International Journal of Mathematical Archive-3(5), 2012, 2029-2034

$g^{*\alpha}$ - CLOSED SETS IN BITOPOLOGICAL SPACES

MRS.VERONICA VIJAYAN*

Department of Mathematics, Nirmala College for Women (Autonomous), Coimbatore-6410018, Tamil Nadu, India

A. DHANIS ARUL MARY

Department of Mathematics with Computer Application, Nirmala College for Women (Autonomous), Coimbatore-6410018, Tamil Nadu, India

(Received on: 19-05-12; Accepted on: 31-05-12)

ABSTRACT

In this paper we introduce a new class of sets $(i, j) - g^{*\alpha}$ - closed sets in bitopological spaces. Properties of these sets are investigated and we introduce new bitopological spaces $(i, j) - T_{1/2}^{*\alpha}$ and $(i, j) - *^{\alpha}T_{1/2}$ as applications.

Key words: (i, j)-g-closed sets, (i, j)-g*-closed sets, (i, j) - $g^{*\alpha}$ - closed sets; (i, j) - $T_{1/2}^{*\alpha}$ spaces, and (i, j) - $*^{\alpha}T_{1/2}$ space.

1. INTRODUCTION

A triple (X, τ_1, τ_2) where X is non-empty set and τ_1 and τ_2 are topologies on X is called a bitopological space and Kelly [10] initiated the study of such spaces. In 1985, Fukutake introduced the concepts of g-closed sets [8] in bitopological spaces. Recently Veera Kumar introduced and studied the concepts of g* -closed set [19] and g* -continuity in topological spaces.

The purpose of this paper is to introduce the new class of sets, namely $g^{*\alpha}$ - closed sets. Applying these sets, the author introduced the new class of spaces, namely (i, j) - $T_{1/2}^{*\alpha}$ spaces, (i, j)- ${}^{*\alpha}T_{1/2}$ spaces for bitopological spaces and investigate some of their properties. In this paper we study the relationship of $g^{*\alpha}$ - closed sets with the class of closed sets namely (i, j)- g^* -closed[17],(i, j)-gs-closed[5],(i, j)- α g-closed [14], (i, j)-gsp-closed[5], (i, j)-rg-closed set[16], (i, j) - sg-closed[6], and (i, j)-gpr-closed sets. Also we study the relationship of (i, j) - $T_{1/2}^{*\alpha}$, (i, j)- ${}^{*\alpha}T_{1/2}$ spaces with (i, j)- $T_{1/2}$ [7], (i, j) - $T_{1/2}^{*\alpha}$ [17], (i, j)- T_b spaces.

2. PRELIMINARIES

If A is a subset of X with a topology τ , then the closure of A is denoted by τ -cl (A) or cl(A), the interior of A is denoted by τ -int(A), or int(A) and the complement of A in X is denoted by A^c.

Definitions 2.1: A subset A of a bitopological space (X, τ_1, τ_2) is called

- (i) a generalized open (g-open) set[17] if $F \subseteq int(A)$ whenever $F \subseteq A$ and F is closed in (X, τ) .
- (ii) a α -open set[15] if A \subseteq int(cl(int(A))).
- (iii) a regular closed set[16] if A = cl(int(A)).
- (iv) a semi-open set[12] if $A \subseteq cl$ (int(A)).
- (v) a semi-pre-open set[1] if $cl(int(cl(A))) \subseteq A$.
- (vi) a preclosed set[17] if A = int(cl(A)).

Definition 2.2: A subset A of a bitopological space (X, τ_1, τ_2) is called

- (i) (i, j)-g*-closed[17] if τ_j .cl(A) \subseteq U whenever A \subseteq U and U \in GO(X, τ)
- (ii) (i, j)-gs-closed[5] if τ_i -scl(A) \subseteq U whenever A \subseteq U and U is open in τ_i .
- (iii) (i, j)- α g-closed [14] if τ_i - α cl(A) \subseteq U whenever A \subseteq U and U $\in \tau_i$.
- (iv) (i, j)-gsp-closed[5] if τ_i -spcl(A) \subseteq U whenever A \subseteq U and U is open in τ_i .
- (v) (i, j)-rg-closed set[16] if τ_i -cl(A) \subseteq U whenever A \subseteq U is and U is regular open in τ_i .
- $(vi) \qquad (i,j)\text{-sg-closed}[7] \text{ if } \tau_j\text{-scl}(A) \subseteq U \text{ whenever } A \subseteq U \text{ and } U \text{ is semi open in } \tau_i.$
- $(vii) \qquad (i,j) \text{-gpr-closed[9] if } \tau_i \text{-pcl}(A) \subseteq U \text{ whenever } A \subseteq U \text{ and } U \text{ is regular open in } \tau_i.$

Corresponding author: MRS.VERONICA VIJAYAN*

Department of Mathematics, Nirmala College for Women (Autonomous), Coimbatore-6410018, Tamil Nadu, India

The family of all (i, j)-g-closed (resp (i, j)-gsp-closed, (i, j)-gp-closed, (i, j)-gp-closed, (i, j)- α gr-closed, (i, j)- α gr-close

Definition 2.3: (i) A bitopological space (X, τ_1 , τ_2) is said to be an (i, j) - $T_{1/2}^*$ space if every (i, j)-g*-closed set is τ_j -closed.

(ii) A bitopological space (X, τ_1 , τ_2) is said to be an (i, j)-T_b space if every (i, j)-gs-closed set is τ_i -closed.

3. (i, j) - $g^{*\alpha}$ - CLOSED SETS

In this section we introduce the concept of (i, j) $-g^{*\alpha}$ - closed sets in bitopological spaces.

Definition 3.1: A subset A of a bitopological space (X, τ_1, τ_2) is said to be an $(i, j) - g^{*\alpha}$ - closed set if $\tau_j - \alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and $U \in GO(X, \tau_i)$.

We denote the family of all (i, j) - $g^{*\alpha}$ - closed sets in (X, τ_1 , τ_2) by $D^{*\alpha}$ (i, j).

Remark 3.2: By setting $\tau_1 = \tau_2$, in Definition 3.1, a (i, j) $-g^{*\alpha}$ - closed set is a g^* - closed set.

If A is (i) τ_i -closed, (ii) τ_i - α -closed, (iii) (i, j) - g^* - closed subset of (X, τ_1 , τ_2), then A is (i,j)- $g^{*\alpha}$ - closed.

The following examples show that the reverse implications of the above proposition are not true.

Example 3.4: Let X= {a, b, c}, $\tau_1 = \{\phi, \{a\}, X\}, \tau_2 = \{\phi, \{a\}, \{a, b\}, X\}$. Then the subset A = {b} is (1, 2) - $g^{*\alpha}$ -closed but not τ_2 - closed in (X, τ_1, τ_2).

Example 3.5: Let X = {a, b, c}, $\tau_1 = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}, \tau_2 = \{\phi, \{a\}, X\}$. Then the subset {a, c} is $g^{*\alpha}$ -closed but not τ_2 - α -closed.

Example 3.6: let X= {a, b, c}, $\tau_1 = \{\phi, \{a\}, X\}$; $\tau_2 = \{\phi, \{a\}, \{a, b\}, X\}$. The subset {b} is (1, 2) - $g^{*\alpha}$ -closed but not (1, 2)-g*-closed.

Proposition 3.7: In a bitopological space (X, τ_1 , τ_2) every (i, j) - $g^{*\alpha}$ - closed set is (i) (i, j)-gs-closed, (ii) (i, j)- α gr-closed, (iii) (i, j)- α gr-closed, (iv) (i, j)-gsp-closed.

The following examples support that the converse of the above theorem is not true.

Example 3.8: Let $X = \{a, b, c\}, \tau_1 = \{\phi, \{a\}, X\}, \tau_2 = \{\phi, \{a\}, \{a, b\}, X\}$. In this example, the subsets $\{a, b\}, \{a, c\}$ are (1, 2) - gs-closed but not (1, 2) - $g^{*\alpha}$ -closed.

Example 3.9: Let $X = \{a, b, c\}, \tau_1 = \{\phi, \{c\}, \{a, b\}, X\}, \tau_2 = \{\phi, \{a\}, X,\}$. The subset $\{a, c\}$ is (1, 2)- α g-closed but not (1, 2)- $g^{*\alpha}$ -closed.

Example 3.10: let X = {a, b, c}, τ_1 = { ϕ , {a}, X}; τ_2 = { ϕ , {a}, {b, c}, X}. The subsets {b}, {c}, {a, b}, {a, c} are (1, 2) - α gr-closed but not (1, 2) - $g^{*\alpha}$ -closed.

Example 3.11: let X= {a, b, c}, τ_1 = { ϕ , {a}, X}; τ_2 = { ϕ , {a}, {a, b}, X}. The subsets {a, b}, {a, c} are (1, 2)- gsp-closed sets but not (1, 2) - $g^{*\alpha}$ -closed.

Proposition 3.12: In a bitopological space (X, τ_1 , τ_2) every (i, j) - $g^{*\alpha}$ - closed set is (i) (i, j)-gpr-closed, (ii) (i, j)-gpr-closed, (iii) (i, j)-gpr-clos

The following examples support that the reverse implications of the above propositions are not true.

Example 3.13: Let X= {a, b, c}, $\tau_1 = \{\phi, \{a, b\}, X\}, \tau_2 = \{\phi, \{c\}, X\}$. Then the subsets {a, c}, {b, c} are (1,2)-gr-closed but not (1, 2) - $g^{*\alpha}$ -closed.

Example 3.14: Let $X = \{a, b, c\}, \tau_1 = \{\phi, \{a, b\}, X\}, \tau_2 = \{\phi, \{b\}, \{a, c\}, X\}$. Then the subsets $\{a\}, \{c\}, \{a, b\}, \{b, c\}$ are (1, 2)-gp-closed but not (1, 2) - $g^{*\alpha}$ -closed.

Example 3.15: Let X = {a, b, c}, $\tau_1 = \{\phi, \{a, b\}, X\}, \tau_2 = \{\phi, \{b\}, \{a, c\}, X\}$. Then the subsets {a}, {c}, {a, b}, {b, c} are (1, 2)-pre semi-closed but not (1, 2) - $g^{*\alpha}$ -closed. © 2012, IJMA. All Rights Reserved 2030

Remark 3.16: The following examples show that (i, j) - g- closed sets and (i, j)- $g^{*\alpha}$ - closed sets are independent.

Example 3.17: Let X = {a, b, c}, $\tau_1 = \{\phi, \{a\}, X\}, \tau_2 = \{\phi, \{a\}, \{a, b\}, X\}$. Then the subsets A = {a, b}, {a, c} are (1, 2)-g-closed but not (1, 2) - $g^{*\alpha}$ -closed.

Example 3.18: Let X= {a, b, c}, $\tau_1 = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}, \tau_2 = \{\phi, \{a\}, X\}$. Then the subset B = {b} is (1, 2) - $g^{*\alpha}$ -closed set but not (1, 2)-g-closed set.

Remark 3.19: The following examples show that (i, j) - $g^{*\alpha}$ - closed sets and (i, j) - rg- closed sets are independent.

Example 3.20: Let $X = \{a, b, c\}, \tau_1 = \{\phi, \{c\}, \{a, b\}, X\}, \tau_2 = \{\phi, \{a\}, X\}$. Then the subsets $A = \{b\}, \{c\}$ are $(1, 2) - g^{*\alpha}$ -closed sets but not (1, 2) - rg-closed sets.

In the same example 3.20, the subset $B = \{a, c\}$ is a (1, 2)-rg-closed set but not a (1, 2) - $g^{*\alpha}$ -closed set.

Remark 3.21: The following examples show that (i, j) - sg- closed sets and (i, j) - $g^{*\alpha}$ - closed sets are independent.

Example 3.22: Let $X = \{a, b, c\}, \tau_1 = \{\phi, \{a, b\}, X\}, \tau_2 = \{\phi, \{b\}, \{a, c\}, X\}$. Then the subsets $A = \{c\}, \{b, c\}$ are (1, 2)-sg-closed but not (1, 2) - $g^{*\alpha}$ -closed.

Example 3.23: Let X= {a, b, c}, $\tau_1 = \{\phi, \{a\}, X\}, \tau_2 = \{\phi, \{a\}, \{b, c\}, X\}$. Then the subset B = {a} is (1, 2) - $g^{*\alpha}$ -closed set but not a (1, 2)-sg-closed set.

All the above results can be represented by the following diagram.

Where $A \rightarrow B$ (resp. $A \leftrightarrow B$) tepresents A implies B but not conversely (resp. A and B are independent)

Proposition 3. 24: If A, $B \in D^{*\alpha}(i, j)$, then $A \cup B \in D^{*\alpha}(i, j)$.

Remark 3.25: $D^{*^{\alpha}}(1, 2)$ is generally not equal to $D^{*^{\alpha}}(2, 1)$. This is proved by an example below.

Example 3.26: Let X= {a, b, c}, $\tau_1 = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}, \tau_2 = \{\phi, \{a\}, X\}$. Then the subset {b} is in D*^{α}(1, 2) but not in D*^{α}(2, 1).

Proposition 3.27: If $\tau_1 \subseteq \tau_2$, then $D^{*\alpha}(2, 1) \subseteq D^{*\alpha}(1, 2)$.

The converse of the above proposition is not true as seen from the following example.

Example 3.28: Let X= {a, b, c}, $\tau_1 = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}, \tau_2 = \{\phi, \{a\}, X\}$. Then $D^{*\alpha}(2, 1) \subseteq D^{*\alpha}(1, 2)$ but the subsets {b}, {a, b} of τ_1 not contained in τ_2 .

© 2012, IJMA. All Rights Reserved

Proposition 3.29: If A is (i, j) - $g^{*\alpha}$ - closed set, then τ_i - $\alpha cl(A)$ – A contains no non-empty τ_i – g-closed set.

Proof: Let A be (i, j)- $g^{*\alpha}$ -closed set and F be a τ_j -g-closed set such that $F \subseteq \tau_j$ - $\alpha cl(A)$ -A then $F^c \supset A$, And F^c is g-open. We have τ_j - $\alpha cl(A) \subseteq F^c$. Thus $F \subseteq \tau_j$ - $\alpha cl(A) \cap (\tau_j$ - $\alpha cl(A)^c = \phi$

Corollary 3.30: If A is $(i, j) - g^{*\alpha}$ -closed in (X, τ_1, τ_2) , then A is $\tau_i - \alpha$ -closed if and only if $\tau_i - \alpha cl(A)$ -A is τ_i -g-closed.

Proof: Necessity: If A is τ_i -aclosed then, τ_i -acl(A) = A. i.e., τ_i -acl(A)-A = ϕ and hence τ_i -acl(A)-A is τ_i - g-closed.

Sufficiency: Suppose τ_j - $\alpha cl(A)$ - $A = F \neq \phi$, Then by the proposition 3.29, F contains a g- closed set B. τ_j - $\alpha cl(A)$ - $A = \phi$, since A is $g^{*\alpha}$ -closed. Therefore A is τ_j - α -closed.

Proposition 3.31: If A is an (i, j) - $g^{*\alpha}$ -closed in (X, τ_1, τ_2) , then $\tau_i - cl(x) \cap A \neq \phi$ holds for each $x \in \tau_i - \alpha cl(A)$.

Proof: If A is $(i, j) - g^{*\alpha}$ -closed set. And let $x \in \tau_j$ - α cl(A). Suppose τ_i -cl $(x) \cap A = \phi$. Then, $A \subseteq (\tau_i - cl(x))^c = U$ where U is open in τ_i . Then τ_j - α cl(A) $\subseteq U$, since A is (i, j)- $g^{*\alpha}$ -closed. Hence τ_i - cl $(x) \cap A \neq \phi$.

Proposition 3.32: If A is (i, j) - $g^{*\alpha}$ -closed set of (X, τ_1, τ_2) such that $A \subseteq B \subseteq \tau_j$ - $\alpha cl(A)$, then B is also a (i, j)- $g^{*\alpha}$ - closed set of (X, τ_i, τ_j) .

Proof: If A is (i, j) - $g^{*\alpha}$ -closed of (X, τ_1 , τ_2) such that $A \subseteq B \subseteq \tau_j$ - $\alpha cl(A)$. Let $B \subseteq U$ where U is g-open in τ_i . Since $A \subseteq B$, $A \subseteq U$ where U is g-open in τ_i . Then, τ_j - $\alpha cl(A) \subseteq U$ since A is (i, j)- $g^{*\alpha}$ -closed. i.e., $B \subseteq \tau_j$ - $\alpha cl(A) \subseteq U$. Hence τ_j - $\alpha cl(B) \subseteq U$. Therefore B is (i, j) - $g^{*\alpha}$ -closed set of (X, τ_i , τ_j).

4. (i, j)- $T_{1/2}^{*\alpha}$ and (i, j)- $*^{\alpha}T_{1/2}$ spaces

In this section, we introduce (i, j) - $T_{1/2}^{*\alpha}$ and (i, j)- $*^{\alpha}T_{1/2}$ bitopological spaces.

Definition 4.1: A bitopological space (X, τ_1 , τ_2) is said to be an (i, j)- $T_{1/2}^{*\alpha}$ space if every (i, j) - $g^{*\alpha}$ -closed set is τ_j -closed.

Proposition 4.2: If (X, τ_1, τ_2) is said to be an $(i, j) - T_{1/2}^{*\alpha}$ space. Then it is an $(i, j) - T_{1/2}^{*}$ space but not conversely.

Example 4.3: Let X= {a, b, c}, $\tau_1 = \{\phi, \{a\}, X\}$, $\tau_2 = \{\phi, \{a\}, \{a, b\}, X\}$. Then (X, τ_1, τ_2) is (1, 2) - $T_{1/2}^*$ space, since the subsets {b}, {c}, {b, c} are (1, 2)-g*-closed and τ_2 -closed, but (X, τ_1, τ_2) is not (1, 2)- $T_{1/2}^{*\alpha}$, since the subset {b} is (1, 2) - $g^{*\alpha}$ -closed but not τ_2 -closed.

Proposition 4.4: Every (i, j)- T_b - space is (i, j) - $T_{1/2}^{*\alpha}$ space but not conversely.

Example 4.5: Let X= {a, b, c}, $\tau_1 = \{\phi, \{a\}, X\}, \tau_2 = \{\phi, \{a\}, \{b, c\}, X\}$. Then the space (X, τ_1, τ_2) is (1, 2)- $T_{1/2}^{*\alpha}$ space since the subsets {a}, {b, c} are (1, 2)- $g^{*\alpha}$ -closed and τ_2 -closed but (X, τ_1, τ_2) is not (1, 2)-T_b, since the subsets {b}, {c}, {a, b}, {a, c} are (1, 2)-gs-closed but not τ_2 -closed.

Definition 4.12: A bitopological space (X, τ_1, τ_2) is said to be an (i, j)-*^{α}T_{1/2} space if every (i, j) - $g^{*\alpha}$ -closed set is (i, j) - $g^{*-closed}$.

Proposition 4.13: Every (i, j) - $T_{1/2}^{*\alpha}$ space is (i, j)- $*^{\alpha}T_{1/2}$ but not conversely.

Example 4.14: Let X= {a, b, c}, $\tau_1 = \{\phi, \{c\}, \{a, c\}, X\}$, $\tau_2 = \{\phi, \{a\}, X\}$. Then (X, τ_1, τ_2) is an (1, 2)-*^{α}T_{1/2} space, since the subsets {b}, {c}, {a, b}, {b, c} are (1, 2) - $g^{*\alpha}$ -closed and g*-closed but not an (1, 2)- $T_{1/2}^{*\alpha}$ -space, since the subset {b} is (1, 2)- $g^{*\alpha}$ -closed but not τ_2 -closed.

Proposition 4.15: Every (i, j)- T_b - space is (i, j)- $*^{\alpha}T_{1/2}$ space but not conversely.

Example 4.16: Let X= {a, b, c}, $\tau_1 = \{\phi, \{c\}, \{a, c\}, X\}$, $\tau_2 = \{\phi, \{a\}, X\}$. Then (X, τ_1, τ_2) is an (1, 2)-*^{α}T_{1/2} space, since the subsets {b}, {c}, {a, b}, {b, c} are (1, 2) - $g^{*\alpha}$ -closed and g*-closed but not an (1, 2)-T_b-space, since the subsets {b}, {c}, {a, b} are (1, 2)-gs-closed and not τ_2 -closed.

Proposition 4.17: (i, j) - $T_{1/2}^{*\alpha}$ and (i, j)-*^{α} $T_{1/2}$ are independent as seen from the following two examples.

Example 4.18: Let X= {a, b, c}, $\tau_1 = \{\phi, \{c\}, \{a, c\}, X\}$, $\tau_2 = \{\phi, \{a\}, X\}$. Then (X, τ_1, τ_2) is an (1, 2)-*^{α}T_{1/2} space since the subsets {b}, {c}, {a, b}, {b, c} are (1, 2)- $g^{*\alpha}$ -closed and g^* -closed but not an (1, 2)-T*-space, since the subsets {b}, {c}, {a, b} are (1, 2)-g^*-closed and not τ_2 -closed.

Example 4.19: Let X= {a, b, c}, $\tau_1 = \{\phi, \{a\}, X\}$, $\tau_2 = \{\phi, \{a\}, \{a, b\}, X\}$. Then (X, τ_1, τ_2) is (1, 2) - T*_{1/2} – space since the subsets {c}, {b, c} are (1, 2) - g*-closed and τ_2 -closed but not an (1, 2) - *^{α}T_{1/2} space, since the subset {b} is (1, 2) - $g^{*\alpha}$ -closed and not τ_2 -closed.

All the above results can be represented by the following diagram.

Where $A \rightarrow B$ (resp. $A \leftrightarrow B$) tepresents A implies B but not conversely (resp. A and B are independent)

REFERENCES

[1] D. Andrijevic, Semi-preopen sets, Mat. Vesnik, 38(1) (1986), 24-32.

[2] I. Arockiarani, Studies on generalized closed sets and maps in topological spaces, Ph. D., Thesis, Bharathiar University., Coimbatore, 1997.

[3] P. Bhattacharya and B.K. Lahiri, Semi-generalized closed sets in topology, Indian J. Math., 29(3)1987), 375-382.

[4] K. Balachandran, P. Sundaram and H. Maki, On generalized continuous maps in topological spaces, Mem. Fac. Kochi Univ. Ser. A, Math., 12(1991), 5-13.

[5] J. Dontchev, On generalizing semi-preopen sets, Mem. Fac. Sci. Kochi Univ. Ser. A. Math., 16(1995), 35-48.

[6] R. Devi H. Maki and K. Balachandran, Semi-generalized closed maps and generalized closed maps, Mem. Fac. Sci. Kochi Univ. Ser. A. Math., 14(1993), 41-54.

[7] R. Devi and K. Balachandran, Associated topologies of generalized α -closed sets and α -generalized closed sets, Mem. Fac. Sci. Kochi Univ. Ser.A, Math., **15**(1994), 51-63.

[8] T. Fukutake, On generalized closed sets in bitopological spaces, Bull. Fukuoka Univ. Ed. Part III, 35 (1985), 19-28.

[9] Y. Gnanambal, Studies on generalized pre-regular closed sets and generalizations of locally closed sets.

[10] J.C. Kelley, Bitopological spaces, Proc. London Math. Sci., 13 (1963), 71-89.

[11] J. L. Kelly, General topology, D. Van Nostrand company Inc., Princeton, New Jersey, 1955.

[12] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70(1963), 36-41.

[13] N. Levine, Generalized closed sets in topology, Rend. Circ. Math. Palermo, 19(2) (1970), 89-96.

[14] H. Maki, R. Devi and K. Balachandran, Associated topologies of generalized α -closed sets and α -generalized closed sets, Mem. Fac. Sci. Kochi Univ. Ser. A, Math., **15**(1994), 51-63.

[15] O. Njåstad, On some classes of nearly open sets, Pacific J. Math., 15(1965), 961-970.

[16] N. Palaniappan and K.C. Rao, Regular generalized closed sets, Kyungpook Math. J., 33(2) (1993), 211-219.

[17] M.Sheik john and P.Sundaram, g^{*}-Closed sets in Bitopological spaces.

[18] P. Sundaram, H. Maki and K. Balachandran, Semi-generalized continuous maps and semi- $T_{1/2}$ spaces, Bull. Fukuoka Univ. Ed. Part III, 40(1991), 33-40.

[19] M.K.R.S. VeeraKumar, g*- Closed Sets in topological space, Mem. Fac, Sci. Kohi Univ. (Math), 21(2000), 1-19.

Source of support: Nil, Conflict of interest: None Declared