NEW FAMILIES OF 3-TOTAL PRODUCT CORDIAL GRAPHS

R. Ponraj*, M. Sivakumar and M. Sundaram

1Department of Mathematics, Sri Paramakalyani College, Alwarkurchi-627412, India
2Department of Mathematics, Unnamalai Institute of Technology, Kovilpatti-628502, India
3Associate Professor (Rtd.), Department of Mathematics, Sri Paramakalyani College
Alwarkurchi-627412, India

(Received on: 14-05-12; Accepted on: 31-05-12)

ABSTRACT

Let \(f \) be a map from \(V(G) \) to \{0, 1, ..., \(k-1 \)\} where \(k \) is an integer, \(2 \leq k \leq |V(G)| \). For each edge \(uv \) assign the label \(f(u)f(v) \mod k \). \(f \) is called a \(k \)-Total Product cordial labeling if \(|f(i) - f(j)| \leq 1 \), \(i, j \in \{0, 1, ..., k-1\} \), where \(f(x) \) denotes the total number of vertices and edges labelled with \(x \) \((x=0, 1, 2, ..., k-1) \). A graph that admits a \(k \)-Total Product cordial labelling is called a \(k \)-Total Product cordial graph. In this paper we investigate 3-Total Product cordial labeling behaviour of some standard graphs like Wheels, Helms, Dragons, etc.

Keywords: Wheel, Helms, Dragon, \(C_n \Theta 2K_1 \).

Mathematics Subject Classification (2000): 05C78.

1. INTRODUCTION

The graphs considered here are finite, undirected and simple. The vertex set and edge set of a graph \(G \) are denoted by \(V(G) \) and \(X(G) \) respectively. The following definitions are used here.

- The corona \(G_1 \Theta G_2 \) of two graphs \(G_1 \) and \(G_2 \) is defined as the graph \(G \) obtained by taking one copy of \(G_1 \) (which has \(p_1 \) vertices) and \(p_1 \) copies of \(G_2 \) and then joining the \(i \)-th vertex of \(G_1 \) to every vertex in the \(i \)-th copy \(G_2 \).
- The graph \(W_n = C_n + K_1 \) is called a wheel.
- The Helms \(H_n \) is the graph obtained from wheel by attaching a pendant edge at each vertex of the cycle \(C_n \).
- A Dragon is formed by identifying the end vertex of the path to the vertex of a cycle.
- \(m \) copies of the graph \(G \) is denoted by \(mG \).

The notion of \(k \)-Product cordial labeling of graph was introduced in [2] where the \(k \)-Product cordial labeling behaviour of some standard graphs was studied. Also \(k \)-Total Product labeling of graphs was introduced in [4]. Obviously 2-Total Product cordial labeling is simply a Total Product cordial labeling[5]. Also 3-Total Product cordial labeling behaviour of some standard graphs was studied in [3]. In this paper we investigate 3-Total Product cordial labeling behaviour of Helms, Wheel, Dragon, \(C_n \Theta 2K_1 \) and some standard graphs. Terms not defined here are used in the sense of Harary[1].

2. \(k \)-TOTAL PRODUCT CORDIAL LABELING

Definition 2.1:

Let \(f \) be a function from \(V(G) \) to \{0, 1, ..., \(k-1 \)\} where \(k \) is an integer, \(2 \leq k \leq |V(G)| \). For each edge \(uv \), assign the label \(f(u)f(v) \mod k \). \(f \) is called a \(k \)-Total Product cordial labeling of \(G \) if \(|f(i) - f(j)| \leq 1 \), \(i, j \in \{0, 1, ..., k-1\} \) where \(f(x) \) denotes the total number of vertices and edges labelled with \(x \) \((x=0, 1, 2, ..., k-1) \). A graph with a \(k \)-Total Product cordial labelling is called a \(k \)-Total Product cordial graph.

Theorem 2.2: Let \(G \) be a \((p, p)\) graph. Then \(mG \) is 3-Total Product cordial where \(m \equiv 0 \mod 3 \).

Corresponding author: R. Ponraj

*Department of Mathematics, Sri Paramakalyani College, Alwarkurchi-627412, India
Proof: Let \(m=3t \). Clearly \(mG \) has 3pt vertices and 3pt edges. Assign the label 2 to all the vertices of first 2t copies of \(G \). Then assign 0 to all the vertices of remaining t copies of \(G \).

Then \(f(0) = f(1) = f(2) = 2pt \). Therefore \(f \) is a 3-Total Product cordial labeling.

Corollary 2.3: If \(m \equiv 0 \pmod{3} \), then \(mC_n \) is 3-Total Product cordial.

Notation: Let \(G \) be any graph. Then the graph obtained from \(G \) by identifying the central vertex of \(K_{1,p} \) to any vertex of \(G \) is denoted by \(G \ast K_{1,p} \).

Theorem 2.4: If \(G \) is a \((p, p)\) graph.

(i) If \(p \) is even then \(G \ast K_{\frac{p}{2}} \) is 3-Total Product cordial.

(ii) If \(p \) is odd then \(G \ast K_{\frac{p+1}{2}} \) and \(G \ast K_{\frac{p-1}{2}} \) are 3-Total Product cordial.

Proof: Case (i): \(p \) is even.

Assign the label 2 to all the vertices of \(G \) and 0 to all pendant vertices of \(G \). Clearly \(f(0) = f(1) = f(2) = p \).

Case (ii): \(p \) is odd.

Assign label as in case (i) Clearly \(f(0) = p - 1 \), Therefore \(f(1) = f(2) = p \) for the graph \(G \ast K_{\frac{p+1}{2}} \), and \(f(0) = p + 1 \), \(f(1) = p \) for the graph \(G \ast K_{\frac{p-1}{2}} \). Therefore \(f \) is a 3-Total Product cordial labeling.

Theorem 2.5: The Wheel \(W_n \) is 3-Total Product Cordial.

Proof: Let \(C_n \) be the cycle \(u_1u_2u_3 \ldots u_nu_1 \) and let \(V(W_n) = V(C_n) \cup \{u\} \quad E(W_n) = E(C_n) \cup \{uu_i : 1 \leq i \leq n\} \).

Define \(f(u) = 0 \),
\[
f(u_i) = 2, \quad 1 \leq i \leq n.
\]

Here \(f(0) = n + 1 \) and \(f(1) = f(2) = n \). Hence \(f \) is a 3-Total Product cordial labeling.

Theorem 2.6: The Helms \(H_n \) is 3-Total Product cordial.

Proof: Let the vertex set and edge set of the wheel \(W_n \) be defined as in theorem 2.5.

Let \(V(H_n) = V(W_n) \cup \{v_i, 1 \leq i \leq n\} \) and \(E(H_n) = E(W_n) \cup \{u_i, v_i : 1 \leq i \leq n\} \).

Case (i): \(n \equiv 0 \pmod{3} \)

Let \(n = 3t \)

Define \(f(u) = 0 \),
\[
f(u_i) = 2, \quad 1 \leq i \leq n
\]
\[
f(v_i) = 2, \quad 1 \leq i \leq 2t
\]
\[
f(v_{2t+i}) = 0, \quad 1 \leq i \leq t
\]

Here \(f(0) = 5t + 1 \) and \(f(1) = f(2) = 5t \). Hence \(f \) is a 3-Total Product cordial labeling.

Case (ii): \(n \equiv 1 \pmod{3} \)

Let \(n = 3t + 1 \). Assign labels to the vertices \(u_i, v_i \, (1 \leq i \leq n - 1) \) as in case(i). Then assign the labels 2, 2 to the vertices \(u_{n}, v_{n} \) respectively. Here \(f(0) = f(1) = f(2) = 5t + 2 \). Hence \(f \) is a 3-Total Product cordial labeling.
Let \(n = 3t + 2 \). Assign labels to the vertices \(u_i, v_i \) \((1 \leq i \leq n - 1) \) as in case (ii). Then assign the labels 2, 0 to the vertices \(u_n, v_n \) respectively. Here \(f(0) = 5t + 3 \) and \(f(1) = f(2) = 5t + 4 \). Hence \(f \) is a 3-Total Product cordial labeling.

Illustration 2.7: A 3-Total Product cordial labeling of \(H_7 \) is

![Graph with vertex and edge labels from 0 to 2]

Notation 2.8: Let \(C_n \) be the cycle \(u_1, u_2, \ldots, u_n, u_1 \). Let \(G_n \) denotes the graph with \(V(G_n) = V(C_n) \cup \{v_i, w_i, 1 \leq i \leq n \} \) and \(E(G_n) = E(C_n) \cup \{u_i v_i, u_i w_i, v_i w_i : 1 \leq i \leq n \} \).

Theorem 2.9: \(G_n \) is 3-Total Product cordial.

Proof: Let the vertex set and edge set of the graph \(G_n \) be as defined above.

Case (i): \(n \equiv 0 \) (mod 3)

Let \(n = 3t \). Define \(f(v_i) = f(c_i) = 0, 1 \leq i \leq t \)
\(f(w_i) = 0, 1 \leq i \leq t - 1 \)
\(f(w_i) = 0 \).
\(f(u_{2t+i}) = f(v_{2t+i}) = f(w_{2t+i}) = 2, 1 \leq i \leq t \)
\(f(u_{2t+i}) = 2, 1 \leq i \leq t \)
\(f(v_{2t+i}) = 1, 1 \leq i \leq t \)
\(f(w_{2t+i}) = 2, 1 \leq i \leq t \)

Then \(f(0) = f(1) = f(2) = 7t \). Hence \(f \) is a 3-Total Product cordial labeling.

Case (ii): \(n \equiv 1 \) (mod 3)

Let \(n = 3t + 1 \). Assign labels to the vertices \(u_i, v_i, w_i, 1 \leq i \leq n - 1 \) as in case (i). Then assign the labels 2, 0 to the vertices \(u_n, v_n, w_n \) respectively. Here \(f(0) = 7t + 3 \) and \(f(1) = f(2) = 7t + 2 \). Hence \(f \) is 3-Total Product cordial labeling.

Case (iii): \(n \equiv 2 \) (mod 3)

Let \(n = 3t + 2 \). Assign labels to the vertices \(u_i, v_i, w_i, 1 \leq i \leq n - 2 \) as in case (i). Then assign the labels 0, 2, 2 and 2 to the vertices \(v_{n-1}, v_n, w_{n-1}, w_n, u_{n-1}, u_n \) respectively. Here \(f(0) = 7t + 5 \) and \(f(1) = f(2) = 7t + 4 \). Hence \(f \) is 3-Total Product cordial labeling.
Illustration 2.10: A 3-Total Product cordial labelling of G_6 is

![Diagram of G_6](image)

Figure (ii)

Theorem 2.11: $C_n \Theta K_1$ is 3-Total Product cordial.

Proof: Let $V(C_n \Theta K_1) = \{u_i, v_i, w_i, \; 1 \leq i \leq n\}$ and $E(C_n \Theta K_1) = \{u_i u_{i+1}, u_i v_1, 1 \leq i \leq n-1\} \cup \{v_1 v_i, w_i w_{i+1}, 1 \leq i \leq n\}$

Case (i): n is even.

Define

$f(u_i) = 2, \; 1 \leq i \leq n$

$f(v_i) = f(w_i) = 0, \; 1 \leq i \leq \frac{n}{2}$

$f(v_{\frac{n}{2} + i}) = f(w_{\frac{n}{2} + i}) = 2, \; 1 \leq i \leq \frac{n}{2}$

Then $f(0) = f(1) = f(2) = 2n$. Hence f is a 3-Total Product cordial labeling.

Case (ii): n is odd.

Define $f(u_i) = 2, \; 1 \leq i \leq n$, $f(v_i) = 0, \; 1 \leq i \leq \frac{n+1}{2}$

$f(w_i) = 0, \; 1 \leq i \leq \frac{n-1}{2}$, $f(v_{\frac{n+1}{2} + i}) = 2, \; 1 \leq i \leq \frac{n-1}{2}$

$f(w_{\frac{n-1}{2} + i}) = 2, \; 1 \leq i \leq \frac{n+1}{2}$

Then $f(0) = f(1) = f(2) = 2n$. Hence f is a 3-Total Product cordial labeling.
Illustration 2.12: A 3-Total Product cordial labeling of $C_7\Theta 2K_1$ is

![Diagram](image)

Figure (iii)

Theorem 2.13: The Dragon $C_m \oplus P_n$ is 3-Total Product cordial.

Proof: Let C_m be the cycle $u_1, u_2, \ldots, u_m, u_1$ and P_n be the path v_1, v_2, \ldots, v_n. Identify the vertex u_1 with v_1.

Case (i): $m \equiv 0 \pmod{3}$ and $n \equiv 0 \pmod{3}$

Let $m = 3t_1$ and $n = 3t_2$

Define

$f(u_i) = 0, \quad 1 \leq i \leq t_1$

$f(u_{i+t_1}) = 2, \quad 1 \leq i \leq 2t_1$

$f(v_i) = 0, \quad 2 \leq i \leq t_2 - 1$

$f(v_{i+t_2}) = f(v_{i+t_2+1}) = 1$,

$f(v_{i+t_2+2}) = 2, \quad 1 \leq i \leq 2t_2 - 1$

Then $f(0) = 2t_1 + 2t_2$ and $f(1) = f(2) = 2t_1 + 2t_2 - 1$. Hence f is a 3-Total Product cordial labeling.

Case (ii): $m \equiv 0 \pmod{3}$ and $n \equiv 1 \pmod{3}$

Let $m = 3t_1$ and $n = 3t_2 + 1$. Assign label 1 to the vertex v_n and assign labels to all the remaining vertices as in case (i). In this case $f(0) = f(1) = f(2) = 2t_1 + 2t_2$. Hence f is a 3-Total Product cordial labeling.

Case (iii): $m \equiv 0 \pmod{3}$ and $n \equiv 2 \pmod{3}$

Let $m = 3t_1$ and $n = 3t_2 + 2$. Assign labels 2, 1 to the vertices v_{n-1}, v_n respectively. Then assign the labels to all the remaining vertices as in case (i). Here $f(0) = 2t_1 + 2t_2$ and $f(1) = f(2) = 2t_1 + 2t_2 + 1$.

Hence f is a 3-Total Product cordial labeling.

Case (iv): $m \equiv 1 \pmod{3}$ and $n \equiv 0 \pmod{3}$

Let $m = 3t_1 + 1$ and $n = 3t_2$. Assign label 1 to the vertex u_m. Then assign the labels to all the remaining vertices as in case (i). In this case $f(0) = f(1) = f(2) = 2t_1 + 2t_2$. Hence f is a 3-Total Product cordial labeling.
Case (v): $m \equiv 1 (\text{mod } 3)$ and $n \equiv 1 (\text{mod } 3)$

Let $m = 3t_1 + 1$ and $n = 3t_2 + 1$. Assign label 1 to the vertex v_n. Then assign the labels to all the remaining vertices as in case (iv). Here $f(0) = 2t_1 + 2t_2$ and $f(1) = 2(2) = 2t_1 + 2t_2 + 1$. Hence f is a 3-Total Product cordial labeling.

Case (vi): $m \equiv 1 (\text{mod } 3)$ and $n \equiv 2 (\text{mod } 3)$

Let $m = 3t_1 + 1$ and $n = 3t_2 + 2$. Assign label 0 to the vertex v_n. Then assign the labels to all the remaining vertices as in case (v). In this case $f(0) = 2t_1 + 2t_2 + 2$ and $f(1) = 2(2) = 2t_1 + 2t_2 + 1$. Hence f is a 3-Total Product cordial labeling.

Case (vii): $m \equiv 2 (\text{mod } 3)$ and $n \equiv 0 (\text{mod } 3)$

Let $m = 3t_1 + 2$ and $n = 3t_2$. Assign labels 2, 0 to the vertices u_{m-1}, u_m respectively. Then assign the labels to the all the remaining vertices as in case (i). In this case $f(0) = 2t_1 + 2t_2$ and $f(1) = f(2) = 2t_1 + 2t_2 + 1$. Hence f is a 3-Total Product cordial labeling.

Case (viii): $m \equiv 2 (\text{mod } 3)$ and $n \equiv 1 (\text{mod } 3)$

Let $m = 3t_1 + 2$ and $n = 3t_2 + 1$. Assign label 0 to the vertex v_n. Then assign the labels to all the remaining vertices as in case (vii). Here $f(0) = 2t_1 + 2t_2 + 2$ and $f(1) = f(2) = 2t_1 + 2t_2 + 1$. Hence f is a 3-Total Product cordial labeling.

Case (ix): $m \equiv 2 (\text{mod } 3)$ and $n \equiv 2 (\text{mod } 3)$

Let $m = 3t_1 + 2$ and $n = 3t_2 + 2$. Assign labels 2, 0 to the vertex v_{m-1}, v_m respectively. Then assign the labels to the all the remaining vertices as in case (vii). Here $f(0) = f(1) = f(2) = 2t_1 + 2t_2 + 2$. Hence f is a 3-Total Product cordial labeling.

Illustration 2.14: A 3-Total Product cordial labeling of the dragon $C_{12} \oplus P_8$ is

\[\text{Figure (iv)}\]

REFERENCES:

Source of support: Nil, Conflict of interest: None Declared

© 2012, IJMA. All Rights Reserved