat generating source under 
radial magnetic field. Reddy [12] has discussed the Soret effect on mixed convective heat and mass transfer through a 
porous cylindrical annulus.  For natural convection, the existence of large temperature differences between the surfaces 
is important.  Keeping the applications in view, Sudheer Kumar et al [15] have studied the effect of radiation on natural 
convection over a vertical cylinder in a porous media. Padmavathi [5] has analyzed the convective heat transfer in a 
cylindrical annulus by using finite element method.   
 
In this paper we discuss the free and forced convection flow through a porous medium in a co-axial cylindrical duct 
where the boundaries are maintained at constant temperature and concentration.  The Brinkman Forchhimer extended 
Darcy equations which takes into account the boundary and inertia effects are used in the governing linear momentum 
equations.  The effect of density variation is confined to the buoyancy term under Boussinesq approximation. The 
momentum, energy and diffusion equations are coupled equations.  In order to obtain a better insight into this complex 
problem, we make use of Galerkin finite element analysis with quadratic polynomial approximations. The Galerkin 
finite element analysis has two important features.  The first is that the approximation solution is written directly as a  
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linear combination of approximation functions with unknown nodal values as coefficients. Secondly, the approximation 
polynomials are chosen exclusively from the lower order piecewise polynomials restricted to contiguous elements.  The 
behaviour of velocity, temperature and concentration is analysed at different axial positions. The shear stress and the 
rate of heat and mass transfer have also been obtained for variations in the governing parameters.      
 
2. FORMULATION OF THE PROBLEM 
 
We consider the free and forced convection flow in a vertical circular annulus through a porous medium whose walls 
are maintained at a constant temperature and concentration. The flow, temperature and concentration in the fluid are 
assumed to be fully developed. Both the fluid and porous region have constant physical properties and the flow is a 
mixed convection flow taking place under thermal and molecular buoyancies and uniform axial pressure gradient.  The 
Boussenissq approximation is invoked so that the density variation is confined to the thermal and molecular buoyancy 
forces. The Brinkman-Forchhimer-Extended Darcy model which accounts for the inertia and boundary effects has been 
used for the momentum equation in the porous region.  The momentum, energy and diffusion equations are coupled 
and non-linear. Also the flow is unidirectional along the axial direction of the cylindrical annulus. Making use of the 
above assumptions the governing equations are 
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where u is the axial velocity in the porous region,  T , C are the temperature and concentration of the fluid,  k is the 
permeability of porous medium,  F is a function that depends on Reynolds number, the microstructure of the porous 
medium and D1 is the  molecular diffusivity, β is the coefficient of the thermal expansion, β*  is the coefficient of 
volume expansion, Cp is the specific heat, ρ  is density and g is gravity. 
 
The relevant boundary conditions are  
 

0=u , T=Ti, C=Ci   at    r = a 
0=u , T=T0, C=Co    at    r = a+s                                                                          (4) 

 
We now define the following non-dimensional variables 
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Introducing these non-dimensional variables,  the governing equations in the non-dimensional form are (on removing 
the stars) 
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The corresponding non-dimensional conditions are 
 

0=u , 1=θ , C=1 at   r=1                                                                                           (8) 
 

0=u , 0=θ , C=0  at  r=1+s                                                                                       (9) 
 
For N=0 the equations (5) – (8) reduce to that of padmavathi [5].  
 
3. FINITE ELEMENT ANALYSIS 
 
The finite element analysis with quadratic polynomial approximation functions is carried out along the radial distance 
across the circular duct.  The behavior of the velocity, temperature and concentration profiles has been discussed 
computationally for different variations in governing parameters. The Gelarkin method has been adopted in the 
variational formulation in each element to obtain the global coupled matrices for the velocity, temperature and 
concentration in course of the finite element analysis. Choose an arbitrary element ek and let uk, θk and Ckbe the values 
of u, θ and C in the element ek We define the error residuals as     
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where uk, θk  & Ck are values of u, θ& C in the  arbitrary element ek. These are expressed as linear combinations in 
terms of respective local nodal values.   
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where k
1ψ ,  k

2ψ --------- etc are Lagrange’s quadratic polynomials.     
 
Following the Gelarkin weighted residual method and integrating by parts equations (10) - (12) we obtain  
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Expressing uk, θk ,  Ck in terms of local nodal values in (13) - (15) we obtain 
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Choosing different k

jψ ’s corresponding to each element ke in the equation (16) yields a local stiffness matrix of order 

33×  in the form 
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Likewise the equation (3.  8) & (3.  9) give rise to stiffness matrices 
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kS   & )( 1 j
kS   are 13×  column matrices.  Such stiffness matrices 

(20) - (22) in terms of local nodes in each element are assembled using interelement continuity and equilibrium 
conditions to obtain the coupled global matrices in terms of the global nodal values of u ,  θ  & C in the region.      
 
In case we choose n quadratic elements, then the global matrices are of order 2n+1. The ultimate coupled global 
matrices are solved to determine the unknown global nodal values of the velocity, temperature and concentration in  
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fluid region. In solving these global matrices an iteration procedure has been adopted to include the boundary and 
effects in the porous medium.     
 
In fact, the non-linear term arises in the modified Brinkman linear momentum equation (13) of the porous medium.    
The iteration procedure in taking the global matrices is as follows.  We split the square term into a product term and 
keeping one of them say Ui’s under  integration,  the other is expanded in terms of local nodal values as in  (16),   
resulting in the corresponding coefficient matrix )'( sn j

k
i   in (20),   whose coefficients involve the unknown Ui’s . To 

evaluate (20), to begin with, choose the initial global nodal values of Ui’s as zeros in the zeroth approximation. We 
evaluate ui’s ,  θi’s and Ci’s in the usual procedure mentioned earlier. Later choosing these values of ui’s as first order 
approximation calculate θi’s, Ci’s. In the second iteration,  we substitute for Ui’s the first order approximation of and 
ui’s  and the first approximation of θi’s and Ci’s and obtain second order approximation. This procedure is repeated till 
the consecutive values of ui’s ,  θi’s and Ci’s differ by a preassigned percentage.      
 
The equilibrium conditions are  
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4. SOLUTION OF THE PROBLEM 
  
Solving these coupled global matrices for temperature, concentration and velocity   respectively and using the iteration 
procedure we determine the unknown global nodes through which the temperature, concentration and velocity at 
different radial intervals at any arbitrary axial cross sections are obtained.  The respective expressions are given by 
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5. NUSSELT NUMBER AND SHERWOOD NUMBER 
 
The rate of heat transfer (Nusselt number) is evaluated using the formula  
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dNu +=−= 1,1)( θ

 

 



Dr. Y. Madhusudhana Reddy1*, Prof. D. R. V. Prasada Rao2
 and P. Sreenivasa Rao3/ FINITE ELEMENT ANALYSIS OF MIXED 

CONVECTIVE HEAT AND MASS… / IJMA- 3(5), May-2012, Page: 1967-1977 

© 2012, IJMA. All Rights Reserved                                                                                                                                                  1972   

 
The rate of mass transfer (Sherwood number) is evaluated using the formula 
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6. DISCUSSION OF THE NUMERICAL RESULTS 
 
In this analysis we investigate the non-darcy convective heat and mass transfer flow of a viscous fluid in the annular 
region within the two concentric cylinders which are maintained at constant temperature and concentrations.  By using 
Galerkin finite element analysis with quadratic polynomials, the velocity, temperature and concentration have been 
analyzed for different values of the governing parameter D-1 (Darcy Parameter, N(buoyancy ratio), Sc(Schmidt 
Number.) N1&N2(temperature and concentration gradient) respectively.  From fig-1 we notice that the variation of u is 
remarkably appreciable for higher values of D-1.  Lesser the permeability of the porous medium larger |u| and for 
further lowering of the permeability higher u in the region 1.1≥r≤1.4 and smaller u in the region 1.5 to 1.9. The 
variation of u with buoyancy ratio N reveals that u exhibits a reversal flow in the entire region for N= -0.5 and no such 
flow exists anywhere in the region for any value of |N|.  Also when the molecular buoyancy force dominates over the 
thermal buoyancy force, the axial velocity experiences depreciation in flow field irrespective of the directions of the 
buoyancy forces (fig-2).  Fig-3 represents the variation of u with Sc fixing the other parameters.  It is found that lesser 
the molecular diffusivity smaller the axial velocity in the entire flow field.  The variation of u with temperature gradient 
N1 and concentration gradient N2 shows that an increase in temperature gradient N1/concentration gradient N2 results is 
an enhancement in u everywhere in the region (fig4). 
 
Figures 5-8 represent the variation of θ with D-1, Sc, So, N1 & N2.  From fig 5 we notice that lesser the permeability of 
the porous medium smaller the actual temperature in the region (1.1- 1.4) and larger the actual concentration in the 
region (1.5 - 1.9) and for further lowering of the permeability larger the actual temperature in the flow field except in 
the region (1.5 - 1.7) where it experience a depreciation.  When the molecular buoyancy force dominates over the 
thermal buoyancy force the actual temperature experiences an enhancement with buoyancy forces in the same 
directions while for the forces in the opposite directions it experiences depreciation in the flow region (fig-6).  From 
fig-7 we notice that lesser the molecular diffusivity larger the actual temperature in the flow phenomena.  With 
reference to variation of θ with N1 & N2 we notice that there is appreciable change in the actual temperature with 
concentration gradient N2.  An increase N1 ≤ 0.5 results in an enhancements in actual temperature and for higher 
N1≥0.75 we notice depreciation in actual temperature.  An increase in N2 leads to a reduction in the actual temperature 
everywhere in the flow region (fig-8). 
 
The Non-dimensional concentration distribution (C) is exhibited in figs 9-12 for different parameters D-1, Sc, N, N1 & 
N2.  Lesser the permeability of the porous medium lesser the actual concentration in the left half and larger it in the 
right half and for still lowering of the permeability larger the concentration everywhere in the region.(fig-9). When the 
molecular buoyancy force dominates over the thermal buoyancy force the actual concentration enhances when the 
buoyancy forces acting in the same direction while for the forces acting in opposite directions it reduces everywhere in 
the region (fig-10).  The variation of θ with Sc indicates that C is negative for smaller and higher values of Sc and is 
positive for intermediate values.  It is found that the actual concentration enhances in the region (1.1-1.4) and 
depreciates in (1.5-1.9).  We notice a remarkable depreciation in actual concentration for smaller values of Sc (fig-11).  
Fig-12 represents the variation of C with N1 & N2.  It is found that θ is negative for all N1 & N2 except for N1=0.75.  
The actual concentration enhances with N1≤0.5 and depreciates with higher N1>0.75.  An increase in N2≥0.5 leads to a 
depreciation in the actual concentration with N2=0.5 and for higher N2≥0.75 we notice an enhancement in the actual 
concentration. 
 
The Nusselt Number (Nu) which measures the rate of heat transfer at the inner and outer cylinder is shown in table 1-4.  
It is found that the rate of heat transfer depreciates in magnitude with increase in |G| at both the boundaries. Lesser the 
permeability of the porous medium smaller |Nu| at r=1and 2.  Also lesser the molecular diffusivity larger the rate of 
heat transfer at both the cylinders.  When the molecular buoyancy force dominates over the thermal buoyancy force 
|Nu| enhances when the buoyancy forces act in the same direction, while for the forces acting in opposite direction its 
depreciate at both the boundaries(tables 1 &3). From tables 2 & 4, An increase in N1 enhances |Nu| at r=1 and reduces 
it at r=2, while it enhances at both the boundaries with increase in N2.   
 
The Sherwood Number (Sh) which measure the rate of mass transfer at r=1and2 is shown in tables 5-8 for different 
values of the parameters.  It is noticed that the rate of mass transfer is positive for all variations.  The rate of mass 
transfer enhances at r=1 and reduces at r=2 with increase in G>0 while an increase in G<0 reduces it r=1 and enhances 
it at r=2.  The variation of Sh with D-1 shows that lesser the permeability of the porous medium larger Sh at r=1 and 
smaller Sh at r=2.  Also lesser the molecular diffusivity larger Sh at r=1 and smaller Sh at r=2.  The variation of Sh with 
buoyancy ratio N shows that when the molecular buoyancy force dominate over the thermal buoyancy force, the rate of 
mass transfer reduces at r=1 and enhances at r=2 when the buoyancy forces act in the same direction while for the  
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forces acting in opposite directions it enhances at r=1 and depreciates at r=2(tables 5 & 11).  The rate of mass transfer 
at inner cylinder r=1 depreciate with N1 and enhances with N2 while at outer cylinder r=2 it enhances with N2 and 
increase with N2(table 6&8)  In general, we find that the rate of mass transfer at inner cylinder r=1 is greater that that 
r=2. 
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