AN INTEGRAL INEQUALITY FOR POLYNOMIALS

Nisar A. Rather & Mushtaq A. Shah*

P. G. Department of Mathematics, Kashmir University, Hazratbal, Srinagar- 190006, India

(Received on: 15-05-12; Accepted on: 31-05-12)

ABSTRACT

In this paper, a compact generalization of certain known L_p inequalities for polynomials is obtained, which refine some results due to De-Bruijn, Boas and Rahman and others.

Keywords and phrases: polynomials, L_p inequalities, complex domain.

1. INTRODUCTION AND STATEMENT OF RESULTS

Let $P_n(z)$ denote the space of all complex polynomials $P(z) = \sum_{j=1}^{n} a_j z^j$ of degree n. For $P \in P_n$, define

$$\|P(z)\|_p := \left\{ \frac{1}{2\pi} \int_0^{2\pi} |P(e^{i\theta})|^p \, d\theta \right\}^{1/p}, \quad p \geq 1$$

and

$$\|P(z)\|_\infty := \max_{|z|=1} |P(z)|.$$

If $P \in P_n$, then according to a famous result known as Bernstein’s inequality (for reference see [13, 16, 18]),

$$\|P'(z)\|_\infty \leq n \|P(z)\|_\infty,$$

whereas concerning the maximum modulus of $P(z)$ on the circle $|z|=R>1$, we have

$$\|P(Rz)\|_\infty \leq R^n \|P(z)\|_\infty$$

Inequality (2) is a simple deduction from maximum modulus principle (see [13, p.442] or [14, Vol I, p.137]).

Inequalities (1) and (2) can be obtained by letting $p \to \infty$ in the inequalities

$$\|P'(z)\|_p \leq n \|P(z)\|_p, \quad p \geq 1$$

and

$$\|P(Rz)\|_p \leq R^n \|P(z)\|_p, \quad R > 1, \quad p > 0$$

respectively. Inequality (3) was found by Zygmund [19], whereas inequality (4) is a simple consequence of a result of Hardy [10] (see also [16, Th.5.5]). Arestov [2] proved that (3) remains true for $0<p<1$ as well.

If we restrict ourselves to the class of polynomials $P \in P_n$ having no zero in $|z|<1$, then the inequalities (1) and (2) can be sharpened. In fact, if $P(z) \neq 0$ in $|z|<1$, then (1) and (2) can be respectively replaced by

$$\|P'(z)\|_\infty \leq \frac{n}{2} \|P(z)\|_\infty$$

Corresponding author: Mushtaq A. Shah*

P. G. Department of Mathematics, Kashmir University, Hazratbal, Srinagar- 190006, India
and
\[
\left\|P(Rz)\right\|_\infty \leq \frac{R^n + 1}{2} \left\|P(z)\right\|_\infty, \quad R > 1.
\]

(6)

Inequality (5) was conjectured by Erdös and later verified by Lax [12]. Ankiny and Rivilin [1] used inequality (5) to prove inequality (6).

Both the inequalities (5) and (6) can be obtained by letting \(p \to \infty \) in the inequalities
\[
\left\|P'(z)\right\|_p \leq n \left\|\frac{P(z)}{1 + z}\right\|_p, \quad p \geq 0,
\]
and
\[
\left\|P(Rz)\right\|_p \leq \frac{R^n + 1}{2} \left\|P(z)\right\|_p, \quad R > 1, \quad p > 0.
\]

(8)

Inequality (7) is due to De Bruijn [9] for \(p \geq 1 \). Rahman and Schmeisser [15] extended it for \(0 < p < 1 \), whereas the inequality (8) was proved by Boas and Rahman [8] for \(p \geq 1 \) and later extended for \(0 < p < 1 \) by Rahman and Schmeisser [15].

Aziz and Dawood [3] refined both the inequalities (5) and (6) by showing that if \(P \in P_n \) and \(P(z) \) does not vanish in \(|z| < 1 \) and \(m = \min_{{|z|=1}} |P(z)| \), then
\[
\left\|P'(z)\right\|_\infty \leq \frac{R}{2} \left\{\left\|\frac{P(z)}{1 + z}\right\|_\infty - m\right\},
\]
and
\[
\left\|P(Rz)\right\|_\infty \leq \frac{R^n + 1}{2} \left\{\left\|\frac{P(z)}{1 + z}\right\|_\infty - m\right\}.
\]

(10)

As a compact generalization of the inequalities (3), (4), (5), (6), recently Aziz and Rather [7] proved that if \(P \in P_n \) and \(P(z) \) does not vanish in \(|z| < 1 \), then for arbitrary real or complex numbers \(\alpha \) and \(\beta \) with \(|\alpha| \leq 1, |\beta| \leq 1, R > r \geq 1 \) and \(p > 0 \),
\[
\left\|P(Rz) + \phi(R, r, \alpha, \beta) P(rz)\right\|_p \leq \frac{C_p}{p} \frac{\left\|P(z)\right\|_p}{\left\|1 + z\right\|_p}
\]

(11)

where
\[
C_p = \left\|\left(\frac{R^n + \phi(R, r, \alpha, \beta) r^n}{1 + \phi(R, r, \alpha, \beta)}\right) z + \left(1 + \phi(R, r, \alpha, \beta)\right)\right\|_p
\]

(12)

and
\[
\phi(R, r, \alpha, \beta) = \beta \left(\frac{R + 1}{r + 1}\right)^n - |\alpha| - \alpha
\]

(13)

In this paper, we prove the following interesting result which includes not only a generalization of the inequality (11) as a special case but also leads to some refinements and generalizations of certain known polynomial inequalities.

Theorem 1: If \(P \in P_n \) does not vanish in \(|z| < 1 \) and \(m = \min_{{|z|=1}} |P(z)| \), then for arbitrary complex numbers \(\alpha, \beta, \delta \) with \(|\alpha| \leq 1, |\beta| \leq 1, |\delta| \leq 1, R > r \geq 1 \) and \(p > 0 \),
\[
\left\|P(Rz) + \phi(R, r, \alpha, \beta) P(rz) + \delta m\left[\frac{R^n + \phi(R, r, \alpha, \beta) r^n}{1 + \phi(R, r, \alpha, \beta)}\right] - \left[1 + \phi(R, r, \alpha, \beta)\right]\right\|_p \leq \frac{C_p}{p} \frac{\left\|P(z)\right\|_p}{\left\|1 + z\right\|_p},
\]

(14)

where \(C_p \) and \(\phi(R, r, \alpha, \beta) \) are defined by (12) and (13) respectively. The result is best possible and the equality in (14) holds for the polynomial \(P(z) = a z^n + b \), where \(|a| = |b| = 1 \).
Theorem 1 has various interesting consequences. Here we mention few of these. For \(\delta = 0 \), the inequality (14) reduces to inequality (11). Next, we mention the following compact generalization of inequalities (5), (6), (7), (8), (9) and (10), which follows from Theorem 1 by setting \(\beta = 0 \).

Corollary 1: If \(P \in P_n \) does not vanish in \(|z| < 1 \) and \(m = \min_{|z|=1} |P(z)| \), then for arbitrary complex numbers \(\alpha, \delta \) with \(|\alpha| \leq 1 \), \(|\delta| \leq 1 \), \(R > r \geq 1 \) and \(p > 0 \),

\[
\| P(Rz) - \alpha P(rz) + \frac{\delta}{2} \left(\left| R^n - \alpha r^n \right| - |1 - \alpha| \right) m \|_p \leq \left\| \frac{\left| R^n - \alpha r^n \right| (1 - \alpha)}{1 + |\alpha|} \right\|_p \| P \|_p.
\]

(15)

The result is best possible and equality in (15) holds for \(P(z) = z^n + 1 \).

Remark 1: Corollary 3 includes as a special case a result due to Rather [17, Theorem 1], which is obtained by taking \(\alpha = 0 \) in (15).

Next if we set \(\alpha = 1 \) and divide two sides of (15) by \(R - r \) and let \(R \to r \), we obtain,

Corollary 2: If \(P \in P_n \) does not vanish in \(|z| < 1 \) and \(m = \min_{|z|=1} |P(z)| \), then for each \(p > 0 \) and \(r \geq 1 \),

\[
\left\| P'(rz) + \frac{\delta}{2} n m r^{-n+1} \right\|_p \leq \frac{n r^{-n+1}}{1 + |z|} \| P(z) \|_p.
\]

The result is sharp.

Corollary 2 is an interesting generalization of inequality (7) due to De Bruijn [9]. Inequality (8) can also be obtained from inequality (15) by setting \(\alpha = \delta = 0 \).

Making \(p \to \infty \) in (14) and choosing the argument of \(\delta \) with \(|\delta| = 1 \) suitably, we obtain:

Corollary 3: If \(P \in P_n \) does not vanish in \(|z| < 1 \), then for \(\alpha, \beta \in C \) with \(|\alpha| \leq 1 \), \(|\beta| \leq 1 \) and \(R > r \geq 1 \),

\[
\left\| P(Rz) + \phi(R, r, \alpha, \beta) P(rz) \right\|_\infty \leq \left\{ \frac{\left| R^n + \phi(R, r, \alpha, \beta) r^n \right|}{2} + \left| 1 + \phi(R, r, \alpha, \beta) \right| \right\} \| P(z) \|_\infty

- \left\{ \frac{\left| R^n + \phi(R, r, \alpha, \beta) r^n \right|}{2} - \left| 1 + \phi(R, r, \alpha, \beta) \right| \right\} \min_{|z|=1} |P(z)|,
\]

(16)

where \(\phi(R, r, \alpha, \beta) \) is the same as defined in Theorem 1. The result is sharp and the equality holds for \(P(z) = az^n + b \), where \(|a| = |b| = 1 \).

Corollary 3 is a refinement as well as a generalization of a result due to Aziz and Rather [4, Theorem 3]. For \(\alpha = \beta = 0 \), it reduces to (10). If we divide the two sides of inequality (16) by \(R - r \) with \(\alpha = 1 = r \) and let \(R \to r \), we get inequality (9).

Finally we mention the result which is a refinement as well as a generalization of a result due to Jain [11, Theorem 2], which follows from corollary 3 as a special case.

Corollary 4: If \(P \in P_n \), does not vanish in \(|z| < 1 \) and \(m = \min_{|z|=1} |P(z)| \), then for every \(\beta \in C \) with \(|\beta| \leq 1 \), \(R > r \geq 1 \) and for \(|z| = 1 \),

\[
\left| P'(rz) + \frac{n \beta}{1 + r} P(rz) \right| \leq \frac{n}{2} \left(\left| r^{n+1} \beta + \frac{r^n}{1 + r} \right| + \left| \frac{\beta}{1 + r} \right| \right) \| P \|_\infty - \frac{n}{2} \left(\left| r^{n+1} \beta + \frac{r^n}{1 + r} \right| - \left| \frac{\beta}{1 + r} \right| \right) m
\]

(17)
and

\[\left| P(Rz) + \beta \left(\frac{R + 1}{r + 1} \right)^n P(rz) \right| \leq \frac{1}{2} \left[\left(R^n + \beta \left(\frac{R + 1}{r + 1} \right)^n \right) \|P\|_\infty \right.
\left. + \left(R^n - \beta \left(\frac{R + 1}{r + 1} \right)^n \right) \|P\|_\infty \right]
\]

The result is sharp and the extremal polynomial is \(P(z) = a z^n + b \) where \(|a| = |b| = 1\).

2. LEMMAS

For the proofs of these theorems, we need the following lemmas.

Lemma 1: If \(F(z) \) is a polynomial of degree \(n \) having all its zeros in \(|z| \leq 1\) and \(f(z) \) is a polynomial of degree at most \(n \) such that

\[|f(z)| \leq |F(z)| \quad \text{for } |z|=1, \]

then for every \(R > r \geq 1, \alpha, \beta \in \mathbb{C} \) with \(|\alpha| \leq 1, |\beta| \leq 1\) and \(|z| \geq 1\),

\[|f(Rz) + \phi(R, r, \alpha, \beta) f(rz)| \leq |F(Rz) + \phi(R, r, \alpha, \beta) F(rz)| \]

where \(\phi(R, r, \alpha, \beta) \) is defined by (13).

Lemma 1 is due to A. Aziz and N.A. Rather [7].

Lemma 2: If \(P(z) \) is a polynomial of degree \(n \) having all its zeros in \(|z| \leq 1\) and \(m = \min_{|z|=1} |P(z)| \), then for every \(R > r \geq 1, \alpha, \beta \in \mathbb{C} \) with \(|\alpha| \leq 1, |\beta| \leq 1\) and \(|z| \geq 1\),

\[|P(Rz) + \phi(R, r, \alpha, \beta) P(rz)| \geq m \left| R^n + \phi(R, r, \alpha, \beta) r^n \right| \]

where \(\phi(R, r, \alpha, \beta) \) is defined by (13).

Proof of Lemma 2: For \(m = 0 \), there is nothing to prove. Assume \(m > 0 \), so that all the zeros of \(P(z) \) lie in \(|z| < 1\) and we have

\[m \left| z^n \right| \leq |P(z)| \quad \text{for } |z|=1. \]

Applying Lemma 2 with \(F(z) \) replaced by \(P(z) \) and \(f(z) \) by \(m \left| z^n \right| \), we obtain for \(|z| \geq 1\),

\[m \left| R^n z^n + \phi(R, r, \alpha, \beta) r^n z^n \right| \leq |P(Rz) + \phi(R, r, \alpha, \beta) P(rz)|. \]

That is,

\[|P(Rz) + \phi(R, r, \alpha, \beta) P(rz)| \geq m \left| z^n \right| \left| R^n + \phi(R, r, \alpha, \beta) r^n \right| \]

for \(\alpha, \beta \in \mathbb{C} \) with \(|\alpha| \leq 1, |\beta| \leq 1, R > r \geq 1\) and \(|z| \geq 1\). That proves Lemma 2.

Lemma 3: If \(P \in \mathbb{P}_n \) does not vanish in \(|z| < 1\) and \(m = \min_{|z|=1} |P(z)| \), then for every \(R > r \geq 1, \alpha, \beta \in \mathbb{C} \) with \(|\alpha| \leq 1, |\beta| \leq 1\) and \(|z| = 1\),
\[
|P(Rz)+\phi(R,r,\alpha,\beta)P(rz)|\leq|Q(Rz)+\phi(R,r,\alpha,\beta)Q(rz)|-\left|R^n+\phi(R,r,\alpha,\beta)\right|\left|1+\phi(R,r,\alpha,\beta)\right|m
\]

where \(Q(z) = z^n \frac{P(1/z)}{z^n} \).

Proof of Lemma 3: Since \(m = \min_{|z|=1} |P(z)| \), we have
\[
m \leq |P(z)| \text{ for } |z|=1.
\]

Therefore, for every complex number \(\lambda \) with \(|\lambda| < 1 \), the polynomial \(H(z) = P(z) - \lambda m \) of degree \(n \) does not vanish in \(|z| < 1 \). If
\[
G(z) = z^n H(1/z) = Q(z) - \lambda m z^n,
\]
then all the zeros of polynomial \(G(z) \) of degree \(n \) lie \(|z| \leq 1 \) and
\[
|H(z)| = |G(z)| \text{ for } |z|=1.
\]

Applying Lemma 1 with \(f(z) \) replaced by \(H(z) \) and \(F(z) \) by \(G(z) \), we get for every \(R > r \geq 1 \), \(\alpha, \beta \in \mathbb{C} \) with \(|\alpha| \leq 1 \), \(|\beta| \leq 1 \) and \(|z| \geq 1 \),
\[
|H(Rz)+\phi(R,r,\alpha,\beta)H(rz)| \leq |G(Rz)+\phi(R,r,\alpha,\beta)G(rz)|.
\]

That is,
\[
|P(Rz)+\phi(R,r,\alpha,\beta)P(rz) - \lambda m \{1+\phi(R,r,\alpha,\beta)\}| \leq |Q(Rz)+\phi(R,r,\alpha,\beta)Q(rz) - \lambda m z^n \{R^n+\phi(R,r,\alpha,\beta)r^n\}|
\]

for every \(R > r \geq 1 \), \(\alpha, \beta \in \mathbb{C} \) with \(|\alpha| \leq 1 \), \(|\beta| \leq 1 \) and \(|z| \geq 1 \). Since all the zeros of \(Q(z) \) lie in \(|z| \leq 1 \), we choose argument of \(\lambda \) with \(|\lambda| < 1 \), such that
\[
|Q(Rz)+\phi(R,r,\alpha,\beta)Q(rz) - \lambda m z^n \{R^n+\phi(R,r,\alpha,\beta)r^n\}| = |Q(Rz)+\phi(R,r,\alpha,\beta)Q(rz) - |\lambda| m \{R^n+\phi(R,r,\alpha,\beta)r^n\}|z^n|
\]

for \(|z| \geq 1 \), which is possible by Lemma 3, we have from (22),
\[
|P(Rz)+\phi(R,r,\alpha,\beta)P(rz)| - |\lambda| m \{R^n+\phi(R,r,\alpha,\beta)\} \leq |Q(Rz)+\phi(R,r,\alpha,\beta)Q(rz) - |\lambda| m \{R^n+\phi(R,r,\alpha,\beta)r^n\}|z^n|
\]

for \(|z| \geq 1 \). Equivalently for every \(R > r \geq 1 \), \(\alpha, \beta \in \mathbb{C} \) with \(|\alpha| \leq 1 \), \(|\beta| \leq 1 \) and \(|z| \geq 1 \),
\[
|P(Rz)+\phi(R,r,\alpha,\beta)P(rz)| \leq |Q(Rz)+\phi(R,r,\alpha,\beta)Q(rz)| - |\lambda|^p \{R^n+\phi(R,r,\alpha,\beta)r^n\}|z^n| \leq |1+\phi(R,r,\alpha,\beta)|m.
\]

Letting \(|\lambda| \to 1 \), we get the conclusion of lemma 4.

We also need the following two Lemmas due to A.Aziz and N.A.Rather [8, 9].

Lemma 4 [7]: If \(P \in \mathbb{P}_n \), then for arbitrary real or complex numbers \(\alpha, \beta \), with \(|\alpha| \leq 1 \), \(|\beta| \leq 1 \), \(R > r \geq 1 \), \(p > 0 \) and \(\gamma \) real,
\[
\begin{align*}
&\int_{0}^{2\pi} |P(Re^{i\theta}) + \phi(R, r, \alpha, \beta)P(re^{i\theta}) + e^{i\gamma}[R^n P(e^{i\theta}/R) + \phi(R, r, \alpha, \beta)r^n P(e^{i\theta}/r)]|^p \, d\theta \\
\leq |R^n + \phi(R, r, \alpha, \beta)r^n + e^{i\gamma}(1 + \phi(R, r, \alpha, \beta)) P(e^{i\theta}/r)| \int_{0}^{2\pi} |P(e^{i\theta})| \, d\theta. \tag{24}
\end{align*}
\]

The result is sharp and the extremal polynomial is \(P(z) = \lambda z^n \), \(\lambda \neq 0 \).

Lemma 5 [6]: If \(A, B, C \) are non-negative real numbers with \(B+C \leq A \), then for every real number \(\alpha \),

\[
|A-C| e^{i\alpha} + |B+C| \leq |Ae^{i\alpha} + B|.
\]

3. PROOF OF THE THEOREM

Proof of Theorem 1: By hypothesis \(P \in \mathbb{P}_n \) and \(P(z) \neq 0 \) in \(|z| < 1\), therefore by Lemma 3, we have for arbitrary real or complex numbers \(\alpha, \beta \), with \(|\alpha| \leq 1, |\beta| \leq 1, R>r \geq 1 \) and \(0 \leq \theta < 2\pi \),

\[
|P(Re^{i\theta}) + \phi(R, r, \alpha, \beta)P(re^{i\theta})| \leq \left| Q(Re^{i\theta}) + \phi(R, r, \alpha, \beta)Q(re^{i\theta}) \right| - \left| R^n + \phi(R, r, \alpha, \beta) r^n \right|
\]

where \(m = \min_{|z|=1} |P(z)| \), \(Q(z) = z^n \overline{P(1/z)} \) and \(\phi(R, r, \alpha, \beta) \) is defined by (13). This implies,

\[
|P(Re^{i\theta}) + \phi(R, r, \alpha, \beta)P(re^{i\theta})| \leq R^n P\left(\frac{e^{i\theta}}{R} \right) + \phi(R, r, \alpha, \beta) P\left(\frac{e^{i\theta}}{r} \right)
\]

\[
- \left| R^n + \phi(R, r, \alpha, \beta) r^n \right|
\]

which gives,

\[
|P(Re^{i\theta}) + \phi(R, r, \alpha, \beta)P(re^{i\theta})| + \frac{m}{2} \left| R^n + \phi(R, r, \alpha, \beta) r^n \right| - \left| 1 + \phi(R, r, \alpha, \beta) \right|
\]

\[
\leq R^n P(e^{i\theta}/R) + \phi(R, r, \alpha, \beta) P\left(e^{i\theta}/r \right) - \frac{m}{2} \left| R^n + \phi(R, r, \alpha, \beta) r^n \right| - \left| 1 + \phi(R, r, \alpha, \beta) \right|
\]

Taking

\[
A = R^n P\left(\frac{e^{i\theta}}{R} \right) + \phi(R, r, \alpha, \beta) P\left(\frac{e^{i\theta}}{r} \right),
\]

\[
B = P(Re^{i\theta}) + \phi(R, r, \alpha, \beta) P\left(e^{i\theta}/r \right),
\]

and \(C = \left| R^n + \phi(R, r, \alpha, \beta) r^n \right| - \left| 1 + \phi(R, r, \alpha, \beta) \right| m \)

in Lemma 5 and noting by (26), that \(B+C \leq A \), we obtain for every real \(\gamma \),

\[
\begin{align*}
&\left\{ \left| R^n P\left(\frac{e^{i\theta}}{R} \right) + \phi(R, r, \alpha, \beta) P\left(\frac{e^{i\theta}}{r} \right) - \frac{R^n + \phi(R, r, \alpha, \beta) r^n}{2} \left| \left| 1 + \phi(R, r, \alpha, \beta) \right| \right| m \right| e^{i\gamma} \right. \\
&+ \left| P(Re^{i\theta}) + \phi(R, r, \alpha, \beta) P\left(e^{i\theta}/r \right) + \frac{R^n + \phi(R, r, \alpha, \beta) r^n}{2} \left| \left| 1 + \phi(R, r, \alpha, \beta) \right| \right| m \right| \right) e^{i\gamma} \\
\end{align*}
\]
This implies for each \(p > 0 \),

\[
\int_0^{2\pi} \left| F(\theta) + e^{i\gamma} G(\theta) \right|^p d\theta \leq \int_0^{2\pi} \left| R^n P(e^{i\theta} / R) + \phi(R, r, \alpha, \beta) r^n P(e^{i\theta} / r) \right| e^{i\gamma} d\theta + |P(R e^{i\theta}) + \phi(R, r, \alpha, \beta) P(r e^{i\theta})| \left| e^{i\gamma} \right| d\theta
\]

\[
F(\theta) = |P(R e^{i\theta}) + \phi(R, r, \alpha, \beta) P(r e^{i\theta})| + \left| R^n + \phi(R, r, \alpha, \beta) r^n - 1 + \phi(R, r, \alpha, \beta) \right| \left| e^{i\gamma} \right| d\theta
\]

\[
G(\theta) = \left| R^n \left(e^{i\theta} / R \right) + \phi(R, r, \alpha, \beta) r^n \left(e^{i\theta} / r \right) \right| + \left| R^n + \phi(R, r, \alpha, \beta) r^n - 1 + \phi(R, r, \alpha, \beta) \right| \left| e^{i\gamma} \right| d\theta
\]

Integrating both sides of (27) with respect to \(\gamma \) from 0 to \(2\pi \), we get with the help of lemma 4, for each \(p > 0, R > r \geq 1, |\alpha| \leq 1, |\beta| \leq 1 \) and \(\gamma \) real,

\[
\int_0^{2\pi} \int_0^{2\pi} \left| F(\theta) + e^{i\gamma} G(\theta) \right|^p d\theta d\gamma \leq \int_0^{2\pi} \int_0^{2\pi} \left| R^n P(e^{i\theta} / R) + \phi(R, r, \alpha, \beta) r^n P(e^{i\theta} / r) \right| e^{i\gamma} \left| e^{i\gamma} \right| d\theta d\gamma
\]

\[
\int_0^{2\pi} \int_0^{2\pi} \left| R^n P(e^{i\theta} / R) + \phi(R, r, \alpha, \beta) r^n P(e^{i\theta} / r) \right| e^{i\gamma} d\theta d\gamma
\]

Now for every real \(\gamma, t \geq 1 \) and \(p > 0 \), we have

\[
\int_0^{2\pi} \left| t + e^{i\gamma} \right|^p d\gamma \geq \int_0^{2\pi} \left| 1 + e^{i\gamma} \right|^p d\gamma.
\]

If \(F(\theta) \neq 0 \), we take \(t = \frac{G(\theta)}{F(\theta)} \), then by (26), \(t \geq 1 \) and we get
For $F(0) = 0$, this inequality is trivially true. Using this in (28), we conclude that for arbitrary real or complex numbers α, β, with $|\alpha| \leq 1$, $|\beta| \leq 1$, $R > r \geq 1$ and $0 \leq \theta < 2\pi$,

$$
\int_{0}^{2\pi} |1 + e^{i\gamma}|^p \gamma \int_{0}^{2\pi} \left\{ |P(e^{i\gamma}) + \phi(R, r, \alpha, \beta)P(Re^{i\gamma}) + \frac{R^n + \phi(R, r, \alpha, \beta) r^n - 1 + \phi(R, r, \alpha, \beta)}{2} m| \right\}^p d\theta
\leq \left\{ \int_{0}^{2\pi} R^n + \phi(R, r, \alpha, \beta) r^n + e^{i\gamma} \left(1 + \phi(R, r, \alpha, \beta)\right) \left|1 + \phi(R, r, \alpha, \beta)\right|^p d\gamma \right\} \left\{ \int_{0}^{2\pi} P(e^{i\gamma}) \gamma \right\}^p d\theta.
$$

(29)

Since

$$
\int_{0}^{2\pi} \left(R^n + \phi(R, r, \alpha, \beta) r^n + e^{i\gamma} \left(1 + \phi(R, r, \alpha, \beta)\right) \right) \left|1 + \phi(R, r, \alpha, \beta)\right|^p d\gamma = \int_{0}^{2\pi} \left(R^n + \phi(R, r, \alpha, \beta) r^n + e^{i\gamma} \left(1 + \phi(R, r, \alpha, \beta)\right) \right) \gamma \gamma^p d\gamma,
$$

From (29), we obtain

$$
\int_{0}^{2\pi} \left\{ \left| P(Re^{i\gamma}) + \phi(R, r, \alpha, \beta)P(Re^{i\gamma}) + \frac{R^n + \phi(R, r, \alpha, \beta) r^n - 1 + \phi(R, r, \alpha, \beta)}{2} m \right| \right\}^p d\theta
\leq \left\{ \int_{0}^{2\pi} |1 + e^{i\gamma}|^p \gamma \right\}^p d\gamma
$$

\[\leq \int_{0}^{2\pi} \left\{ \int_{0}^{2\pi} P(e^{i\gamma}) \gamma \right\}^p d\theta \]

This gives for every real or complex number δ with $|\delta| \leq 1$,

$$
\left\| P(Rz) + \phi(R, r, \alpha, \beta)P(rz) + \delta \left\{ \frac{R^n + \phi(R, r, \alpha, \beta) r^n - 1 + \phi(R, r, \alpha, \beta)}{2} m \right\} \right\|^p \leq C_p \left\| 1 + e^{i\gamma} \right\|^p d\gamma.
$$

That proves the Theorem completely.

REFERENCES

Source of support: Nil, Conflict of interest: None Declared