International Journal of Mathematical Archive-3(5), 2012, 2005-2019 MA Available online through www.ijma.info ISSN 2229 - 5046

g**- closed sets in topological spaces

Pauline Mary Helen M*

Associate Professor, Nirmala College, Coimbatore, India

Ponnuthai Selvarani

Associate Professor, Nirmala College, Coimbatore, India

Veronica Vijayan

Associate Professor, Nirmala College, Coimbatore, India

(Received on: 17-05-12; Accepted on: 31-05-12)

ABSTRACT

In this paper, we introduce a new class of sets namely, g^{**} -closed sets, which is settled in between the class of closed sets and the class of g-closed sets. Applying these sets, we introduce the new class of spaces, namely $T_{1/2}^{**}$ spaces, $T_{1/2}^{**}$ spaces,

Key words: g^{**} -closed sets; g^{**} continuous maps; g^{**} irresolute maps; $T_{1/2}^{**}$ spaces, ${}^{*}T_{1/2}^{**}$ spaces, ${}^{*}T_{1/2}^{**}$ spaces, ${}^{*}T_{1/2}^{**}$ spaces, ${}^{*}T_{1/2}^{**}$ spaces.

1. Introduction

Levine [13] introduced the class of g-closed sets in 1970. Maki.et.al [15] defined αg -closed sets and $\alpha^{**}g$ -closed sets in 1994. S.P. Arya and N. Tour [3] defined gs-closed sets in 1990. Dontchev [10], Gnanambal[12] and Palaniappan and Rao[22] introduced gsp-closed sets, gpr-closed sets and rg-closed sets respectively. M.K.R.S. Veerakumar[24] introduced g*-closed sets in 1991. We introduce a new class of sets called g**-closed sets, which is properly placed in between the class of closed sets and the class of g-closed sets.

Levine [13] Devi.et.al [7] and Devi et.al [6] introduced $T_{1/2}$ spaces, T_b spaces and ${}_{\alpha}T_b$ spaces respectively. M.K.R.S. Veerakumar[24] introduced T_c , $T_{1/2}$ * and ${}_{\alpha}T_c$ spaces. Applying g**-closed sets, five new spaces namely, $T_{1/2}$ ** spaces, ** $T_{1/2}$ * spaces, * T_c *, $T_{1/2}$ * and ${}_{\alpha}T_c$ * spaces are introduced.

2. Preliminaries

Throughout this paper (X, τ) , (Y, σ) and (Z, η) represent non-empty topological spaces on which no separation axioms are assumed unless otherwise mentioned. For a subset A of a space (X, τ) , cl(A) and int(A) denote the closure and the interior of A respectively.

The class of all closed subsets of a space (X, τ) is denoted by $C(X, \tau)$. The smallest semi-closed (resp. pre-closed and α -closed) set containing a subset A of (X, τ) is called the semi-closure(resp. pre-closure and α -closure) of A and is denoted by scl(A) (resp. pcl(A) and $\alpha cl(A)$).

Definition 2-1: A subset A of a toplogical space(X, τ) is called

- 1) a pre-open set [18] if $A \subseteq int(cl(A))$ and a preclosed set if $cl(int(A)) \subseteq A$.
- 2) a semi-open set [14] if $A \subseteq cl(int(A))$ and and semi-closed set if int $(cl(A)) \subseteq A$.
- 3) a semi-preopen set [1] if $A \subset cl(int(cl(A)))$ and a semi-preclosed set [1] if $int(cl(int(A))) \subset A$
- 4) an α -open set [20] if $A \subseteq \text{int}(\text{cl}(\text{int}(A)))$ and an α -closed set [19] if $\text{cl}(\text{int}(\text{cl}(A))) \subseteq A$.

Definition 2-2: A subset A of a toplogical space(X, τ) is called

- 1)a generalized closed set (brfly g-closed)[13] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) .
- 2) a semi-generalized closed set (briefly sg-closed) [5] if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is semi-open in (X, τ) .
- 3) a generalized semi-closed set (briefly gs-closed) [3] if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) .

Corresponding author: Pauline Mary Helen M* Associate Professor, Nirmala College, Coimbatore, India

- 4) an α -generalized closed set (briefly αg -closed) [15] if $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) .
- 5) a generalized α -closed set (briefly $g\alpha$ -closed) [16] if α cl(A) \subseteq U whenever A \subseteq U and U is α -open in (X, τ).
- 7) an α^{**} -generalized closed set (briefly α^{**} g-closed) [15] if α cl(A) \subseteq int(cl(U)) whenever A \subseteq U and U is open in (X, τ) .
- 8) a generalized semi-preclosed set (briefly gsp-closed [10] if $spcl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) .
- 9) a regular generalized closed set (briefly rg-closed) [22] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is regular open in (X, τ) .
- 10) a generalized preclosed set (briefly gp-closed) [17] if $pcl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) .
- 11) a generalized preregular closed set (briefly gpr-closed) [12] if $pcl(A) \subseteq U$ whenever $A \subseteq U$ and U is regular open in (X, τ) .
- 12) a $g\alpha^*$ -closed set [16] if $\alpha cl(A) \subseteq int(U)$ whenever $A \subseteq U$ and U is α -open in (X, τ) .
- 13) $a \ g^*$ -closed set[24] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is g-open in (X, τ) .
- 14) a wg closed set [21] if $cl(int(A)) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) .
- 14) a wg closed set [21] if $cl(int(A)) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) .

Definition 2.3: A function $f:(X, \tau) \to (Y, \sigma)$ is called

- 1)a g-continuous [4] if $f^{-1}(V)$ is a g-closed set of (X, τ) for every closed set V of (Y, σ) .
- 2) an αg -continuous [12] if f⁻¹(V) is an αg -closed set of (X, τ) for every closed set V of (Y, σ) .
- 3) a gs-continuous [8] if $f^{-1}(V)$ is a gs-closed set of (X, τ) for every closed set V of (Y, σ) .
- 4) a gsp-continuous [10] if $f^{-1}(V)$ is a gsp-closed set of (X, τ) for every closed set V of (Y, σ) .
- 5) a rg-continuous [22] if f⁻¹(V) is a rg-closed set of (X, τ) for every closed set V of (Y, σ) .
- 6) a gp-continuous [2] if $f^{-1}(V)$ is a gp-closed set of (X, τ) for every closed set V of (Y, σ) .
- 7) a gpr-continuous [12] if $f^{-1}(V)$ is a gpr-closed set of (X, τ) for every closed set V of (Y, σ) .
- 8) a g^* -continuous [24] if $f^{-1}(V)$ is a g^* -closed set of $((X, \tau)$ for every closed set V of (Y, σ) .
- 9) a g^* -irresolute [24] if $f^{-1}(V)$ is a g^* -closed set of (X, τ) for every g^* -closed set V of (Y, σ) .

Further we call a function $f: (Y, \sigma) \to (X, \tau) \to as \alpha^{**}g$ -continuous [15] if $f^{-1}(V)$ is an $\alpha^{**}g$ -closed set of (X, τ) whenever V is a closed set of (Y, σ) and and wg-continuous [21] if $f^{-1}(V)$ is an wg-closed set of (X, τ) whenever V is a closed set of (Y, σ) .

Definition 2.4: A topological space (X, τ) is said to be

- 1)a $T_{1/2}$ space [13] if every g-closed set in it is closed.
- 2) a T_b space [7] if every gs-closed set in it is closed.
- 3) a T_d space [7] if every gs-closed set in it is g-closed.
- 4) an αT_d space [4] if every αg -closed set in it is g-closed.
- 5) an ${}_{\alpha}T_{h}$ space [4] if every αg -closed set in it is closed.
- 6) a $T_{1/2}$ *[24] space if every g*-closed set in it is closed.
- 7) $T_{1/2}$ [24] space if every g-closed set in it is g*-closed set.

3. Basic properties of g **-closed sets

We now introduce the following definitions.

Definition 3.1: A subset A of (X, τ) is said to be a g **-closed set if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is g *-open in X.

The class of $g^{**}-closed$ subset of (X,τ) is denoted by $G^{**}C(X,\tau)$.

Proposition 3.2: Every closed set is $g^{**}-closed$.

Proof follows from the definition.

The following example supports that a g^{**} – closed set need not be closed in general.

Example 3.3: Let $X = \{a, b, c\}$, $\tau = \{\phi, \{a\}, X\}$. Let $A = \{b\}$. A is a g **-closed set but not a closed set of (X, τ) .

So, the class of $g^{**}-closed$ sets properly contains the class of closed sets.

Next we show that the class of g **-closed sets is properly contained in the class of g-closed, rg-closed, gpr-closed and wg-closed sets.

Proposition 3.4: Every g ** - closed set is

- (i) g closed
- (ii) rg closed
- (iii) gpr-closed
- (iv) wg closed.

Proof: Let A be a $g^{**}-closed$ set

- (i) Let $A \subseteq U$ and U be open then U is g*-open. Since A is g**-closed, $cl(A) \subseteq U$ therefore A is g-closed.
- (ii) Let $A \subseteq U$ and U be regular open. Then U is open and hence U is g*-open. Since A is g**-closed, $cl(A) \subseteq U$, therefore A is rg-closed.
- (iii) Let $A \subseteq U$ where U is regular open. Then U is g *-open. Since A is g **-closed, $cl(A) \subseteq U$ which implies $pcl(A) \subseteq cl(A) \subseteq U$. Therefore A is gpr-closed.
- (iv) Let $A \subseteq U$ where U is open. Then U is g *-open. $Int(A) \subseteq A$ implies $cl(\operatorname{int}(A)) \subseteq cl(A) \subseteq U$. Therefore A is wg-closed.

The converse of the above proposition need not be true in general as it can be seen from the following example.

Example 3.5: In example (3.3), $A = \{a\}$ is gpr - closed but not g ** - closed.

Example 3.6: Let $X = \{a, b, c\}$, $\tau = \{\phi, \{a\}, \{a, c\}, X\}$. $A = \{c\}$ is g - closed and hence it is rg - closed and $\alpha g - closed$. That is A is gsp - closed, rg - closed and wg - closed but it is not g ** - closed.

Proposition 3.7: Every g *-closed set is gpr-continuous.

Proof: Let A be a g*-closed set. Let $A\subseteq U$ and U be g*-open. Then $A\subseteq U$ and U is g-open. Hence $cl(A)\subseteq U$, and U is g^*-open . Therefore A is g**-closed.

The converse of the above proposition need not be true.

Example 3.8: In example (3.3), $\{a,c\}$ is g **-closed but not gsp-continuous. So the class of g **-closed sets properly contains the class of g *-closed sets.

Proposition 3.9: Every $g^{**}-closed$ set is $\alpha g-closed$ set and hence gs-closed, gsp-closed, gp-closed and also $\alpha^{**}g-closed$ but not conversely.

Proof: Let A be a g **-closed set of (X,τ) . By proposition (3.2), A is g-closed. By the implications (2.4) in Maki.et.al. [18], A is $\alpha g-closed$ and $\alpha **g-closed$. Therefore every g **-closed set is $\alpha g-closed$ and $\alpha **g-closed$. From the investigations of Dontchev [11] and Gnanambal [15], we know that every

Pauline Mary Helen M* et al./ g**- closed sets in topological spaces/ UMA- 3(5), May-2012, Page: 2005-2019

g-closed set is gs-closed, gsp-closed and gp-closed. Therefore every g**-closed set is gs-closed, gsp-closed and gp-closed.

Example 3.10: In example (3.6), $\{c\}$ is g-closed and hence it is gs-closed, gsp-closed and gp-closed and $\alpha**g-closed$ but it is not g**-closed.

So the class of $g^{**}-closed$ sets is properly contained in the class of $\alpha g-closed$ sets, the class of gs-closed sets, the class of gs-closed sets, the class of gp-closed sets, the class of $\alpha g-closed$ sets and the class of $\alpha **g-closed$ sets.

Proposition 3.11: If A and B are $g^{**}-closed$ sets, then $A \cup B$ is also a $g^{**}-closed$ set.

Proof follows from the fact that $cl(A \cup B) = cl(A) \cup cl(B)$.

Proposition 3.12: If A is both g *-open and g **-closed, then A is closed.

Proof follows from the definition of $g^{**}-closed$ sets.

Proposition 3.13: A is a $g^{**}-closed$ set of (X,τ) if $cl(A)\setminus A$ does not contain any non-empty $g^*-closed$ set.

Proof: Let F be a g*-closed set of (X,τ) such that $F \subseteq cl(A) \setminus A$. Then $A \subseteq X \setminus F$. Since A is g**-closed and $X \setminus F$ is g*-open, $cl(A) \subseteq X \setminus F$. This implies $F \subseteq X \setminus cl(A)$. So $F \subseteq (X \setminus cl(A)) \cap (cl(A) \setminus A) \subseteq (X \setminus cl(A)) \cap cl(A) = \emptyset$. Therefore $F = \emptyset$.

Remark 3.14: $g^{**}-closedness$ is independent from $\alpha-closedness$, semi-closedness, $g:(Y,\sigma) \to (Z,\eta)$, $g_{\alpha}f$, $g^{**}-continuous$, pre-closedness and semi-preclosedness.

Proof: Let $X = \{a,b,c\}$, $\tau = \{\phi,X,\{a\},\{a,c\}\}$. Let $A = \{a,b\}$ and $B = \{c\}$. A is g**-closed. A is neither $\alpha-closed$ nor semi-closed, in fact, it is not even a semi-preclosed set. Also it is not preclosed. B is $\alpha-closed$ and hence semi-closed, preclosed, semi-preclosed, sg-closed, $g\alpha-closed$ and $g\alpha*-closed$ but it is not g**-closed.

Proposition 3.15: If A is a $g^{**}-closed$ set of (X,τ) such that $A\subseteq B\subseteq cl(A)$, then B is also a $g^{**}-closed$ set of (X,τ) .

Proof: Let U be a g*-open set of (X,τ) such that $B\subseteq U$. Then $A\subseteq U$, since A is g**-closed, then $cl(A)\subseteq U$. Now $cl(B)\subseteq cl(cl(A))=cl(A)\subseteq U$. Therefore B is also a g**-closed set of (X,τ) .

The above results can be represented in the following figure.

Pauline Mary Helen M* et al./ g**- closed sets in topological spaces/ IJMA- 3(5), May-2012, Page: 2005-2019

Where $A \longrightarrow B$ (resp. A \longrightarrow B) represents A implies B (resp. A and B are independent).

4. g^{**} – continuous and g^{**} – irresolute maps.

We introduce the following definitions.

Definition 4.1: A function $f:(X,\tau)\to (Y,\sigma)$ is called $g^{**}-continuous$ if $f^{-1}(V)$ is a $g^{**}-closed$ set of (X,τ) for every closed set of (Y,σ) .

Theorem 4.2: Every continuous map is g^{**} – *continuous*.

Proof: Let $f:(X,\tau)\to (Y,\sigma)$ be continuous and let F be any closed set of Y. Then $f^{-1}(F)$ is closed in X. Since every closed set is $g^{**}-closed$, $f^{-1}(F)$ is $g^{**}-closed$. Therefore f is $g^{**}-continuous$.

The following example shows that the converse of the above theorem need not be true in general.

Example 4.3: Let $X = Y = \{a,b,c\}$, $\tau = \{\phi,X,\{a\}\}$, $\sigma = \{\phi,Y,\{b\}\}\}$, $f:(X,\tau) \to (Y,\sigma)$ is defined as the identity map. The inverse image of all the closed sets of (Y,σ) are $g^{**}-closed$ in (X,τ) . Therefore f is $g^{**}-continuous$ but not continuous.

Thus the class of all g^{**} – *continuous* maps properly contains the class of continuous maps.

Theorem 4.4: Every g^{**} – continuous map is g – continuous and hence an αg – continuous, $\alpha^{**}g$ – continuous, gs – continuous, gs – continuous, gs – continuous, gp – continuous, gp – continuous and gp – continuous maps.

Proof: Let $f:(X,\tau)\to (Y,\sigma)$ be a $g^{**}-continuous$ map. Let V be a closed set of (Y,σ) .

Since f is g^{**} - continuous, then $f^{-1}(V)$ is a g^{**} - closed set in (X, τ) .

By proposition (3.4) and (3.9), $f^{-1}(V)$ is g-closed, rg-closed, gpr-closed, wg-closed, $\alpha g-closed$, gs-closed, gs-closed, gp-closed and $\alpha **g-closed$ set of (X,τ) .

The converse of the above theorem need not be true as seen in the following example.

Example 4.5: Let $X = Y = \{a,b,c\}$, $\tau = \{\phi,X,\{a\},\{a,c\}\}\}$, $\sigma = \{\phi,Y,\{a,b\}\}\}$. Let $f:(X,\tau) \to (Y,\sigma)$ be the identity map. Then $f^{-1}(\{c\}) = \{c\}$ is not g **-closed in X. But $\{c\}$ is g-closed and hence rg-closed, gp-closed, gp-closed, gp-closed, gp-closed, and $\alpha **g-closed$. Therefore f is g-continuous and hence rg-continuous, gp-continuous, gp-continuous, gp-continuous, gp-continuous, and gp-continuous, gp-continuous, gp-continuous, gp-continuous, gp-continuous and gp-continuous but gp-continuous is not gp-continuous.

Thus the class of all g^{**} – continuous maps is properly contained in the classes of g – continuous, rg – continuous, gr – continuous, gr – continuous, gr – continuous, gr – continuous and gr – continuous maps.

The following example shows that the compositions of two g^{**} -continuous maps need not be a g^{**} -continuous map.

Example 4.6: Let $X = Y = Z = \{a,b,c\}$ and let $f:(X,\tau) \to (Y,\sigma)$, $g:(Y,\sigma) \to (Z,\eta)$, be the identity maps. $\tau = \{\phi, X, \{a\}, \{a,c\}\}\}$, $\sigma = \{\phi, Y, \{a\}\}\}$, $\eta = \{\phi, Z, \{b\}\}\}$. $(f_o g)^{-1}(\{a,c\}) = f^{-1}(g^{-1}\{a,c\}) = f^{-1}(\{a,c\}) = \{a,c\}$ is not g **-closed in (X,τ) . But f and g are g **-continuous maps.

Theorem 4.7: Every g^* – continuous map is g^{**} – continuous.

Proof: Let $f:(X,\tau)\to (Y,\sigma)$ be g*-continuous and let V be a closed set of Y. Then $f^{-1}(V)$ is g*-closed and hence by proposition (3.7), it is g**-closed. Hence f is g**-continuous.

The following example shows that the converse of the above theorem is not true in general.

Example 4.8: Let $X = Y = \{a, b, c\}$, $\tau = \{\phi, X, \{a\}\}$, $\sigma = \{\phi, X, \{b\}\}$. Let $f: (X, \tau) \to (Y, \sigma)$ be the identity map. $A = \{a, c\}$ is closed in (Y, σ) and is g **-closed in (X, τ) but not g *-closed in (X, τ) . Therefore f is g **-continuous but not g *-continuous.

Definition 4.9: A function $f:(X,\tau)\to (Y,\sigma)$ is called $g^{**}-irresolute$ if $f^{-1}(V)$ is a $g^{**}-closed$ set of (X,τ) for every $g^{**}-closed$ set V of (Y,σ) .

Theorem 4.10: Every $g^{**}-irresolute$ function is $g^{**}-continuous$.

Proof follows from the definition.

Theorem 4.11: Every g * -irresolute function is g * * - continuous.

Proof follows from the definition.

Converse of theorems (4.10) and (4.11) need not be true in general as seen in the following example.

Example 4.12: Let
$$X = Y = \{a, b, c\}$$
, $\tau = \{\phi, X, \{a\}, \{b\}, \{a, b\}, \{a, c\}\}\}$, $\sigma = \{\phi, Y, \{a, b\}\}$.

Define $h:(X,\tau)\to (Y,\sigma)$ by h(a)=b, h(b)=c and $h(c)=a\cdot\{c\}$ is the only closed set of Y. $h^{-1}(\{c\})=\{b\}$ is g**-closed in X. Therefore h is $g**-continuous\cdot\{b,c\}$ is a g*-closed set of Y but $h^{-1}\{b,c\}=\{a,b\}$ is not g*-closed in X. Therefore h is not g*-closed set in Y but $h^{-1}\{b,c\}=\{a,b\}$ is not g*-closed set in Y but $h^{-1}\{b,c\}=\{a,b\}$ is not g**-closed in X.

Therefore h is not g^{**} – irresolute. Therefore h is g^{**} – continuous but not g^{**} – irresolute.

Theorem 4.13: Let $f:(X,\tau)\to (Y,\sigma)$ and $g:(Y,\sigma)\to (Z,\eta)$ be any two functions then

- (i) $g_o f$ is g^{**} continuous if g is continuous and f is g^{**} continuous.
- (ii) $g_{\alpha}f$ is $g^{**}-irresolute$ if both f and g are $g^{**}-irresolute$.
- (iii) $g \circ f$ is g^{**} continuous if g is g^{**} continuous and f is g^{**} irresolute.

5. Applications of g **-closed sets

As applications of $g^{**}-closed$ sets, new spaces, namely, $T_{1/2}^{**}$ space, ${}_{\alpha}T_{c}^{*}$ spaces and ${}^{**}T_{1/2}$ spaces, ${}^{*}T_{1/2}^{*}$ and T_{c}^{*} spaces are introduced.

We introduce the following definition.

Definition 5.1: A space (X, τ) is called a $T_{1/2}^{**}$ space if every $g^{**} - closed$ set is closed.

Theorem 5.2: Every $T_{1/2}$ space is $T_{1/2}^{**}$ space.

A $T_{1/2}^{**}$ space need not be $T_{1/2}$ space , which can be seen from the following example.

Example 5.3: Let $X = \{a, b, c, d\}$, $\tau = \{\phi, X, \{a\}\}$. (X,τ) is a $T_{1/2}$ ** space but not a $T_{1/2}$ space since $A = \{b\}$ is g-closed but not closed.

Therefore the class of $T_{1/2}^{**}$ space properly contains the class of $T_{1/2}$ - spaces .

Theorem 5.4: Every $T_{1/2}^{**}$ space is $T_{1/2}^{*}$ space

The converse need not be true in general as seen in the following example.

Example 5.5: Let $X = \{a,b,c\}$, $\tau = \{\phi,X,\{a\}\}$, $G^*C(X,\tau) = \{\phi,X,\{b,c\}\}\} = C(X,\tau)$. Therefore (X,τ) is a $T^*_{1/2}$ -space but not $T^{**}_{1/2}$ space since $\{a,b\}$ is a $g^*-closed$ set but not a closed set of (X,τ) .

Theorem 5.6: Every $T_b - space$ is a $T_{1/2}^{**} - space$.

The converse need not be true in general as seen in the following example.

Example 5.7: Let, $X = \{a, b, c,\}$, $\tau = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}$. (X, τ) is a $T_{1/2}$ ** space but not a T_b space since $A = \{a\}$ is gs-closed but not closed.

Remark 5.8: $T_d - ness$ is independent of $T_{1/2}^{**} - ness$ as it can be seen from the following example.

Example 5.9: In example (5.7), (X, τ) is a $T_{1/2}$ ** space but not a ${}_{\alpha}T_{d}$ space since $A = \{a\}$ is gs-closed but not g-closed.

Example 5.10: $X = \{a, b, c,\}, \tau = \{\phi, X, \{a\}, \{b, c\}\}\}.$ (X, τ) is a T_d space but not a $T_{1/2}$ ** space since $A = \{b\}$ is g**-closed but not closed.

Theorem 5.11: Every $_{\alpha}T_{b}-space$ is a $T_{1/2}^{**}-space$.

Example 5.12: In example (5.3). (X, τ) is a $T_{\frac{1}{2}}$ ** space but not a ${}_{\alpha}T_{b}$ space since $A = \{b\}$ is αg -closed but not closed.

Theorem 5.13: The following conditions are equivalent in a topological space (X, τ) .

- (i) (X, τ) is a $T_{1/2}^{**}$ space.
- (ii) Every singleton of X is either g *-closed or open.

Proof:

(i) = (ii): Let (X,τ) be a $T_{1/2}^{**}$ - space. Let $x\in X$ and suppose $\{x\}$ is not g*-closed. Then $X\setminus\{x\}$ is not g*-open. This implies that X is the only g*-open set containing $X\setminus\{x\}$. Therefore $X\setminus\{x\}$ is a g**-closed set of (X,τ) . Therefore $X\setminus\{x\}$ is closed since (X,τ) is a $T_{1/2}^{**}-space$. Therefore $\{x\}$ is open in (X,τ) .

(ii) = (i): Let A be a g **-closed set of (X,τ) $A \subseteq cl(A)$ and let $x \in cl(A)$. By (ii) $\{x\}$ is g *-closed or open.

Case (i): Let $\{x\}$ be g *-closed. If $x \notin A$, then $cl(A) \setminus A$ contains a non-empty g *-closed set $\{x\}$. But it is not possible by proposition (3.13). Therefore $x \in A$.

Case (ii): Let $\{x\}$ be open. Now $x \in cl(A)$, then $\{x\} \cap A \neq \emptyset$. Therefore $x \in A$ and so $cl(A) \subseteq A$ and hence A = cl(A) or A is closed. Therefore (X, τ) is a $T_{1/2}^{**} - space$.

We introduce the following definition.

Definition 5.14: A space (X,τ) is called an $_{\alpha}T_{c}^{*}$ - space if every αg - closed set of (X,τ) is g **-closed We show that the class of $_{\alpha}T_{c}^{*}$ - spaces properly contains the class of $_{\alpha}T_{b}$ - spaces and is properly contained in the class of $_{\alpha}T_{d}$ - spaces. Moreover we prove that $_{\alpha}T_{c}^{*}$ - ness and $T_{1/2}^{**}$ - ness are independent from each other.

Theorem 5.15: Every $_{a}T_{b}-space$ is an $_{a}T_{c}^{*}-space$ but not conversely.

Example 5.16: Let $X = \{a,b,c\}$, $\tau = \{\phi,X,\{a,b\}\}$, (X,τ) is an ${}_{\alpha}T_{c}^{*}$ – space but not ${}_{\alpha}T_{b}$ – space since $\{a,c\}$ is αg – closed but not closed.

Theorem 5.17: Every $_{\alpha}T_{c}^{*}$ – space is an $_{\alpha}T_{d}$ – space but not conversely.

Example 5.18: In example (5.3). (X, τ) is a ${}_{\alpha}T_{d}$ space but not a ${}_{\alpha}T_{c}^{*}$ space since $A = \{b\}$ is αg -closed but not g^{**} -closed.

Theorem 5.19: A space (X,τ) is an ${}_{\alpha}T_{b}-space$ if and only if it is a ${}_{\alpha}T_{c}^{*}-space$ and a $T_{1/2}^{**}-space$.

Proof: Necessity – Follows from theorem 5.4 and 5.10

Sufficiency: Suppose (X,τ) is ${}_{\alpha}T_c^*-space$ and $T_{1/2}^{**}-space$. Let A be $\alpha g-closed$. Since (X,τ) is an ${}_{\alpha}T_c^*-space$, A is $g^{**}-closed$ and since (X,τ) is an $T_{1/2}^{**}-space$, A is closed. Therefore (X,τ) is an ${}_{\alpha}T_b-space$.

Remark 5.20: $_{\alpha}T_{c}^{*}-ness$ is independent from $T_{1/2}^{**}-ness$, as it is clear from the following examples.

Example 5.21: In example (5.16), (X, τ) is an ${}_{\alpha}T_{c}^{*}$ - space but not $T_{1/2}^{**}$ since, $\{a, c\}$ is g^{**} -closed but not closed.

Example 5.22: In example (5.3). (X,τ) is a $T_{1/2}^{***}$ space but not a ${}_{\alpha}T_{c}^{*}$ space since $A = \{b\}$ is αg -closed but not g^{**} -closed

Definition 5.23: A subset A of a space (X, τ) is called a $g^{**}-open$ set if its complement is a $g^{**}-closed$ set of (X, τ) .

Theorem 5.24: If (X, τ) is an ${}_{\alpha}T_{c}^{*}$ – space for each $x \in X$, $\{x\}$ is either αg – closed or g **-open.

Proof: Let $x \in X$ suppose that $\{x\}$ is not an $\alpha g-closed$ set of (X,τ) . Then $\{x\}$ is not a closed set since every closed set is an $\alpha g-closed$ set. Therefore $X\setminus \{x\}$ is not open. Therefore $X\setminus \{x\}$ is an $\alpha g-closed$ set since X is the only open set which contains $X\setminus \{x\}$. Since (X,τ) is an ${}_{\alpha}T_{c}^{*}-space$, $X\setminus \{x\}$ is a $g^{**}-closed$ set or $\{x\}$ is $g^{**}-open$.

Remark 5.25: The converse of the above theorem is not true as it can be seen from the following example.

Example 5.26: $X = \{a, b, c\}, \tau = \{\phi, X, \{a\}, \{a, b\}\}.$ (X, τ) is not a ${}_{\alpha}T_{c}^{*}$ space but $\{c\}$ and $\{b\}$ are αg -closed and $\{a\}$ is g^{**} -open.

We introduce the following definition.

Definition 5.27: A space (X,τ) is called an $^{**}T_{1/2}$ – space if every g ** - closed set of (X,τ) is a g * - closed set.

Remark 5.28: $T_{1/2}^* - ness$ is independent from ** $T_{1/2} - ness$ as it is clear from the following example.

Example 5.29: In example (5.26), (X, τ) is a ** $T_{1/2}$ - space but not a $T_{1/2}^*$ - space since $A = \{a, c\}$ is g*-closed but not closed.

Example 5.30: Let $X = \{a, b, c\}$, $\tau = \{\phi, X, \{a\}\}$. (X, τ) is a $T_{1/2}$ * space but not a ** $T_{1/2}$ since $A = \{a, c\}$ is g**-closed but not g*-closed.

Theorem 5.31: Every $T_{1/2}^{**} - space$ is ${}^{**}T_{1/2} - space$.

Proof: Let (X,τ) be an $T_{1/2}^{**}$ – space. Let A be a g** – closed set of (X,τ) . Since (X,τ) is a $T_{1/2}^{**}$ – space, A is closed. By theorem (3.2) of [24], A is g* – closed. Therefore (X,τ) is a $T_{1/2}^{**}$ – space.

The converse of the above theorem need not be true as seen in the following example.

Example 5.32: In example (5.26), (X, τ) is a $^{**}T_{1/2}$ – space but not a $T_{1/2}^{**}$ – space since $A = \{a, c\}$ is g^{**} -closed but not closed.

Theorem 5.33: Every T_b – space is a $^{**}T_{1/2}$ – space.

Proof: Let (X,τ) be a T_b – space. Then by theorem 5.6, it is a $T_{1/2}^{**}$ – space. Therefore by theorem 5.31, it is a $T_{1/2}^{**}$ – space.

The converse of the above theorem need not be true as seen in the following example.

Example 5.34: In example (5.26), (X, τ) is a ** $T_{1/2}$ - space but not a T_b - space since $A = \{a, c\}$ is gs-closed but not closed.

Theorem 5.35: Every $_{\alpha}T_{b}-space$ is a $^{**}T_{1/2}-space$.

Proof: Let (X,τ) be a $_{\alpha}T_{b}-space$. Then by theorem (5.11), it is a $T_{1/2}^{**}-space$. Therefore by theorem (5.31), (X,τ) is a $^{**}T_{1/2}-space$.

The converse of the above theorem need not be true as seen in the following example.

Example 5.36: Let $X = \{a,b,c\}$, $\tau = \{\phi,\{a\},\{a,b\},X\}$, (X,τ) is an $^{**}T_{1/2}$ – space but not a $_{\alpha}T_{b}$ – space since $A = \{a,c\}$ is a αg – closed set but not a closed set of (X,τ) .

Theorem 5.37: Every $_{\alpha}T_{c}$ – space is a $^{**}T_{1/2}$ – space.

Proof: Let (X,τ) be a $_{\alpha}T_{c}$ - space. Let A be a g **-closed set. Then by proposition (3.9), A is αg - closed. Since (X,τ) is an $_{\alpha}T_{c}$ - space, A is g *-closed. Therefore it is a $^{**}T_{1/2}$ - space.

The converse of the above theorem need not be true as seen in the following example.

Example 5.38: In example (5.36), (X,τ) is an $^{**}T_{1/2}$ - space but not a $_{\alpha}T_{c}$ - space since $A = \{b\}$ is a $\alpha g - closed$ set but not a g * -closed.

Theorem 5.39: A space (X,τ) is a ${}_{\alpha}T_{c}-space$ if and only if it is ${}_{\alpha}T_{c}^{*}-space$ and ${}^{**}T_{1/2}$ space.

Proof: Necessity follows from theorem (5.37) and theorem (5.15).

Sufficiency: Let A be $\alpha g - closed$. Then it is g ** - closed, since (X, τ) is an $_{\alpha}T_{c}^{*} - space$. Since (X, τ) is $^{**}T_{1/2} - space$, A is g * - closed. Therefore (X, τ) is an $_{\alpha}T_{c} - space$.

Definitions 5.40: A space (X,τ) is called a $T_{1/2}^*$ – space if every g – closed set of (X,τ) is g ** – closed.

Theorem 5.41: Every $T_{1/2}-space$ is a $^*T_{1/2}^*-space$.

Proof: Let (X,τ) be a $T_{1/2}$ - space. Let A be a g-closed set of (X,τ) . Then A is closed since (X,τ) is a $T_{1/2}$ - space. But by proposition (3.2), A is $g^{**}-closed$. Therefore (X,τ) is a $T_{1/2}^*-space$.

The converse of the above theorem need not be true as seen in the following example.

Example 5.42: In example (5.36), (X, τ) is a ${}^*T^*_{1/2} - space$ but not a $T_{1/2} - space$ since $A = \{a, c\}$ is g-closed but not closed.

Remark 5.43: ${}^*T_{1/2}^* - ness$ and $T_{1/2}^* - ness$ are independent as it is shown in the following examples.

Example 5.44: In example (5, 36), (X, τ) is a ${}^*T^*_{1/2}$ - space but not a $T^*_{1/2}$ - space since $A = \{a, c\}$ is a g^* -closed set but not a closed set. $A = \{a, b\}$ is a g^* -closed set but not a closed set.

Example 5.45: In example (5.3), (X, τ) is a $T_{1/2}$ *space but not a $*T_{1/2}$ * since $A = \{ c \}$ is a g-closed set but not a g^{**} -closed set.

Theorem 5.46: Every $_{\alpha}T_{c}$ – space is a $^{*}T_{1/2}^{*}$ – space.

Proof: Let (X,τ) be an $_{\alpha}T_{c}$ - space. Let A be a g-closed set of (X,τ) . Then A is also an $\alpha g-closed$ set. Since (X,τ) is an $_{\alpha}T_{c}$ - space, A is g*-closed. Then by proposition (3.8), A is g**-closed. Therefore (X,τ) is a $^{*}T_{1/2}^{*}$ - space.

The converse need not be true in general as seen in the following example.

Example 5.47: In example (5.36), (X, τ) is a $T_{1/2}$ space but not a ${}_{\alpha}T_{c}$ since $A = \{b\}$ is a αg -closed set but not a g^* -closed set.

Theorem 5.48: Every ${}^*T_{1/2} - space$ is a ${}^*T_{1/2}^* - space$.

Proof: Let (X,τ) be an ${}^*T_{1/2}$ – space. Let A be a g – closed set of (X,τ) . Then A is g * – closed. (X,τ) is a ${}^*T_{1/2}$ – space. Then by proposition (3.8), A is g ** – closed. Therefore (X,τ) is a ${}^*T_{1/2}^*$ – space.

The converse need not be true in general as seen in the following example.

Example 5.49: In example (3.3), (X,τ) is a ${}^*T^*_{1/2}$ - space but not a ${}^*T_{1/2}$ - space since $A = \{b\}$ is a g - closed but not a g * -closed.

Theorem 5.50: The space (X,τ) is a $T_{1/2}^{**}-space$ and a $T_{1/2}^{*}-space$ if and only if it is a $T_{1/2}-space$.

Proof Necessity: Let (X,τ) be a $T_{1/2}^{***}-space$ and a $^*T_{1/2}^*-space$. Let A be a g-closed set of (X,τ) . Then A is g**-closed since (X,τ) is a $^*T_{1/2}^*-space$. Also since (X,τ) is a $T_{1/2}^{***}-space$, A is a closed set. Therefore (X,τ) is a $T_{1/2}-space$.

Sufficiency: Let (X,τ) be a $T_{1/2}$ - space. Then by theorem (5.2) and (5.41), (X,τ) is a $T_{1/2}^*$ - space and a $T_{1/2}^{**}$ - space.

Theorem 5.51: If (X,τ) is a ${}^*T^*_{1/2}$ – space, then for each $x \in X$, $\{x\}$ is either closed or g **-open.

Proof: Suppose (X,τ) is a ${}^*T^*_{1/2}-space$. Let $x\in X$ and let $\{x\}$ be not closed. Then $X/\{x\}$ is not open set. Therefore $X/\{x\}$ is a g-closed set since X is the only open set which contains $X/\{x\}$. Since (X,τ) is a ${}^*T^*_{1/2}-space$, $X/\{x\}$ is g**-closed. Therefore $\{x\}$ is g**-open.

We introduce the following definition.

Definition 5.52: A space (X, τ) is called a T_c^* – space if every gs – closed set of (X, τ) is g ** – closed.

Theorem 5.53: Every $T_c - space$ is a $T_c^* - space$.

Proof: Let (X,τ) be a T_c - space. Let A be a gs-closed set of (X,τ) . Then A is g*-closed since (X,τ) is a T_c - space. But by proposition (3.8), A is g**-closed. Therefore (X,τ) is a T_c^* - space.

The converse need not be true in general as seen in the following example.

Example 5.54:Let $X = \{a,b,c\}$ $\tau = \{\phi, X, \{a\}, \{b,c\}\}$. (X,τ) is a T_c^* space but not a T_c - space since $A = \{b\}$ is a gs - closed but not g*-closed.

Theorem 5.55: Every $T_b - space$ is a $T_c^* - space$.

Proof: Let (X,τ) be a T_b - space. Let A be a gs - closed set of (X,τ) . Then A is also closed. But by proposition (3.3), A is g **-closed. Therefore (X,τ) is a T_c^* - space.

The converse need not be true in general as seen in the following example.

Example 5.56: In example (5.54), (X, τ) is a T_c^* - space but not a T_b - space since $A = \{a, b\}$ is a gs - closed set but not a closed set.

Theorem 5.57: Every T_c^* – space is a T_d – space.

Proof: Let (X,τ) be a T_c^* – space. Let A be a gs-closed set of (X,τ) . Since (X,τ) is a T_c^* – space, A is $g^**-closed$. But by proposition (3.4), A is g-closed. Therefore (X,τ) is a T_d – space.

The converse need not be true in general as seen in the following example.

Example 5.58: In example (5.3), (X, τ) is a T_d space but not a T_c^* space since $A = \{a, b\}$ is gs-closed but not g^{**} -closed

Theorem 5.59: Every T_c^* – space is a ${}_{\alpha}T_d$ – space.

Proof: Let (X,τ) be a T_c^* - space. Let A be a $\alpha g-closed$ set of (X,τ) . Then A is also gs-closed a set . Since (X,τ) is a T_c^* - space, A is $g^{**}-closed$. But by proposition (3.2), A is g-closed. Therefore (X,τ) is a ${}_aT_d$ - space.

The converse need not be true in general as seen in the following example.

Example 5.60: In example (3.3), (X, τ) is a ${}_{\alpha}T_{d}$ - space but not a T_{c}^{*} - space since $A = \{a\}$ is a gs - closed set but not a g **-closed set.

Theorem 5.61: If (X, τ) is a $T_c^* - space$ and a $T_{1/2}^{**} - space$, then it is a ${}_{\alpha}T_b - space$.

Proof: Let (X,τ) be a T_c^* - space and a $T_{1/2}^{**}$ - space. Let A be a $\alpha g-closed$ set of (X,τ) . Then it is also a gs-closed set. Hence A is g**-closed since (X,τ) is a T_c^* - space. But every g**-closed set is closed since (X,τ) is a $T_{1/2}^{**}$ - space. Therefore A is closed and hence (X,τ) is a αT_b - space.

Theorem 5.62: Every T_c^* – space is a ${}^*T_{1/2}^*$ – space.

Proof: Let (X,τ) be a T_c^* - space. Let A be a g-closed set of (X,τ) . Then A is also gs-closed a set. Then A is $g^{**}-closed$, since (X,τ) is a T_c^* - space. Therefore (X,τ) is a $T_{1/2}^*$ - space.

The converse need not be true in general as seen in the following example.

Example 5.63: Let $X = \{a, b, c\}$, $\tau = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}$. (X, τ) is a ${}^*T^*_{1/2}$ space but not a T^*_c space since $A = \{a\}$ is gs-closed but not g **-closed.

Theorem 5.64: If (X,τ) is a T_c^* – space, then for each $x \in X$, $\{x\}$ is either semi-closed or g^{**} – open in (X,τ) .

Proof: Let (X,τ) be a T_c^* – space and Let $x \in X$ suppose $\{x\}$ is not semi-closed, then by the proposition 6.4 (ii) of [7], $X \setminus \{x\}$ is sg – closed. Also $X \setminus \{x\}$ is gs – closed. Since (X,τ) is a T_c^* – space, then $X \setminus \{x\}$ is g** – closed. Therefore $\{x\}$ is g** – open.

Theorem 5.65: Let $f:(X,\tau)\to (Y,\sigma)$ be a $g^{**}-continuous$ map. If (X,τ) is $T_{1/2}^{**}$ then f is continuous.

Theorem 5.66: Let $f:(X,\tau) \to (Y,\sigma)$ be an αg – continuous map. If (X,τ) is ${}_{\alpha}T_{c}^{*}$, then f is g^{**} – continuous.

Theorem 5.67: Let $f:(X,\tau)\to (Y,\sigma)$ be a g-continuous map. If (X,τ) is ${}^*T^*_{1/2}$, then f is g**-continuous.

Theorem 5.68: Let $f:(X,\tau)\to (Y,\sigma)$ be a gs-continuous map. If (X,τ) is T_c^* , then f is $g^{**}-continuous$.

Theorem 5.69: Let $f:(X,\tau)\to (Y,\sigma)$ be a g*-irresolute map and a closed map. Then f(A) is a g**-closed set of (Y,σ) for every g**-closed set A of (X,τ) .

Proof: Let A be a $g^{**}-closed$ set of (X,τ) . Let U be a $g^{*}-open$ set of (Y,σ) such that $f(A)\subseteq U$. Since f is $g^{*}-irresolute$, $f^{-1}(U)$ is $g^{*}-open$ in (X,τ) . Now $f^{-1}(U)$ and A is $g^{**}-closed$ set of (X,τ) , then $cl(A) \subset f^{-1}(U)$. Then f(cl(A)) = cl[f(cl(A))].

Therefore

 $cl[f(A)] \subseteq cl[f(cl(A))] = f(cl(A)) \subseteq U$. Therefore f(A) is a $g^{**}-closed$ set of (Y,σ) .

Theorem 5.70: Let $f:(X,\tau)\to (Y,\sigma)$ be onto, $g^{**}-irresolute$ and closed. If (X,τ) is $T_{1/2}^{**}$, then (Y,σ) is also a $T_{1/2}^{**}-space$.

We introduce the following definition.

Definition 5.71: A function $f:(X,\tau)\to (Y,\sigma)$ is called a pre-g**-closed set if f(A) is a g**-closed set of (Y,σ) for every g**-closed set of (X,τ) .

Theorem 5.72: Let $f:(X,\tau)\to (Y,\sigma)$ be onto, αg -irresolute and pre-g**-closed. If (X,τ) is a ${}_{a}T_{c}*-space$, then (Y,σ) is also an ${}_{a}T_{c}*-space$.

Theorem 5.73: Let $f:(X,\tau)\to (Y,\sigma)$ be onto, g**-irresolute and pre-g*-closed. If (X,τ) is $^{**}T_{1/2}$, then (Y,σ) is also a $^{**}T_{1/2}-space$.

Theorem 5.74: Let $f:(X,\tau)\to (Y,\sigma)$ be onto, gs-irresolute and pre-g**-closed. If (X,τ) is $T_c^*-space$, then (Y,σ) is also a $T_c^*-space$.

The above results can be represented in the following figure.

Where A \longrightarrow B (resp. A \longrightarrow B) represents A implies B (resp. A and B are independent).

REFERENCES

- [1] D. Andrijevic, Semi-preopen sets, Mat. Vesnik, **38**(1) (1986), 24-32.
- [2] I. Arokiarani, K.Balachandran and J. Dontchev, Some characterizations of gp- irresolute and gp-continuous maps between topological spaces, Mem. Fac. Sci. Kochi. Univ. Ser.A. Math., 20(1999), 93-104.
- [3] S.P. Arya and T. Nour, Characterizations of s-normal spaces, Indian J. Pure. Appl. Math., 21(8)(1990), 717-719.
- [4] K. Balachandran, P. Sundaram and H. Maki, On generalized continuous maps in topological spaces, Mem. Fac. Kochi Univ. Ser. A, Math., 12(1991), 5-13.
- [5] P. Bhattacharya and B.K. Lahiri, Semi-generalized closed sets in topology, Indian J. Math., 29(3)1987), 375-382.
- [6] R. Devi, K. Balachandran and H. Maki, Generalized α -closed maps and α -generalized closed maps, Indian J. Pure. Appl. Math., **29**(1) (1998), 37-49.
- [7] R. Devi H. Maki and K. Balachandran, Semi-generalized closed maps and generalized closed maps, Mem. Fac. Sci. Kochi Univ. Ser.A. Math., 14(1993), 41-54.
- [8] R. Devi, H. Maki and K. Balachandran, Semi-generalized homeomorphisms and generalized semi-homeomorphism in topological spaces, Indian J. Pure. Appl. Math., **26**(3) (1995), 271-284.
- [9] J. Dontchev. On some separation axioms associated with the α -topology, Mem. Fac. Sci. Kochi Univ. Ser.A, Math., **18**(1997), 31-35.
- [10] J. Dontchev, On generalizing semi-preopen sets, Mem. Fac. Sci. Kochi Ser.A, Math., 16(1995), 35-48.
- [11] W. Dunham, T_{1/2}-spaces, Kyungpook Math. J., 17(1977), 161-169.
- [12] Y. Gnanambal, On generalized preregular closed sets in topological spaces, Indian J. Pure. Appl. Math., 28(3)(1997), 351-360.
- [13] N. Levine, Generalized closed sets in topology, Rend. Circ. Math. Palermo, 19(2)(1970), 89-96.
- [14] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70(1963), 36-41.
- [15] H. Maki, R. Devi and K. Balachandran, Associated topologies of generalized α -closed sets and α -generalized closed sets, Mem. Fac. Sci. Kochi Univ. Ser. A, Math., 15(1994), 51-63.
- [16] H. Maki, R. Devi and K. Balachandran, Generalized α -closed sets in topology, Bull. Fukuoka Univ. Ed. Part III, 42(1993), 13-21.

Pauline Mary Helen M* et al./ g**- closed sets in topological spaces/ IJMA- 3(5), May-2012, Page: 2005-2019

- [17] H. Maki, J. Umehara and T. Noiri, Every topological space is pre- $T_{1/2}$, Mem. Fac. Sci. Koch. Univ. Ser.A, Math., **17**(1996), 33-42.
- [18] A.S. Mashhour, M.E.Abd El-Monsef and S.N.El-Deeb, On pre-continuous and weak pre-continuous mapings, Proc. Math. and Phys. Soc. Egypt, **53**(1982), 47-53.
- [19] A.S. Mashhour, I.A. Hasanein and S.N.El-Deeb, α -continuous and α -open mappings., Acta Math. Hung., **41**(3-4)(1983), 213-218.
- [20] O. Njastad, On some classes of neraly open sets, Pacific J. Math., 15(1965), 961-970.
- [21] N. Nagaveni, studies on Generalisations of Homeomorphisms in Topological spaces, Ph. D, thesis, Bharathiar University, Coimbatore, 1999.
- [22] N. Palaniappan and K.C. Rao, Regular generalized closed sets, Kyungpook Math. J., 33(2) (1993), 211-219.
- [23] P. Sundaram, H. Maki and K. Balachandran, Semi-generalized continuous maps and semi- $T_{1/2}$ spaces, Bull. Fukuoka Univ. Ed. Part III, **40**(1991), 33-40.
- [24] M.K.R.S. Veerakumar, Between closed sets and g-closed sets, Mem. Fac. Sci. Koch. Univ. Ser. A, Math., 17(1996), 33-42.

Source of support: Nil, Conflict of interest: None Declared