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ABSTRACT 

Recently, the authors introduced a new three-terms nonlinear Conjugate Gradient (CG) method [2] for solving 
unconstrained optimization problems. Their  method was compared with the well-known Zhang's three-terms CG-
method [32]. This paper contains a description of several new restarting procedures for the same proposed CG-method 
introduced by the authors and a numerical investigation of the influence of several scaling techniques with a modified 
perfect cubic line search procedure on their efficiency. Computational results obtained by means of (35) sufficiently 
difficult problems are given with promising numerical results. 
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1. INTRODUCTION: 

 
In this study, we are concerned with the minimization of an unconstrained optimization problem to find a local 
minimum nRx ∈*  of the function RXf →:  on an open set nRX ⊂ ; i.e. a point nRx ∈*  that satisfies the inequality 

( ) ( )xfxf ≤*  ( )ε,*xBx∈∀  for some 0>ε , where ( ) { } XxxRxxB n ⊂<−∈= εε ** :,   is an open ball contained in 
nRX ⊂ ;  in other words we want to: 

 
{ }nRxxf ∈)(min                                                                                                                                                             (1) 

 
where RRf n →:  is a continuously differentiable function, and its gradient at point kx  is denoted by kg  for the sake 
of simplicity. n  is the number of variables, which is automatically assumed to be large. The iterative formula of 
nonlinear CG-method is given by: 
 

,1 kkkk dxx α+= −                                                                                                                                                              (2) 
 

where kα  is a step-length, and kd  is a search direction which is determined by: 
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where kβ  is a scalar and kd  is a direction vector satisfying the equation 0=+ kk gBd , where B   is a symmetric 
positive definite approximation of the Hessian matrix that is constructed iteratively [18]. If the number of variables is 
large, then matrix B  cannot be stored, nor factored in a reasonable time, so other methods have to be used. There exist 
several classes of such methods: Conjugate Gradient (CG) methods [9], difference versions of Truncated Newton (TN) 
methods [8], Variable Metric (VM) methods with limited storage [20], sparse variants of VM-methods [27], and 
partitioned VM-methods for separable problems [12]. The last two classes require the special structure of optimization  
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problems. From the other classes the simplest are the CG-methods which need only 3-5 n-dimensional vectors (it 
depends on their implementation). Recently new attention has been given to these methods because they are globally 
convergent with mild and reasonable assumptions. Their idea starts since 1952, there have been many well-known 
formulas for the scalar kβ , for example, Fletcher-Reeves (FR), Polak-Ribiere (PR), Hestenes-Stiefel (HS) and Dai-
Yuan (DY) [6, 21]: 
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where ,11 −− −= kkk ggy  symbol .  denotes the Euclidean norm of vectors. If f is a strictly convex quadratic 
function, all these methods are equivalent in the case that an Exact Line Search (ELS) is used. If the objective function 
is non-convex, their behaviors may be distinctly different. In the past two decades, the convergence properties CG-
methods defined in (4) have been intensively studied by many researchers [1, 5, 11, 13, 14, 16, 26, 29, 33]. Although 
the HS method is most general and the FR method is the simplest with good global convergence properties 
(theoretical), the most numerically efficient was proved to be the PR method. Another important issue related to the 
performance of CG-methods is the line search, which requires sufficient accuracy to ensure that the search directions 
yield descent [15]. Common criteria for line search accuracy are the Wolfe conditions [30, 31]:  
 
( ) ( ) ,1111 −−−− −≤−+ k

T
kkkkkk dgxfdxf δαα                                                                                                                      (5a) 

 
,111 −−− ≥ k

T
kk

T
k dgdg σ                                                                                                                                                        (5b) 

 
where 10 <≤< σδ . In the “Strong Wolfe” conditions, (5b) is replaced by  
 

111 −−− −≤ k
T
kk

T
k dgdg σ .                                                                                                                                                    (5c) 

 
It has been shown [7] that for the FR scheme, the strong Wolfe conditions may not yield a direction of descent unless 

21≤σ . However, The CG-methods are more sensitive to their implementation than the VM methods: 
 
1. The initial estimate 1α   of  kα  in the line search algorithm does not have theoretical justification for CG-methods. 

Therefore the CG-methods are more sensitive to the initial estimate 1α   than the VM methods. 
2. CG-methods need more perfect line search than VM methods. We usually use 1.0=δ  for CG- VM-methods. 
3. CG-methods strongly depend on restarts while VM-methods need not be restarted. 
 
 2.  PRELIMINARIES: 
 
2.1. Assumption: The objective function f is bounded below, and the level set    
 
 { })()( 0xfxfRxF n ≤∈=  is bounded.                                                                                                      (6) 

 
2.2. Assumption: In some neighborhood N of F, f is differentiable and its gradient is Lipschitz continuous, namely, 
there exists a positive constant L such that: 
 

NyxyxLygxg ∈∀−≤− ,     ,)()(                                                                                                                              (7a) 
 
The above assumption implies that there exists a positive constant γ  such that 
 

Fxxg ∈∀≤       ,)( γ                                                                                                                                                      (7b) 
  
2.3. Zhang's  Three-Terms CG-Method [32]: 
 
Zhang, et al.  had introduced a three-term CG method as follows: 
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They show that the sufficient descent condition also holds true if no line search is used, that is, 
 

.2
11 −− −= kk

T
k gdg                                                                                                                                                             (9) 

 
In order to achieve the global convergence result, Grippo and Lucidi [13] proposed a new line search. For given 
constants 0>τ , 0>δ , and ( )1 ,0∈λ , let 
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satisfy 

( ) ( ) 2
1

2
1 −− −≤ kkkk dxfxf δα                                                                                                                                        (10b) 

 
This line search will be preferred to the classical Armijo one for the sake of a greater reduction of objective function. 
Introducing this line search rule, we are now ready to state the outline of the Zhang, et al. [32] first three-term CG-
method as follows: 
 
2.4. Outline of Zhang's Three-Terms CG-Algorithm [32]: 
 
Step 1.  Given nRx ∈0 . Let ,10 <<< σδ  0≥t  and  00 gd −= .  Set 0:=k . 
 
Step 2.  If 610−≤kg , then stop. 
 
Step 3.  Compute kd  using (8).  
 
Step 4.  Find the step-length kα  satisfying (11) and (12). 
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and set kkkk dxx α+= −1 . 
 
Step 5.  Set 1: += kk , go to Step 2. 
 
2.5. Al-Bayati and Altae Three-Term CG-Method [2]: 
 
The search directions of this method are defined by; see Al-Bayati and Altae: 
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It is easy to see that the sufficient descent condition (9) also holds true if no line search is used.  

       
2.6. Outline of Al-Bayati and Altae Three-Term CG-Algorithm [2]: 
 
Step 1.  Given nRx ∈0 .  Let   ,10 <<< σδ  0≥t  and  00 gd −= .   Set 0:=k . 
 
Step 2.  If  610−≤kg , then stop. 
 
Step 3.  Compute kd  using (13). 
 
Step 4.  Find the step-length kα  satisfying (11) and (12) and set kkkk dxx α+= −1 . 
 
Step 5.  Set 1: += kk , go to Step 2. 
 
3.   MODIFIED RESTARTING; SCALING AND LINE SEARCH TECHNIQUES IMPLEMENTED IN THE 
NEW PROPOSED CG-ALGORITHM: 

 
In this section we are going to introduce several new restarting and several scaling techniques to improve the 
performance behavior of Al-Bayati and Altae [2] three-terms CG-algorithm and as follows: 
 
3.1. Different Restarting Techniques: 
 
We limit our attention to the PR method, but the same considerations can be used for the HS method. Usually the PR 
method is implemented with periodic restarts. In [23], Powell points out that the PR method works better if it is 
restarted whenever 
 

0<PR
kβ .                                                                                                                                                                       (14) 

 
The PR method with periodic restarts can be disadvantageous for some problems that require more restarts at the 
beginning of the iterative process. Also, convergence results noted in this paper that our computational experiments 
show that the PR method is more efficient if it is restarted not only when  (14) holds, but also whenever: 
 

FR
k

PR
k ηββ ≤                                                                                                                                                                  (15) 

 
and 

ωλ ≤
2

kg                                                                                                                                                                 (16) 

 
where ( )ση 211 <<  is a suitable constant (we recommend 810−=λ , 34.1=η ,  410−=ω  all recommended 
values given in this paper were obtained experimentally by means of extensive computations). 
 
3.2. Different Scaling Techniques:  

 
Another useful tool for improving CG methods is scaling, which was originally developed for VM methods [24]. The 
scaling consists in replacing (3) by: 
 

( )11 −− −+−= kkkkkkk stdgd βγ ,                                                                                                                                 (17) 

where kγ  is the scaling factor. This type of CG-methods are called spectral CG-methods. Then it found that the best 
value of this parameter: 
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Note that when we use (17) then PR; FR and DY have to be replaced by: 
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For the simplification of subsequent considerations, we have used the following scaling criterion to scale our new 
proposed three-terms CG-algorithm. 
 

1γγ =k ,   if  <
−−

−−

11

11

k
T
k

k
T
k

yy
sy

1γ                                                                                                                                           (20a) 

 

2γγ =k ,   if  <
−−

−−

11

11

k
T
k

k
T
k

yy
sy

2γ                                                                                                                                          (20b) 

 

11

11

−−

−−=
k

T
k

k
T
k

k yy
sy

γ , otherwise,                                                                                                                                           (20c) 

 
where  21 10 γγ <<<  (we recommend 005.01 =γ  and 2002 =γ ). The bounds 1γ  and 2γ  serve for improvement of 
stability. 
 
3.3. Perfect Cubic Line Search Technique: 
 
Since the CG-methods require more perfect line search than other methods, they are very sensitive to its realization. 
We have essentially used the standard cubic line search implementation; namely (a perfect cubic interpolation), which 
can be represented by the following algorithm: 
 
3.4. Line Search Algorithm:   Input data: 0>∆ ; 10 21 <<< ϕϕ  and 210 <<< σδ . 

0001.0=δ ; 1.0=σ , 01.01 =ϕ , 9.02 =ϕ  and 1000=∆   

Step (1):  Determine the initial estimate 1α  of kα .  This is may be taken as: )2,1min,1(
11

1min
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and   set   ( 01 =ψ ,  1=i ) 
 
Step (2): Set ( )kii s∆= ,min αα . Set ii ψρ =  and ii αψ = . If the conditions (5a) and (5c) are                  

satisfied with 1+kf and 1+kg  replaced by ( )kik sxf α+  and ( )kik sxg α+  respectively, then set ik αα =  and 

terminate the computation. If both (5a) and ( ) 0<+ kik
T
k sxgs α , hold then go to Step(3),   else go to Step(4). 

 
Step (3): If ki s∆=α  then set ik αα =  and terminate the computation, else determine the new                   

estimate    iα    by   cubic extrapolation.   Set    ( )2,max ϕψαα iii = , set  ( )1,max ϕψαα iii = , and go to   
Step(2). 
 
Step (4): Determine   the   new   estimate iα    by  cubic    interpolation.    Set ( )( )iiiii ρψϕραα −+= 1,max ,     

set ( )( )iiiii ρψϕραα −+= 2,max . 
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Step (5): If the conditions (5a) and (5c)) are satisfied, with 1+kf and 1+kg replaced by ( )kik sxf α+ and 

( )kik sxg α+  respectively, then set ik αα =  and terminate the computation. If both (5a) nd ( ) 0<+ kik
T
k sxgs α ,  

hold  then set ii αρ = , else set ii αψ = ;  go to Step(4). 
 
3.5. Outline of the New Scaled Three-Term CG-Algorithm: 

 
Step 1.  Given nRx ∈0 . Let ,10 <<< σδ  0≥t  and  00 gd −= . Set 0:=k . 

 
Step 2.  If  610−≤kg , then stop. 

 
Step 3.  Compute kd  using: 










≥













−−+−

=−

=
−

−−

−
−

−−

−
− ,1      ,)2()(

,0                                                ,

1
11

2
1

1
11

1
1

0

kifs
ys

y
y

yd
dg

dg

kifg

d
k

k
T
k

k
k

k
T
k

k
T
k

kkk
kk β

γ                                           (21) 

kγ is defined by (20) and kβ  is defined in (13b)  
 

Step 4.  Find the step-length kα satisfying cubic line search Algorithm (3.4) and conditions (11) - (12) and 
set kkkk dxx α+= −1 . 

Step 5.  Do a restart step. If  (  0<PR
kβ  or FR

k
PR
k ηββ ≤   or ωλ ≤

2

kg ) then set  

 
1: += kk , and go to Step 2. 

 
4. CONVERGENCE RESULTS: 

 
It is well known that any CG-method with perfect line search (with (5c) where 0=σ ) finds the minimum of a 
quadratic function after at most n steps. This property implies that any convergent CG-method with asymptotically 
perfect line search and with periodic restart is n-step quadratically convergent [3]. This result is very useful because 
asymptotically perfect line search can be easily realized by both quadratic and cubic interpolations. The global 
convergence of CG methods can be assured by suitable restart rules. The simplest such rule is the so-called angle test 
which consists in setting 0=kβ  in (3) whenever: 
 

0)cos( δ<
kk

k
T
k

gd
gd

                                                                                                                                                    (22) 

 
where 0δ   is a prescribed constant (usually 3

0 10−=δ ). A more complicated angle test is proposed in [25]. If the line 
search is asymptotically perfect, the global convergence of CG-methods can be assured by periodic restarts. The first 
global convergence result which does not depend on restarts has been obtained by Zoutendijk [34] and Powell [22], 
who proved that the FR method with perfect line search is globally convergent in the sense that  
 

0inflim =kg                                                                                                                                                                 (23) 
 
where kginflim  is taken over the iterative process (1). Later, Al-Baali [1] generalized this result to include the FR 

method without perfect line search. He has shown that (22) holds for the FR method whenever 21<σ  in (5). 
Recently great effort was devoted to generalizing this result to other CG methods. Touati-Ahmed and Storey [28] have 
shown that the iterative process (2) and (3) with a line search satisfying (5) is globally convergent if: 
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k
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For  ( )ση 211 << . In this case, we have proposed also the following criterion to ensure the global convergence 
property, namely: 
 

ωλ ≤
2

kg                                                                                                                                                                (24b) 

 
hold in every iteration, where λ<0  and 0>ω  are suitable constants.  
 
The proof given in [28] guarantee that, for 1<ησ , the  following inequality: 
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is satisfied at every iteration. Therefore the CG-method is a descent one if (24) holds. The most general result has been 
obtained by Gilbert and Nocedal [10], who have shown that the both PR and HS methods are globally convergent if 
they generate positive values of kβ  and if (25) holds. This result is very important because it allows us to develop a 
great number of useful restart procedures for CG-methods. The reader may see [19] for more details of some of above 
theoretical results. 
 
4.1. Lemma: Consider the CG-method in the form (2) and (3), and let the step-length kα  be obtained by the line 
search Algorithm (3.4) with conditions (11) and (12). Suppose that Assumptions 2.1-2.2 hold. Then one has: 
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Proof: Since kα  is obtained by the line search Algorithm (3.4) with conditions (11)-(12). Then, from (8) and (11) we 
have 
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Hence, { }kf  is a decreasing sequence and the sequence { }kx  is contained in F. Hence, Assumptions 2.1-2.2 imply that 

there exists a constant *f  such that: 
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From (28), we have: 
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This together with (27) implies that (26) holds. 
 
4.2. Lemma: For the new proposed algorithm, defined in (21), if there exists a constant 0>ε  such that: 
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then there exists a constant 0>M  such that 
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Proof: The proof is same as in [32] except that we have to prove: 
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From the line search conditions (11)-(12) and (8), we have 
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since 10 <<σ  implies ( )σ−1  is positive. Since 1−kα  is also positive step-size obtained by a line search producer, 
hence the parameter t  defined in (13c) is positive. This will complete the proof of lemma 4.2. Using the preceding 
lemmas, we are now ready to give the final convergence results. 
 
4.3. Theorem: Suppose that Assumptions 2.1-2.2 hold. Let { }kx  be a sequence of points generated by the new 
proposed algorithm defined by (21). Then one has 
 

.0inflim =
∞→ kk
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Proof: We proceed by contradiction. Assume that the conclusion is not true, then there exists a positive constant ε  
such that 
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If ,0inflim >∞→ kk α  we have from (26) that .0inflim =∞→ kk g  This contradicts assumption (35). Suppose that 

0inflim >∞→ kk α . Using Assumptions 2.1-2.2 and from condition (12a), we obtain: 
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Combining with (8) yields: 
 
( ) . 1 22
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The above inequality and Lemma 4.2 imply 0inflim =∞→ kk g , which contradicts (35). This completes the proof. 

 
5. NUMERICAL RESULTS. 
 
The main work of this section is to report the performance of the new proposed algorithm (say NEW) on a set of test 
problems. The codes were written in Fortran77 and in double precision arithmetic. All the tests were performed on a 
PC. Our experiments were performed on a set of (35) nonlinear unconstrained problems that have second derivatives 
available. These test problems are contributed in CUTE [4] and their details are given in the Appendix. For each test 
function we have considered 10 numerical experiments with number of variables n = 100, 200, . . . , 1000 and we have 
reported the total amount of each test problem.  In order to assess the reliability of our new proposed method, we have 
tested it against the proposed Al-Bayati and Altae three-term CG-method [2] using the same test problems. All these 
methods terminate when the following stopping criterion is met: 
 

kg  ≤ 10−6.                                                                                                                                                                     (38) 

 
We also force these routines stopped if the iterations exceed 1000 or the number of function evaluations reach 2000 
without achieving convergence. We use Algorithm (3.4) as the line search routine satisfying (11) and (12). Tables 5.1 
compares some numerical results for NEW method against Al-Bayati and Al-tae [2] three-term CG-method; this table 
indicates for (n) as a dimension of the problem; (NOI), number of iterations; (NOFG), number of function and gradient 
evaluations; (TIME), the total time required to complete the evaluation process for each test problem. In Table 5.2 we 
have compared the percentage performance of the NEW method against Al-Bayati and Altae  three-term CG-method 
[2] taking over all the tools as 100%.      
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Table 5.1. Numerical Results for NEW-Algorithm against Algorithm (2.5): 

For the total of (35) test problems 
 

Algorithm (2.5) NEW  Algorithm (3.5) 
 

n  NOI  NOFG  
TIME 

  Gmin n NOI NOFG    
TIME 

  Gmin 
 

1                              
 TOTAL   438     805        0.43 
(seconds) 

1                                            
 TOTAL   430     767       0.40 
(seconds) 

2                                           
 TOTAL   358    4643        0.30 
(seconds) 

2                                           
 TOTAL   330    4259       0.22 
(seconds) 

3                                         
 TOTAL    40      90        0.03 
(seconds) 

3                                         
 TOTAL    40      90       0.03 
(seconds) 

4                                         
 TOTAL   4120    6102       2.33 
(seconds) 

4                                         
 TOTAL  2809    4203       2.49 
(seconds) 

5                                       
 TOTAL   511    5846        0.42 
(seconds) 

5                                        
 TOTAL   504    5801       0.40 
(seconds) 

6                                         
 TOTAL   215     436        0.07 
(seconds) 

6                                         
 TOTAL   232    444        0.06 
(seconds) 

  7                                     
TOTAL    335    6178        2.96 
(seconds) 

7                                         
 TOTAL   301    3590       1.44 
(seconds) 

8                                      
 TOTAL   143     293        0.04 
(seconds) 

8                                          
 TOTAL   198     361       0.05 
(seconds) 

9                                           
 TOTAL    40      90        0.06 
(seconds) 

9                                          
 TOTAL   40      90        0.06 
(seconds) 

10                                         
 TOTAL   245     444        0.03 
(seconds) 

10                                         
 TOTAL   247     440       0.04 
(seconds) 

11                                        
 TOTAL   211     2104       0.91 
(seconds) 

11                                         
 TOTAL   213    2170       0.98 
(seconds) 

12                                        
 TOTAL   615     967        0.20 
(seconds) 

12                                            
 TOTAL   537     898       0.18 
(seconds) 

13                                       
TOTAL    20      50         0.02 
(seconds) 

13                                       
TOTAL    20      50        0.02 
(seconds) 

14                                         
 TOTAL   109     223        0.04 
(seconds) 

14                                         
 TOTAL   102     208       0.03 
(seconds) 

15                                        
 TOTAL   111     232        0.06 
(seconds) 

15                                       
TOTAL    111     232       0.06 
(seconds) 

16                                        
 TOTAL   149     272        0.07 
(seconds) 

16                                          
 TOTAL   148     270       0.07 
(seconds) 

17                                        
 TOTAL   473     910        0.10 
(seconds) 

17                                       
 TOTAL   503     983       0.10 
(seconds) 

18                                        
 TOTAL   661    8083        0.75 
(seconds) 

18                                          
 TOTAL   580    6812       0.58 
(seconds) 

19                                         
 TOTAL   149     394        0.03 

19                                        
TOTAL    149     394       0.03 
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(seconds) (seconds) 
20                                           
 TOTAL   374     744        0.08 
(seconds) 

20                                         
TOTAL    395     774       0.08 
(seconds) 

21                                          
 TOTAL    40      90        0.03 
(seconds) 

21                                           
 TOTAL    40      90       0.03 
(seconds) 

22                                         
 TOTAL   828    14980       1.02 
(seconds) 

22                                           
 TOTAL   776    13203      0.98 
(seconds) 

23                                        
 TOTAL   246     458        0.15 
(seconds) 

23                                       
TOTAL    238     440       0.15 
(seconds) 

24                                           
 TOTAL   201     412        0.05 
(seconds) 

24                                            
 TOTAL   201     412       0.05 
(seconds) 

25                                          
 TOTAL   272     488        0.06 
(seconds) 

25                                              
 TOTAL   233     421       0.06 
(seconds) 

26                                          
 TOTAL   200     432        0.05 
(seconds) 

26                                             
 TOTAL   200     432       0.05 
(seconds) 

27                                           
 TOTAL    39     108        0.03 
(seconds) 

27                                             
 TOTAL    39     108       0.03 
(seconds) 

28                                            
 TOTAL    61     824        0.30 
(seconds) 

28                                       
TOTAL     61     824       0.30 
(seconds) 

29                                         
 TOTAL    30      70        0.03 
(seconds) 

29                                        
TOTAL     30      70       0.03 
(seconds) 

30                                          
 TOTAL   211     2104       0.91 
(seconds) 

30                                           
 TOTAL   153    1370       0.84 
(seconds) 

31                                         
 TOTAL   1404    1794       0.81 
(seconds) 

31                                      
TOTAL    489     900       0.08 
(seconds) 

32                                         
 TOTAL    10      30        0.01 
(seconds) 

32                                         
 TOTAL    10      30       0.01 
(seconds) 

33                                      
 TOTAL   355     675        0.09 
(seconds) 

33                                       
TOTAL    353     663       0.07 
(seconds) 

34                                         
 TOTAL    90     110        0.02 
(seconds) 

34                                           
 TOTAL    90     110       0.02 
(seconds) 

35                                         
 TOTAL   195     437        0.05 
(seconds) 

35                                          
 TOTAL   288     478       0.06 
(seconds) 

Total  
Of 35   14132    61954      12.54 
Test 
Fun. 

Total  
Of 35   11090    52387     10.08     
Test 
Fun.           

 
 

Table 5.2.  Percentage performance  of NEW-Algorithm against Algorithm (2.5) 
  

Tools Algorithm (2.5) NEW (Algorithm 3.5) 
NOI 100% 78.5% 

NOFG 100% 84.5% 
TIME 100% 80.3% 
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It is clear from Table (5.2) that taking, over all, the Tools as a 100% for the Al-Bayati and Altae three-term CG-
method, namely algorithm (2.5), the NEW-Algorithm has an improvement, in about (21.5%)  NOI; (16.5%) NOFG and 
(19.7%) TIME. 
 
CONCLUSIONS:  
 
Taking everything into consideration the new proposed scaled three-term CG-method have been obtained very 
significant development as we have expected, we think that, for all the  specific problems, the enhancement of the  new 
proposed method is very robust. However, we know that CG-methods are sensitive to the order of interpolation; 
therefore, we have recommend a modified perfect cubic interpolation over the standard quadratic one in our 
implementations.  Hence, we believe that the new method is a valid approach for the problems and has its own 
potential. Also, the effectiveness of this new proposed method depends on the robustness set of selected scaling criteria 
and several selected sets of restating techniques used in this research besides the selected set of test functions. 
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APPENDIX  
 
The details of  the test functions, used in this paper, can be found in [4]. The numbers (1-35) in Table 5.1 indicate to: 
 
1-   Extended Trigonometric Function.                  
2-   Extended Penalty Function.                             
3-   Raydan 2  Function.                                       
4-   Diagonal2 Function.                                       
5-   Generalized Tridiagonal-1 Function.                 
6-   Extended  Tridiagonal-1 Function.                 
7-   Extended 3-Exponential Terms Function.        
8-   Diagonal4 Function.                                       
9-   Diagonal5 Function.                                       
10- Extended Himmelblau Function.                      
11- Extended PSC1 Function.                                    
12- Extended Block Diagonal BD1 Function.               
13- Extended EP1 Function.                                  
14- DIXMAANA CUTE- Function.                       
15- DIXMAANB CUTE- Function.                       
16- DIXMAANC CUTE- Function.                       
17- Broyden Tri-diagonal Function.                       
18- EDENSCH    CUTE- Function. 

19- VARDIM CUTE- Function. 
20- LIARWHD CUTE- Function. 
21- DIAGONAL 6 Function. 
22- ENGVAL1 CUTE- Function. 
23- DENSCHNA CUTE- Function. 
24- DENSCHNB CUTE- Function. 
25- DENSCHNF CUTE- Function. 
26- Generalized Quartic GQ1 function. 
27- Diagonal 7 Function. 
28- Diagonal 8 Function. 
29- Full Hessian Function. 
30- SINCOS Function. 
31- Generalized quartic GQ2 function. 
32- ARGLINB CUTE-Function. 
33- FLETCHCR  CUTE-Function. 
34- HIMMELBG CUTE-Function. 
35- HIMMELBH CUTE-Function. 
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