International Journal of Mathematical Archive-3(5), 2012, 1991-1995 Available online through <u>www.ijma.info</u> ISSN 2229 - 5046

On g^{*}s-closed sets in Bitopological Spaces

N. Selvanavaki*

Department of Mathematics, Akshava College of Engineering and Technology, Coimbatore District, Tamilnadu, India (Received on: 14-05-12; Accepted on: 31-05-12)

ABSTRACT

In this paper we introduce g^*s -closed sets and g^*s -open sets in bitopological spaces and study some of their characteristics. Further we introduce and study g^{*}s-continuous maps and g^{*}s-irresolute maps in bitopological spaces.

Key words: (i, j)-g^{*}s-closed sets, (i, j)-g^{*}s-open sets, (i, j)-gs-open sets, (i, j)-gs-closed sets, (i, j)- σ_k -g^{*}s-continuous maps and pairwise g^{*}s-irresolute maps.

AMS Mathematics Classification (2000): 51A05.

1. Introduction

A triple (X, τ_1 , τ_2) where X is non empty set and τ_1 , τ_2 are two topologies on X is called a bitopological space. Kelly[6] initiated the study of these spaces in 1963. Fukutake[5] introduced the concept of g-closed sets in bitopological spaces in 1985. Arya and Nour [1] defined gs-open sets using semi open sets. A. Pushpalatha and K. Anitha [10] introduced the concept of g^{*}s-closed sets in topological spaces.

In the present paper we introduce the concept of g^{*}s-closed sets, g^{*}s-open sets, g^{*}s-continuous maps and g^{*}s-irresolute maps in bitopological spaces.

2. Preliminaries

Throughout this paper X and Y always represent non-empty bitopological space (X, τ_1 , τ_2) and (Y, σ_1 , σ_2). For a subset A of X τ_i -scl(A) (resp. τ_i -cl(A) and τ_i -acl(A),) denote the semi closure (resp. closure and a-closure) of X with respect to topology τ_i . In general by (i, j) we mean pair of topologies (τ_1 , τ_2).

We recall the following definitions:

Definition 2.1: A subset A of a bitopological space (X, τ_1, τ_2) is called

- (i) (i, j) α g-closed if τ_i - α cl (A) \subseteq U whenever A \subseteq U and U is τ_i -open
- (ii) (i, j)-strongly g-closed if τ_i -cl(A) \subseteq U whenever A \subseteq U and U is τ_i -g-open in X.

Definition: 2.2: A subset of a bitopological space (X, τ_1, τ_2) is called

- (i, j)-g-closed [5] if τ_i -cl(A) \subseteq U whenever A \subseteq U and U is τ_i -open. (i)
- (ii) (i, j)-sg-closed [9] if τ_i -scl(A) \subseteq U whenever A \subseteq U and U is semi open in τ_i .
- (iii) (i, j)- ω -closed [4] if τ_i -cl(A) \subset U whenever A \subset U and U is semi open in τ_i .
- (iv) (i, j)-wg-closed [3] if τ_i -cl(τ_i -int(A)) \subseteq U whenever A \subseteq U and U is τ_i -open.
- (v) (i, j)-g^{*}-closed [11] if τ_i -cl(A) \subseteq U whenever A \subseteq U and U is τ_i -generalized open.
- (vi) (i, j)-gs-closed [8] if τ_i -scl(A) \subseteq U whenever A \subseteq U and U is τ_i -open.
- (vii) (i, j)-ga-closed [8] if τ_i -acl (A) \subseteq U whenever A \subseteq U and U is τ_i -a-open.
- (viii) (i, j)-preclosed[7] if and only if τ_i -cl(τ_i -int_i(A)) \subseteq A.

Definition 2.3: A map f: $(X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is called

 τ_i - σ_k -continuous [2] if $f^1(V) \in \tau_i$ for every $V \in \sigma_k$. (i)

(ii) (i, j)- σ_k -sg-continous[9] if the inverse Image of every σ_k -closed set is (i, j)-sg closed.

(iii) (i, j)- σ_k -gs-continous[8] if the inverse Image of every σ_k -closed set is (i, j)-gs closed.

Corresponding author: N. Selvanayaki*

Department of Mathematics, Akshaya Engineering College, Coimbatore District, Tamilnadu, India International Journal of Mathematical Archive- 3 (5), May - 2012 1991

3.g^{*}s-closed sets in Bitopological Spaces

Definition 3.1: A subset of a bitopological space (X, τ_1, τ_2) is said to be an (i, j)-g^{*}s-closed set if τ_j -scl $(A) \subseteq U$ whenever $A \subseteq U$ and U is gs-open in τ_i .

Theorem 3.2: Every τ_j -closed subset of a bitopological space (X, τ_1 , τ_2) is (i, j)-g^{*}s-closed but the converse need not be true.

Proof: Let A be a τ_j -closed set in X. Let U be a gs-open in τ_i such that $A \subseteq U$. Since A is τ_j -closed, τ_j -cl(A) = A, τ_j -cl(A) $\subseteq U$. But τ_j -scl(A) $\subseteq \tau_j$ -cl(A) $\subseteq U$. Therefore τ_j -scl(A) $\subseteq U$. Hence A is (i, j)-g^{*}s-closed set.

Example 3.3: Let $X = \{a, b, c\}, \tau_1 = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}$ and $\tau_2 = \{\phi, \{b, c\}, \{b\}, X\}$. Then the set $A = \{c\}$ is (1, 2)-g^{*}s-closed but not τ_2 -closed in (X, τ_1, τ_2) .

Theorem 3.4: If A and B are (i, j)-g^{*}s-closed then $A \cup B$ is (i, j)-g^{*}s-closed.

Proof: Let U be a gs-open in τ_i . such that $A \cup B \subseteq U$. Then $A \subseteq U$ and $B \subseteq U$. Since A and B are (i, j)-g^{*}s-closed set τ_i -scl $(A) \subseteq U$ and τ_i -scl $(B) \subseteq U$. Hence τ_i -scl $(A \cup B) \subseteq \tau_i$ -scl $(A) \cup \tau_i$ -scl $(B) \subseteq U$. Therefore $A \cup B$ is (i, j)-g^{*}s-closed.

Theorem 3.5: In a bitopological space (X, τ_1, τ_2) , every (i, j)-g^{*}s-closed set is (i, j) gs-closed but the converse need not be true.

Proof: Let $A \subseteq U$ and U is open in τ_i . Since every τ_i -open is τ_i - gs-open and A is (i, j)-g^{*}s-closed, we have τ_j -scl $(A) \subseteq U$. Therefore A is (i, j) gs-closed.

Example 3.6: Let $X = \{a, b, c\}, \tau_1 = \{\phi, \{b\}, \{b, c\}, X\}$ and $\tau_2 = \{\phi, \{a\}, \{a, c\}, X\}$. Then the subset $A = \{a\}$ is (1, 2) gs-closed but not (1, 2)-g s-closed.

Theorem 3.7: In a bitopological space (X, τ_1 , τ_2), every (i, j)-g^{*}s-closed set is (i, j) sg-closed but the converse need not be true.

Proof: Let U be a τ_{i^-} semi open and $A \subseteq U$. Since every τ_{i^-} semi open set is τ_{i^-} gs-open and A is (i, j)-g^{*}s-closed, we have τ_{j} -scl(A) \subseteq U. Therefore A is (i, j)-sg-closed.

Example 3.8: In Example 3. 6, the set $A = \{a, c\}$ is (1, 2)-sg-closed but not (1, 2)-g*s-closed.

Theorem 3.9: In a bitopological space (X, τ_1 , τ_2), every τ_j -semi closed is (i, j)-g^{*}s-closed but the converse need not be true.

Proof: Let A be a (i, j)-semi closed. Let U be a τ_i -gs-open such that $A \subseteq U$. Since A is τ_j -semi closed, we have τ_j -scl(A) = A. Therefore τ_i -scl(A) \subseteq U. Hence A is (i, j)-g^{*}s-closed.

Example 3.10: Let $X = \{a, b, c\}, \tau_1 = \{\phi, \{b\}, \{b, c\}, X\}$ and $\tau_2 = \{\phi, \{c\}, X\}$. Then the subset $A = \{a, c\}$ is (1, 2)-g^{*}s-closed but not τ_2 -semi closed.

Remark 3.11: The following example shows that (i, j)-g^{*}s-closed set is independent of (i, j)-g-closed set, (i, j)- ω -closed set and (i, j)-g^{*}-closed set.

Example 3.12: Let $X = \{a, b, c, d\}$, $\tau_1 = \{\phi, \{d\}, \{a, c\}, \{a, c, d\}, X\}$ and $\tau_2 = \{\phi, \{b\}, \{a, b\}, \{b, d\}, \{a, b, d\}, X\}$. Then the subset $\{d\}$ is (1, 2)-g^{*}s-closed set but not (1, 2)-g-closed set and the subset $\{b\}$ is (1, 2)-g-closed set but not (1, 2)-g^{*}s-closed set and the subset $\{a, b, d\}$ is (1, 2)- ω -closed set but not (1, 2)-g^{*}s-closed set and the subset $\{d\}$ is (1, 2)- ω -closed set and the subset $\{b\}$ is (1, 2)-g^{*}s-closed set and the subset $\{d\}$ is (1, 2)-g^{*}s-closed set but not (1, 2)-g^{*}s-closed set and the subset $\{b\}$ is (1, 2)-g^{*}s-closed set and the subset $\{b\}$ is (1, 2)-g^{*}s-closed set and the subset $\{b\}$ is (1, 2)-g^{*}s-closed set but not (1, 2)-g^{*}s-closed set and the subset $\{b\}$ is (1, 2)-g^{*}s-closed set but not (1, 2)-g^{*}s-closed set and the subset $\{a\}$ is (1, 2)-g^{*}s-closed set but not (1, 2)-g^{*}s-closed set but not

Remark 3.13: The following example shows that (i, j)-g^{*}s-closed set is independent of (i, j)-strongly g-closed set.

Example 3.14: In Example 3.6, the subset $\{c\}$ is (1, 2)-g^{*}s-closed set but not (1, 2)-strongly g- closed set and the subset $\{a\}$ is (1, 2)-strongly g-closed set but not (1, 2)-g^{*}s-closed set.

Remark 3.15: The following example shows that (i, j)-g^{*}s-closed set is independent of (i, j)- α g-closed set and (i, j)-g α -closed set.

Example 3.16: Let $X = \{a, b, c\}, \tau_1 = \{\phi, \{c\}, \{a, b\}, X\}$ and $\tau_2 = \{\phi, \{a\}, X\}$. Then the subset $A = \{a, c\}$ is (1, 2)- α g-closed set and (1, 2)- α g-closed set but not (1, 2)- α g*-closed set.

Example 3.17: Let $X = \{a, b, c, d, e\}$, $\tau_1 = \{\phi, \{a\}, \{b\}, \{a, b\}, \{a, c\}, \{a, b, c\}, X\}$ and $\tau_2 = \{\phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{a, c\}, \{a, b, c\}, X\}$. Then the subset $\{a\}$ is (1, 2)- g s-closed set but not (1, 2)- α g-closed set and (1, 2)- α g-closed set.

Remark 3.18: The following example shows that (i, j)-g*s-closed set is independent of (i, j)-pre closed set.

Example 3.19: In Example 3.17, the subset $\{a\}$ is (1, 2)- g^* s-closed set but not (1, 2)-pre closed.

Example 3.20: Let $X = \{a, b, c, d\}$, $\tau_1 = \{\phi, \{b\}, \{a, b\}, \{b, c\}, \{a, b, c\}, X\}$ and $\tau_2 = \{\phi, \{a, b\}, \{a, b, c\}, \{a, b, d\}, X\}$. Then the subset $\{a\}$ is (1, 2)-pre closed set but not (1, 2)- g^{*}s-closed set.

Theorem 3.21: A subset A of (X, τ_1, τ_2) is (i, j)-g^{*}s-closed set iff τ_i -scl(A) – A contains no non empty τ_i -gs-closed set.

Proof: Suppose that F is a non empty τ_i -gs-closed subset of τ_j -scl(A) – A. Now $F \subseteq \tau_j$ -scl(A) – A. Then $F \subseteq \tau_j$ -scl(A) \cap A^c. Therefore, $F \subseteq \tau_j$ -scl(A) and $F \subseteq A^c$. Since Fc is τ_i -gs-open set and A is (i, j)-g^{*}s-closed, τ_j -scl(A) $\subseteq F^c$. That is $F \subseteq (\tau_j$ -scl(A))^c. Hence $F \subseteq \tau_j$ -scl(A) $\cap (\tau_j$ -scl(A))^c = ϕ . That is $F = \phi$. Thus τ_j -scl(A) – A contains no nonempty τ_i -gs-closed set.

Conversely, Assume τ_j -scl(A) – A contains no nonempty τ_i -gs-closed set. Let $A \subseteq U$, U is τ_i -gs-open set. Suppose that τ_j -scl(A) is not contained in U. Then τ_j -scl(A) $\cap U^c$ is a nonempty τ_i -gs-closed set and contained in τ_j -scl(A) – A, which is a contradiction. Therefore τ_j -scl(A) $\subseteq U$ and hence A is (i, j)-g*s-closed set.

Theorem 3.22: For each element x of (X, τ_1, τ_2) , $\{x\}$ is τ_i -gs-closed or $\{x\}^c$ is (i, j)-g*s-closed.

Proof: If $\{x\}$ is not τ_i -gs-closed, then $\{x\}^c$ is not τ_i -gs-open and a τ_i -gs-open set containing $\{x\}^c$ is X only. Also τ_j -scl($\{x\}^c$) $\subseteq X$. Therefore $\{x\}^c$ is (i, j)-g*s-closed.

Theorem 3.23: If A is an (i, j)-g^{*}s-closed set of (X, τ_1 , τ_2) such that $A \subseteq B \subseteq \tau_j$ -scl(A), then B is also an (i, j)-g^{*}s-closed set of (X, τ_1 , τ_2).

Proof: Let U be an τ_i -gs-open set of (X, τ_1, τ_2) such that $B \subseteq U$. Then $A \subseteq U$. Since A is (i, j)-g^{*}s-closed, τ_j -scl $(A) \subseteq U$. We have τ_j -scl $(B) \subseteq \tau_j$ -scl $(\tau_j$ -scl $(A)) = \tau_j$ -scl $(A) \subseteq U$. Thus B is also an (i, j)-g^{*}s-closed set of (X, τ_1, τ_2) .

Remark 3.24: (1, 2)- g^* s-closed set is generally not equal to (2, 1)- g^* s-closed set. For Example, (1, 2)- g^* s-closed set \neq (2,1)- g^* s-closed set in Example 3.6.

The relations between the previous classes of sets are shown in the following diagram

4. g^{*}s-open sets in Bitopological Spaces

Definition 4.1: A subset A of a bitopological space (X, τ_1, τ_2) is called (i, j)-g^{*}s-open if A^c is (i, j)-g^{*}s-closed.

Theorem 4.2: In a bitopological space (X, τ_1 , τ_2)

- i) Every τ_j -open sets (i, j)-g^{*}s-open but not conversely.
- ii) Every (i, j)-g^{*}s-open is (i, j)-gs-open and (i, j)-sg-open

© 2012, IJMA. All Rights Reserved

Theorem 4.3: If A and B are (i, j)-g^{*}s-open sets in (X, τ_1, τ_2) then A \cap B is also an (i, j)-g^{*}s-open set in (X, τ_1, τ_2) .

Proof: Let A and B be two (i, j)-g^{*}s-open sets. Then A^c and B^c are (i, j)-g^{*}s-closed sets. By Theorem 3.4, A^c \cup B^c is a (i, j)-g^{*}s-closed set in (X, τ_1 , τ_2). That is (A \cap B)^c is a (i, j)-g^{*}s-closed set. Therefore (A \cap B) is (i, j)-g^{*}s-open set in (X, τ_1 , τ_2).

5. g*s-continuous Maps and g*s-irresolute Maps in Bitopological Spaces

In this section we introduce g^* s-continuous maps from a bitopological space (X, τ_1 , τ_2) into a bitopological space (Y, σ_1 , σ_2) and study some of their properties.

Definition 5.1: A map f: $(X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is called $(i, j) - \sigma_k - g^*s$ -continuous map if the inverse image of every σ_k -closed set is an $(i, j) - g^*s$ -closed set.

Definition: 5.2: A map f: $(X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is called Pairwise g^{*}s-irresoulte, if the inverse image of every (e, k)-g^{*}s-closed sets in Y is an (i, j)-g^{*}s-closed sets in X.

Definition: 5.3: A bitopological space (X, τ_i, τ_j) is called (i, j)-T_{g*s}-space if every (i, j)-g*s-closed set is τ_j -closed.

Theorem 5.4: If a map f: $(X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is τ_j - σ_k -continuous, then it is an (i, j)- σ_k - g^* s-continuous map but not conversely.

Proof: Let V be σ_k -closed set in Y, then $f^1(V)$ is τ_j -closed set, since f is τ_j - σ_k -continuous. By Theorem 3.2, $f^1(V)$ is (i, j)- g^* s-closed. Therefore f is (i, j)- σ_k - g^* s-continuous map.

Example 5.5: Let $X = \{a, b, c\}, \tau_1 = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}, \tau_2 = \{\phi, \{b\}, \{b, c\}, X\}$, let $= \{p, q, r\}, \sigma_1 = \{\phi, \{q\}, \{q, r\}, Y\}, \sigma_2 = \{\phi, \{p\}, \{p, r\}, Y\}$. Define a map f: $(X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ by f(c) = p, f(b) = q, f(a) = r. Then f is $(1, 2) - \sigma_1 - g^*$ s-continuous map but not $\tau_2 - \sigma_1$ -continuous.

Theorem 5.6: If a map f: $(X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is (i, j)- σ_k - g^*s continuous, then it is an (i, j)- σ_k -gs-continuous map but not conversely.

Proof: Let V be σ_k -closed set in Y, then $f^1(V)$ is (i, j)- g^* s-closed in X, since f is (i, j)- σ_k - g^* s continuous. By Theorem 3.5, $f^1(V)$ is (i, j)- gs-closed in X and so f is (i, j)- σ_k -gs-continuous map.

Example 5.7: Let $X = \{a, b, c\}, \tau_1 = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}, \tau_2 = \{\phi, \{b\}, \{b, c\}, X\}$, let $Y = \{p, q, r\}, \sigma_1 = \{\phi, \{p\}, \{p, r\}, Y\}, \sigma_2 = \{\phi, \{p\}, \{p, q\}, Y\}$. Define a map f: $(X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ by f(a) = p, f(c) = r, f(b) = q. Then f is (1, 2)- σ_2 -gs-continuous map but not (1, 2)- σ_2 -g s-continuous map.

Theorem 5.8: If a map f: $(X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is $(i, j) \cdot \sigma_k \cdot g^*$ s continuous, then it is an $(i, j) \cdot \sigma_k \cdot sg$ -continuous map but not conversely.

Proof: Let V be σ_k -closed set in Y, then $f^1(V)$ is (i, j)-g^{*}s-closed in X, since f is (i, j)- σ_k -g^{*}s continuous. By Theorem 3.7, $f^1(V)$ is (i, j)-sg-closed set in X and so f is (i, j)- σ_k -sg-continuous map.

Example 5.9: Let $X = \{a, b, c\}, \tau_1 = \{\phi, \{b\}, \{b, c\}, X\}, \tau_2 = \{\phi, \{a\}, \{a, c\}, X\}$, let $Y = \{p, q, r\}, \sigma_1 = \{\phi, \{p\}, \{p, r\}, Y\}$, $\sigma_2 = \{\phi, \{q\}, \{q, r\}, Y\}$. Define a map f: $(X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ by f(a) = r, f(b) = q, f(c) = p. Then f is (1, 2)- σ_2 -sg-continuous map but not (1, 2)- σ_2 -g s-continuous map.

Theorem 5.10: If a map f: $(X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is a pairwise g*s-irresolute, then it is an $(i, j)-\sigma_k - g^*s$ -continuous map but not conversely.

Proof: Assume that f: $(X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is a pairwise g*s-irresolute. Let V be σ_k -closed set in Y. So it is (e, k)-g*s-closed in Y by Theorem 3.2. By our assumption, $f^1(V)$ is (i, j)-g*s-closed set in X and so f is (i, j)- σ_k -g*s-continuous map.

Example 5.11: Let $X = Y = \{a, b, c\}, \tau_1 = \{\phi, \{b\}, \{b, c\}, X\}, \tau_2 = \{\phi, \{a\}, \{a, c\}, X\}, \sigma_1 = \{\phi, \{b\}, \{b, c\}, Y\}, \sigma_2 = \{\phi, \{a\}, Y\}$. Define a map f: $(X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ by f(a) = b, f(b) = a, f(c) = c. Then f is (1, 2)- σ_1 - g^* s-continuous map but not pairwise g s-irresolute.

Theorem 5.12: Let f: $(X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ be a map, then the following statements are equivalent

N. Selvanayaki*/On g s-closed sets in Bitopological Spaces/ IJMA- 3(5), May-2012, Page: 1991-1995

- a) f is (i, j)- σ_k -g^{*}s-continuous map
- b) the inverse image of each σ_k -open se in Y is (i, j)- σ_k -g^{*}s-continuous map.

Proof: Assume that f: $(X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is $(i, j) \cdot \sigma_k \cdot g^*$ s-continuous map. Let G be σ_k -open in Y. Then G^c is σ_k -closed in Y. Since f is $(i, j) \cdot \sigma_k \cdot g^*$ s-continuous map, $f^1(G^c)$ is $(i, j) \cdot g^*$ s-closed in X. But $f^1(G^c) = X \cdot f^1(G)$. Thus $f^1(G)$ is $(i, j) \cdot g^*$ s-open in X.

Conversely, assume that the inverse image of each σ_k -open set in Y is (i, j)-g^{*}s-open in X. Let F be any σ_k -closed set in Y, then $f^1(F^c)$ is (i, j)- g^{*}s-open. But $f^1(F^c) = X - f^1(F)$. Thus $f^1(F)$ is (i, j)- g^{*}s-closed in X. Therefore f is (i, j)- σ_k -g^{*}s-continuous map.

Theorem 5.13: Let (X, τ_1, τ_2) and (Z, μ_1, μ_2) be any bitopological spaces and Y be a (e, k)- T_{g^*s} -space, then the composition $g \circ f : X \to Z$ is (i, j)- μ_p -g*s-continuous map, if f: $(X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is (i, j)- σ_k -g s-continuous map and $g : (Y, \sigma_1, \sigma_2) \to (Z, \mu_1, \mu_2)$ is (e, k)- μ_p -g*s-continuous map.

Proof: Let F be μ_p -closed in Z. Since g is (e, k)- μ_p - g*s-continuous map, g⁻¹(F) is (e, k)- g*s-closed in Y. But Y is (e, k)- T_{g^*s} -space and so g⁻¹(F) is σ_k -closed in Y. Since f is (i, j)- σ_k -g*s-continuous map, f¹(g⁻¹(F)) is (i, j)-g*s-closed in X. But f¹(g⁻¹(F)) = (g \circ f)^{-1} (F). Therefore (g \circ f)⁻¹ (F) is (i, j)-g*s-closed. Hence g \circ f is (i, j)- μ_p -g*s-continuous map.

REFERENCES:

[1] Arya, S.P., and Nour, T., Characterizations of S-normal spaces, Indian J.pur Appl. Math., 21(1990), 717-719.

[2] Balachandran, K., Sundaram, P., and Maki, H., On generalized continuous maps and pasting lemma in bitopological spaces, Bul Fukuoka Univ. Ed. Part III, 40(1991), 23-31.

[3] Fukutake T., Sundaram, P., Nagaveni, N., On Weakly generalized closed sets, Weakly generalized continuous maps and T_{wg}-sapces in bitopological spaces, Bull. Fukuoka Univ. Ed. Part III, 48(1999), 33-40.

[4] Fukutake T., Sundaram, P., Sheike John, M., ω-closed sets, ω-open sets and ω-continuity in bitopological spaces, Bull. Fukuoka Univ. Ed. Vol.51, Part III (2002), 1-9.

[5] Fukutake, T., On generalized closed sets in bitopological spaces, Bull. Fukuoka Univ. Ed. Part III, 35(1985), 19-28.

[6] Kelly, J.C., Bitopological spaces, Proc. London Math. Soc., 13(1963), 71-89.

[7] Khedr, F.H., Al. Areefi, S.M., Noiri, T., Pre continuity and semi pre continuity in bitopological spaces, Indian J. Pure Appl. Math., 23(9)(1992), 625-633.

[8] Khedr, F.H., and Hanan S. Al Saddi, On pairwise semi generalized closed sets, JKAU: Sci, Vol.21 No.2, PP:269-295(2009 A.D/1430 A.H.); DOI 10.4197 Sci.21-27.

[9] Maheshwari, S.N., Prasad, R., Semi open sets and semi continuous function in bitopological spaces, Math Notae, 26(1977-78), 29-37.

[10] Pushpalatha, A., and Anitha, K., g*s-Closed Sets in Topological Spaces, Int. J. Contemp. Math. Sciences, Vol. 6, 19(2011), 917-929.

[11] Sheik John, M., and Sundaram, P., g*-closed sets in bitopological spaces, Indian J. Pure and Appl. Math., 35(1), (2004), 71-80.

Source of support: Nil, Conflict of interest: None Declared