# International Journal of Mathematical Archive-3(5), 2012, 2047-2057

On  $(1, 2)^*$ -  $\pi$ wg-Closed Sets in Bitopological Spaces

## <sup>\*1</sup>Jeyanthi. V & <sup>2</sup>Dr. Janaki. C

<sup>1</sup>Department of Mathematics, Sree Narayana Guru College, Coimbatore, India <sup>2</sup>Department of Mathematics, L. R. G. Govt. College for Women, Tirupur, India

(Received on: 03-05-12; Revised & Accepted on: 27-05-12)

## ABSTRACT

**T**he aim of this paper is to introduce a new class of sets called  $(1, 2)^*$ - $\pi$ wg-closed sets in bitopological spaces and to study their properties. Further, we define and study  $(1, 2)^*$ - $\pi$ wg-continuity,  $(1, 2)^*$ - $\pi$ wg-irresolute maps and  $(1, 2)^*$ - $\pi$ wg-space.

Mathematics Subject Classification: 54E55.

Key Words:  $(1, 2)^*$ -  $\pi$ wg-closed sets,  $(1, 2)^*$ -  $\pi$ wg-continuous and  $(1, 2)^*$ -  $\pi$ wg-irresolute maps,  $\pi$ wg-space,  $(1, 2)^*$ -  $\pi$ wg- $T_{1/2}$ - Space.

## **1. INTRODUCTION**

The study of bitopological spaces was first initiated by J.C. Kelly [6]in the year 1963. Levine [7] introduced generalized closed sets and studied their properties. In 1985, Fukutake [4], introduced the concepts of g-closed sets in bitopological spaces. Dontchev. J, Noiri. T [3] introduced and studies the concepts of  $\pi$ g- closed set in topological spaces. Recently Ravi, Lellis Thivagar, Ekici and many others [8,9,12,13-17] have defined different weak forms of the topological notions namely, semi open, pre open, regular open and  $\alpha$ -open sets in bitopological spaces.

In this paper, we introduce the notion of  $(1, 2)^*$ -  $\pi$ wg-closed sets and investigate their properties. By using the class of  $(1, 2)^*$ -  $\pi$ wg -closed sets in bitopological spaces, we study  $(1, 2)^*$ -  $\pi$ wg -continuous,  $(1, 2)^*$ -  $\pi$ wg-irresolute maps,  $\pi$ wg-space,  $(1, 2)^*$ -  $\pi$ wg-T<sub>1/2</sub>- space. In most of the properties and conditions, our ideas are discussed with suitable examples.

## 2. PRELIMINARIES

Throughout this paper, X and Y denote the bitopological spaces  $(X, \tau_1, \tau_2)$  and  $(Y, \sigma_1, \sigma_2)$  respectively, on which no separation axioms are assumed.

**Definition: 2.1** Let A be a subset of X. Then A is called  $\tau_{1,2}$  -open [1,14] if  $A = A_1 \cup B_1$ , where  $A_1 \in \tau_1$ ,  $B_1 \in \tau_2$ . The complement of  $\tau_{1,2}$  -open set[14] is  $\tau_{1,2}$  -closed set. The family of all  $\tau_{1,2}$  -open (resp.  $\tau_{1,2}$ -closed) sets of X is denoted by (1,2)\* -O(X) and (resp. (1,2)\* -C(X)).

**Example: 2.2** Let  $X = \{a, b, c\}, \tau_1 = \{\phi, X, \{a\}, \{a, c\}\}, \tau_2 = \{\phi, X, \{c\}\}.$ 

Then  $\tau_{1,2}$  -open sets ={ $\phi$ , X,{a},{c},{a, c}} and  $\tau_{1,2}$  -closed sets ={ $\phi$ , X,{b, c},{a, b},{b}}

**Definition: 2.3** Let A be a subset of a bitopological space X. Then

(i)  $\tau_{1,2}$  -closure of A [1,14] denoted by  $\tau_{1,2}$  -cl(A) is defined by the intersection of all  $\tau_{1,2}$  -closed sets containing A. (ii)  $\tau_{1,2}$ -interior of A [1,14] denoted by  $\tau_{1,2}$  -int (A) is defined by the union of all open sets contained in A.

**Remark: 2.4** Notice that  $\tau_{1,2}$  -open subsets of X need not necessarily form a topology.

Now, we recall some definitions and results which are used in this paper.

Corresponding author: <sup>\*1</sup> Jeyanthi. V <sup>1</sup>Department of Mathematics, Sree Narayana Guru College, Coimbatore, India Definition: 2.5 A subset A of a bitopological space X is said to be

(i) (1, 2)\* -pre –open [18] if  $A \subset \tau_{1,2}$  -int ( $\tau_{1,2}$  -cl(A)). (ii) (1, 2)\* -semi open [18] if  $A \subset \tau_{1,2}$  -cl ( $\tau_{1,2}$  -int(A)). (iii) regular (1,2)\* -open [10] if  $A = \tau_{1,2}$  -int ( $\tau_{1,2}$  -cl(A)). (iv) (1, 2)\* -  $\alpha$ -open [18] if  $A \subset \tau_{1,2}$  -int ( $\tau_{1,2}$  -cl ( $\tau_{1,2}$  -int (A))). (v) (1, 2)\* - $\pi$ - open [19] if A is the finite union of regular (1, 2)\* -open sets.

The complements of all the above mentioned open sets are called their respective closed sets. The family of all  $(1, 2)^*$  - open sets  $[(1, 2)^*$  -regular open,  $(1, 2)^*$  -  $\pi$ -open,  $(1, 2)^*$  -semi open,  $(1, 2)^*$  - regular semi open set) sets of X will be denoted by  $(1, 2)^*$  O(X)(resp.  $(1, 2)^*$  RO(X),  $(1, 2)^*$  -  $\pi$ O(X),  $(1, 2)^*$ -SO(X), $(1, 2)^*$ -RSO(X)].

Definition: 2.6 A subset A of bitopological space X is said to be

- (i) a  $\tau_{1,2}$   $\omega$  closed [5] if  $\tau_{1,2}$  -cl (A)  $\subset$  U whenever A $\subset$  U and U  $\in$  (1, 2)\* -SO(X).
- (ii) a  $(1, 2)^*$  generalized closed set [12]  $((1, 2)^*$  -g closed set) if  $\tau_{1,2}$  -cl (A)  $\subset$  U whenever A $\subset$  U and U  $\in$  (1,2)\*-O(X).
- (iii) a regular  $(1, 2)^*$  generalized closed [16] (briefly  $(1, 2)^*$  rg closed set ) if  $\tau_{1,2}$ -cl(A) $\subset$ U whenever A  $\subset$  U and U  $\in$   $(1, 2)^*$  RO(X).
- (iv) a (1, 2)\* generalized pre regular closed set [13] (briefly (1, 2)\* -gpr –closed set) if (1, 2)\* pcl (A)  $\subset$  U whenever A  $\subset$  U and U  $\in$  (1, 2)\* RO(X).
- (v) a weakly  $(1, 2)^*$  generalized closed [20] (briefly  $(1, 2)^*$ -wg closed) if  $\tau_{1,2}$ -cl $(\tau_{1,2}$ -int (A))  $\subset$  U whenever A $\subset$  U and U  $\in (1, 2)^*$ -O(X).
- (vi) a (1, 2)\*- $\pi$ -generalized closed [19] (briefly (1, 2)\*  $\pi$ g closed set) if  $\tau_{1,2}$  cl (A)  $\subset$ U whenever A $\subset$ U and U $\in$  (1,2)\* - $\pi$ O(X).
- (viii) a (1,2) \*  $\pi g \alpha$  closed set [2] if  $\tau_{1,2}$   $\alpha cl (A) \subset U$  whenever  $A \subset U$  and  $U \in (1,2)^*$  - $\pi O(X)$ .
- (ix) a  $(1,2)^*$  regular semi open set[11] if there is a  $(1,2)^*$  RO(X), U such that U $\subset A \subset \tau_{1,2}$ Cl(U).
- (x) a  $(1,2)^*$  rw- closed set [11] if  $\tau_{1,2}$  -cl(A)  $\subset$  U, whenever A $\subset$  U and U is  $(1,2)^*$  regular semi open set in X.
- (xi) a (1, 2)\*- regular  $\alpha$ -open [11] in X if there is a (1, 2)\* -regular open set U such that  $U \subset A \subset \tau_{1,2}$   $\alpha cl(U)$ .
- (xii) a regular (1,2)\* generalized  $\alpha$  closed set [11]( briefly (1,2)\* rg $\alpha$  closed set) if  $\tau_{1,2}$   $\alpha$ cl (A)  $\subset$  U whenever A  $\subset$  U and U  $\in$  (1,2)\* R $\alpha$  O(X).[ R $\alpha$  O(X)- Collection of all regular (1,2)\*-  $\alpha$  open set in X]
- (xiii) a regular (1, 2)\*-weakly generalized closed [11] (briefly (12) \*- rwg closed) if  $\tau_{1,2}$  cl( $\tau_{1,2}$ -int (A))  $\subset U$  whenever  $A \subset U$  and  $U \in (1,2)$ \*-RO(X).

(xiv) a (1,2)\*-  $T_{1/2}$ -space[8] if every (1,2)\*- g-closed set in X is  $\tau_{1,2}$  -closed in X.

Definition: 2.7 A Bitopological space X is called

(i) a (1,2)\*-  $T_{wg}$ -Space[20] if every (1,2)\*- wg-closed subset of X is closed in X. (ii) a (1,2)\*-  $T_{\alpha}$ - Space [18] if every (1,2)\*-  $\alpha$  -closed subset of X is closed in X. (iii) a (1,2)\*-  $T_{\omega}$ -Space [5] if every (1,2)\*-  $\omega$  -closed subset of X is closed in X.

**Definition: 2.8** A map f:  $X \rightarrow Y$  is said to be

(i)  $(1, 2)^*$ - continuous [12] if  $f^1(V)$  is  $\tau_{1,2}$ -closed in X for every  $\sigma_{1,2}$ - closed set V in Y. (ii)  $(1, 2)^*$ - semi continuous [18] if  $f^1(V)$  is  $(1,2)^*$ - semi closed in X for every  $\sigma_{1,2}$ -closed set V in Y. (iii)  $(1, 2)^*$ -  $\omega$ - continuous [5] if  $f^1(V)$  is  $(1,2)^*$ -  $\omega$ - closed in X for every  $\sigma_{1,2}$ -closed set V in Y. (iv)  $(1, 2)^*$ - rg -continuous [16] if  $f^1(V)$  is  $(1,2)^*$ - rg closed in X for every  $\sigma_{1,2}$ - closed set V in Y. (v)  $(1, 2)^*$ -  $\pi$ -continuous [19] if  $f^1(V)$  is  $(1,2)^*$ -  $\pi$  closed in X for every  $\sigma_{1,2}$ - closed set V in Y. (vi)  $(1, 2)^*$ -  $\pi$ -continuous [19] if  $f^1(V)$  is  $(1, 2)^*$ -  $\pi$  closed in X for every  $\sigma_{1,2}$ - closed set V in Y. (vii)  $(1, 2)^*$ -  $\pi$ -continuous [19] if  $f^1(V)$  is  $(1, 2)^*$ -  $\pi$  closed in X for every  $\sigma_{1,2}$ - closed set V in Y. (vii)  $(1, 2)^*$ -  $\pi$ -continuous [19] if  $f^1(V)$  is  $(1, 2)^*$ -  $\pi$  closed in X for every  $\sigma_{1,2}$ - closed set V in Y.

(viii) (1, 2)\*- gpr-continuous [13] if  $f^1(V)$  is (1, 2)\*- gpr closed in X for every  $\sigma_{1,2}$  -closed set V in Y. (ix) (1, 2)\*- wg-continuous [20] if  $f^1(V)$  is (1, 2)\*- wg- closed in X for every  $\sigma_{1,2}$  - closed set V in Y.

## 3. (1, 2) \* - $\pi$ wg – Closed Sets in Bitopological Spaces

**Definition:** 3.1A subset A of X is called (1, 2) \*- $\pi$ wg- closed set in X if  $\tau_{1,2}$ -cl ( $\tau_{1,2}$ -int(A))  $\subset$  U whenever A $\subset$  U and U  $\in$  (1,2)\* - $\pi$ O(X).

The complement of  $(1, 2)^*$  -  $\pi$ wg -closed set is  $(1, 2)^*$ - $\pi$ wg-open set.

We denote the family of all  $(1,2)^*$ -  $\pi$ wg-closed (resp.  $\pi$ wg-open)sets in X by  $(1,2)^*$ -  $\pi$ wGC(X)(resp.  $(1,2)^*$ - $\pi$ wGO(X)).

## Theorem: 3.2

- 1. Every  $\tau_{1,2}$ -closed set is (1, 2) \*- $\pi$ wg- closed set .
- 2. Every  $(1, 2)^*$   $\pi g$  -closed set is  $(1, 2)^*$   $\pi wg$  -closed set.
- 3. Every  $(1, 2)^*$  g closed set is  $(1, 2)^*$   $\pi$ wg closed set.
- 4. Every  $(1, 2)^*$   $\pi$ wg closed set is  $(1, 2)^*$  gpr-closed set.
- 5. Every  $(1, 2)^* \alpha$  closed set is  $(1, 2)^* \pi wg$  -closed set.
- 6. Every  $(1, 2)^*$  wg closed set is  $(1, 2)^*$   $\pi$ wg -closed set.

#### **Proof:** Straight forward.

**Remark: 3.3** The converse of the above results need not be true as seen in the following examples.

**Example: 3.4** Let  $X = \{a, b, c, d\}$ ,  $\tau_1 = \{\phi, X, \{b\}, \{b, c\}\}$ ,  $\tau_2 = \{\phi, X, \{c\}, \{b, c, d\}\}$ . Then  $\tau_{1,2}$  -open =  $\{\phi, X, \{b\}, \{c\}, \{b, c\}, \{b, c, d\}\}$  and  $\tau_{1,2}$  -closed =  $\{\phi, X, \{a, c, d\}, \{a, b, d\}, \{a, d\}, \{a\}\}$ Here  $A = \{d\}$  is  $(1, 2)^*$  -  $\pi$ wg- closed set but not  $\tau_{1,2}$  -closed set.

**Example : 3.5** Let  $X = \{a, b, c, d\}, \tau_1 = \{\phi, X, \{a\}, \{c, d\}, \{a, c, d\}\}, \tau_2 = \{\phi, X, \{a\}, \{c\}, \{a, c\}\}.$ 

Then  $\tau_{1,2}$ -open = { $\phi$ , X,{a},{c},{a, c},{c, d},{a, c, d}} and  $\tau_{1,2}$ -closed = { $\phi$ , X,{b, c, d},{a, b, d}, {b, d}, {

Here A = { d} is  $(1,2)^*$  -  $\pi$ wg- closed set but not  $(1,2)^*$  -  $\pi$ g- closed set.

**Example: 3.6** In the above example  $A=\{d\}$  is  $(1,2)^* - \pi wg$ - closed set but not  $(1,2)^*$  - g-closed set.

**Example: 3.7** Let X={a, b, c, d},  $\tau_1$ ={ $\phi$ , X, {b}, {b, c, d}},  $\tau_2$  = { $\phi$ , X, {b}, {d}, {b, d}, {a, b, d}, {b, c, d}}.

Then  $\tau_{1,2}$ -open = { $\phi$ , X, {b}, {d}, {b, d}, {a, b, d}, {b, c, d}} and  $\tau_{1,2}$ -closed = { $\phi$ , X, {a, c, d}, {a, b, c}, {a, c}, {c}, {c}, {a}}.

Here A = {a, b} is  $(1,2)^*$  -  $\pi$ wg- closed set but not  $(1,2)^*$  - wg closed set.

**Example: 3.8** Let  $X = \{a, b, c\}, \tau_1 = \{\phi, X, \{a\}, \{c\}, \{a, c\}, \{b, c\}\}, \tau_2 = \{\phi, X, \{a\}, \{a, b\}\}$ . Then  $\tau_{1,2}$ -open =  $\{\phi, X, \{a\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}\}$  and  $\tau_{1,2}$ -closed =  $\{\phi, X, \{b, c\}, \{a, b\}, \{c\}, \{a\}\}$ 

Here A = {a, c} is  $(1, 2)^*$  - gpr closed but not  $(1, 2)^*$  - $\pi$ wg- closed set.

**Example: 3.9** Let  $X = \{a, b, c, d\}, \tau_1 = \{\phi, X, \{b\}, \{b, c\}\}, \tau_2 = \{\phi, X, \{c\}, \{b, c, d\}\}$ . Then  $\tau_{1,2}$ -open  $= \{\phi, X, b\}, \{c\}, \{b, c\}, \{b, c, d\}\}$  and  $\tau_{1,2}$ -closed  $= \{\phi, X, \{(\{a, c, d\}, \{a, b, d\}, \{a, d\}, \{a, d\}, \{a\}\}\}$ 

Here A = {c, d} is  $(1, 2)^*$  -  $\pi$ wg- closed set but not  $(1, 2)^*$  - $\alpha$ -closed set.

**Theorem: 3.10** Every  $(1, 2)^*$  -  $\pi$ wg- closed set in X is  $(1, 2)^*$  - rwg closed.

**Proof:** Let A be a  $(1,2)^*$  -  $\pi$ wg- closed set in X and A $\subset$  U and U is  $(1,2)^*$  - RO(X).

Since every  $(1, 2)^*$  - RO(X) is  $(1, 2)^*$  - $\pi$ O(X) and A is  $(1, 2)^*$  -  $\pi$ wg- closed set, then  $\tau_{1,2}$ - cl  $(\tau_{1,2}$ -int (A)) $\subset$ U whenever A $\subset$  U and U  $\in (1,2)^*$  - RO(X).

The above implies A is  $(1, 2)^*$  - rwg -closed.

**Remark: 3.11** The converse of the above need not be true as seen in the following example.

**Example: 3.12** Let  $X = \{a, b, c, d\}, \tau_1 = \{\phi, X, \{d\}, \{b, c, d\}\}, \tau_2 = \{\phi, X, \{b\}, \{d\}, \{b, d\}, \{a, b, d\}, \{b, c, d\}\}$ . Then  $\tau_{1,2}$ -open =  $\{\phi, X, \{b\}, \{d\}, \{b, d\}, \{a, b, d\}, \{b, c, d\}\}$  and  $\tau_{1,2}$ -closed =  $\{\phi, X, \{a, c, d\}, \{a, b, c\}, \{a, c\}, \{c\}, \{a\}\}$ .

Here A = {b, d} is  $(1, 2)^*$  - rwg- closed set but not  $(1, 2)^*$  -  $\pi$ wg closed set.

**Remark: 3.13** The concepts of  $(1, 2)^*$ -  $\pi$ wg -closed set,  $(1, 2)^*$  -rga closed set are independent.

**Example: 3.14** Let  $X = \{a, b, c, d\}, \tau_1 = \{\phi, X, \{b\}, \{d\} \{b, d\}\}, \tau_2 = \{\phi, X, \{b\}, \{d\}, \{b, d\}, \{a, b, d\}, \{b, c, d\}\}$ . Then  $\tau_{1,2}$ -open =  $\{\phi, X, \{b\}, \{d\}, \{b, d\}, \{a, b, d\}, \{b, c, d\}\}$  and  $\tau_{1,2}$ -closed =  $\{\phi, X, \{a, c, d\}, \{a, b, c\}, \{a, c\}, \{a\}\}$ . Here the (1,2)\*- rg $\alpha$ -closed sets are  $\{\phi, X, \{a\}, \{c\}, \{a, c\}, \{a, c\}, \{b, d\}, \{a, b, c\}, \{a, b, d\} \{a, c, d\}, \{b, c, d\}\}$  and the (1, 2)\*-  $\pi$ wg - closed sets are  $\{\phi, X, \{a\}, \{c\}, \{a, c\}, \{a, c\}, \{b, c\}, \{c, d\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\}\}$ .

The set A = {b, d} is  $(1, 2)^*$  - rg $\alpha$  -closed but not  $(1, 2)^*$ -  $\pi$ wg -closed and B= {a, b} is  $\pi$ wg -closed but not  $(1, 2)^*$ - rg $\alpha$  -closed.

Remark: 3.15 The above discussions are summarized in the following diagram.



**Remark: 3.16** Finite union of  $(1, 2)^*$  -  $\pi$ wg closed sets need not be  $(1, 2)^*$  -  $\pi$ wg closed set.

**Example: 3.17** Let  $X = \{a, b, c\}, \tau_1 = \{\phi, X, \{a\}, \{c\}, \{a, c\}, \{b, c\}\}, \tau_2 = \{\phi, X, \{a\}, \{a, b\}\}$ . Then  $\tau_{1,2}$ -open =  $\{\phi, X, \{a\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}\}$  and  $\tau_{1,2}$ -closed =  $\{\phi, X, \{b, c\}, \{a, b\}, \{c\}, \{b\}, \{a\}\}$ 

Here A = {a} and B= {c} are two  $(1, 2)^*$  - $\pi$ wg- closed sets, but A  $\cup$  B = {a, c} is not  $(1, 2)^*$ - $\pi$ wg closed.

**Remark: 3.18** Finite intersection of two  $(1, 2)^*$  -  $\pi$ wg closed sets need not be  $(1, 2)^*$  -  $\pi$ wg closed set.

**Example: 3.19** Let  $X = \{a, b, c, d\}, \tau_1 = \{\phi, X, \{d\}, \{b, c, d\}\}, \tau_2 = \{\phi, X, \{b\}, \{b, d\}, \{a, b, d\}\}$ . Then  $\tau_{1,2}$ -open  $=\{\phi, X, \{b\}, \{d\}, \{b, d\}, \{a, b, d\}, \{b, c, d\}\}$  and  $\tau_{1,2}$ -closed  $=\{\phi, X, \{a, c, d\}, \{a, b, c\}, \{a, c\}, \{c\}, \{a\}\}$ . Here  $A = \{a, b, d\}$  and  $B = \{b, c, d\}$  are  $(1,2)^*$  -  $\pi$ wg closed sets, but  $A \cap B = \{b, d\}$  is not  $(1,2)^*$ -  $\pi$ wg closed.

**Theorem: 3.20** If A is  $(1, 2)^*$  -  $\pi$ wg closed set and A $\subset$  B $\subset$  $\tau_{1,2}$  -cl ( $\tau_{1,2}$  -int(A)) . Then B is also  $(1, 2)^*$  -  $\pi$ wg -closed set in X.

**Proof:** Let  $B \subset U$ , where U is  $(1, 2)^* - \pi$ - open. Then  $A \subset B \Longrightarrow A \subset U$ , U is  $(1, 2)^* - \pi$ - open. Since A is  $(1, 2)^* - \pi$ wg closed,  $\tau_{1,2}$ -cl  $(\tau_{1,2}$ -int(A))  $\subset$  U. By hypothesis,  $\tau_{1,2}$ -cl  $(\tau_{1,2}$ -int(B))  $\subset$ U. Hence B is also  $(1, 2)^* - \pi$ wg - closed.

**Theorem: 3.21** If A is both  $(1, 2)^*$ - Regular open and  $(1, 2)^*$ - $\pi$ wg closed, then it is  $(1, 2)^*$ - clopen.

**Proof:** Since A is  $(1, 2)^*$  -Regular open, A is  $\tau_{1,2}$  -open.

Then  $A = \tau_{1,2}$ -int(A).Also,  $A \subset A$  and A is  $(1,2)^* - \pi wg$  closed.  $\Rightarrow \tau_{1,2}$ -cl  $(\tau_{1,2}$ -int(A))  $\subset A$ . Now,  $\tau_{1,2}$ -cl  $(A) = \tau_{1,2}$ -cl  $(\tau_{1,2}$ -int(A))  $\subset A$ .  $\Rightarrow \tau_{1,2}$ -cl (A) = A. Hence A is  $\tau_{1,2}$ -clopen.

Theorem: 3.22 The following properties are equivalent for a subset A of X.

1. A is  $\tau_{1,2}$  -clopen.

2. A is  $(1, 2)^*$  - regular open and  $(1, 2)^*$  -  $\pi$ wg closed.

3. Ais  $(1, 2)^*$  -  $\pi$ -open and  $(1, 2)^*$ -  $\pi$ wg closed.

#### © 2012, IJMA. All Rights Reserved

#### Proof:

(1) $\Rightarrow$ (2): let A is  $\tau_{1,2}$ -clopen. Then A =  $\tau_{1,2}$ -int (A)=  $\tau_{1,2}$ -cl (A).

 $\Rightarrow \tau_{1,2}$  -cl ( $\tau_{1,2}$  -int(A))=A.

 $\Rightarrow$  A is (1, 2)\* -regular open and hence A is (1, 2)\* -  $\pi$ -open .Then  $\tau_{1,2}$  -cl ( $\tau_{1,2}$  -int(A))=A $\subset$ A.

 $\Rightarrow$ A is  $(1, 2)^*$  -  $\pi$ wg -closed. Hence (2) holds.

(2)⇒(3): Obvious.

(3) $\Rightarrow$ (4): let A is (1,2)\*-  $\pi$ -open and (1,2)\*-  $\pi$ wg-closed. Since A $\subset$ A, a(1, 2)\* -  $\pi$ -open set and  $\tau_{1,2}$  -cl ( $\tau_{1,2}$ -int(A))  $\subset$  A.

 $\Rightarrow$  A is both  $\tau_{1,2}$  -closed and  $\tau_{1,2}$ - open.

 $\Rightarrow$ A is  $\tau_{1,2}$ -clopen.

**Theorem: 3.23** If A is  $(1, 2)^*$  -  $\pi$ wg -closed, then  $\tau_{1,2}$  -cl  $(\tau_{1,2}$  -int(A)) – A contains no non-empty  $(1,2)^*$  -  $\pi$  -closed set.

**Proof:** Suppose that F is a non-empty  $(1, 2)^*$ -  $\pi$ -closed subset of  $\tau_{1,2}$ -cl( $\tau_{1,2}$ -int(A)) – A.

Now,  $F \subset \tau_{1,2}$  -cl  $(\tau_{1,2}$  -int(A)) – A

 $\Rightarrow F \subset \tau_{1,2} \text{ -cl} (\tau_{1,2} \text{ -int}(A)) \cap A^C \text{ .So}, F \subset \tau_{1,2} \text{ -cl} (\tau_{1,2} \text{ -int}(A)) \text{ and } F \subset A^C \text{ .} F \subset A^C \text{ implies } A \subset F^C.$ 

Since  $F^C$  is  $\pi$ -open and A is  $(1,2)^*$ -  $\pi$ wg -closed. We have,  $\tau_{1,2}$  -cl  $(\tau_{1,2}$  -int(A))  $\subset F^C$ .

 $\Rightarrow$ F  $\subset$  [ $\tau_{1,2}$  -cl ( $\tau_{1,2}$  -int(A))]<sup>C</sup>.

Hence  $F \subset \tau_{1,2}$  -cl  $(\tau_{1,2} - int(A)) \cap [\tau_{1,2} - cl (\tau_{1,2} - int(A))]^C$ .

 $\Rightarrow$ F  $\subset \varphi$ , which is a contradiction.

 $\Rightarrow$  [ $\tau_{1,2}$ -cl ( $\tau_{1,2}$ -int(A))] – A contains no non-empty (1,2)\*-  $\pi$ wg- closed set.

**Theorem: 3.24** Suppose that  $B \subset A \subset X$ , B is  $(1,2)^* - \pi wg$  -closed set relative to A and that A is both  $(1,2)^*$ -regular open and  $(1,2)^*$ -  $\pi wg$ - closed subset of X, then B is  $(1,2)^*$ -  $\pi wg$ -closed set relative to X.

**Proof:** Let  $B \subset G$  and G be  $(1, 2) * -\pi$  -open set in X. Given  $B \subset A \subset X$ .

 $\Rightarrow$  B  $\subset$  A $\cap$ G. Since B is (1,2)\* -  $\pi$ wg- closed set relative to A, then  $\tau_{1,2}$  -cl ( $\tau_{1,2}$  -int<sub>A</sub>(B))  $\subset$  A $\cap$ G.

Also,  $A \cap \tau_{1,2}$  -cl  $(\tau_{1,2} - int(B)) \subset A \cap G$ . Then  $A \cap \tau_{1,2}$  -cl  $(\tau_{1,2} - int(B)) \subset G$ . Since A is  $(1,2)^*$  - regular open and  $(1,2)^*$  -  $\pi$ wg -closed set, then A is  $\tau_{1,2}$  -clopen. i,e.,  $A = \tau_{1,2}$  -cl(A) and  $\tau_{1,2}$  -cl  $(\tau_{1,2} - int(B)) \subset \tau_{1,2}$  -cl(B)  $\subset \tau_{1,2}$  -cl(A)=A. Hence  $\tau_{1,2}$  -cl  $(\tau_{1,2} - int(B)) \cap A = \tau_{1,2}$  -cl  $(\tau_{1,2} - int(B)) \cap A = \tau_{1,2}$  -cl  $(\tau_{1,2} - int(B)) \cap A = \tau_{1,2}$  -cl  $(\tau_{1,2} - int(B)) \subset G$  whenever  $B \subset G$  and G is  $(1,2)^*$ -  $\pi$ -open in X. Hence B is  $(1,2)^*$ -  $\pi$ wg -closed.

**Theorem: 3.25** Let  $A \subset Y \subset X$ . Suppose that A is  $(1, 2)^*$ -  $\pi$ wg-closed in X and Y is  $\pi$ -open in X, then A is  $(1, 2)^*$ -  $\pi$ wg-closed set relative to Y.

**Proof:** Given  $A \subset Y \subset X$  and A is  $(1, 2)^*$ -  $\pi$ wg-closed in X. Let  $A \subset Y \cap G$ , where G is  $\pi$ -open in X. Since A is  $(1, 2)^*$ -  $\pi$ wg closed in X,  $A \subset G \Rightarrow \tau_{1,2}$ -cl ( $\tau_{1,2}$ -int(A)) $\subset G$ .

 $Y \cap \tau_{1,2}$ -cl ( $\tau_{1,2}$ -int(A))  $\subset Y \cap G$ . Therefore, A is  $(1, 2)^*$ -  $\pi$ wg-closed set relative to Y.

## Theorem: 3.26

- 1. Every  $\tau_{1,2}$  open set is  $(1,2)^*$   $\pi$ wg-open.
- 2. Every  $\tau_{1,2}$  g -open set is  $(1,2)^*$   $\pi$ wg-open.
- 3. Every  $\tau_{1,2}$  wg-open set is  $(1,2)^*$   $\pi$ wg-open.

**Proof:** Straight forward.

© 2012, IJMA. All Rights Reserved

**Remark: 3.27** The converse of the above need not be true as seen in the following examples.

**Example: 3.28** Let  $X = \{a, b, c, d\}, \tau_1 = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}, \tau_2 = \{\phi, X, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}, \{a, b, d\}\}$ . Then  $\tau_{1,2}$ -open  $=\{\phi, X, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}, \{a, b, d\}\}, \tau_{1,2}$ -closed  $=\{\phi, X, \{b, c, d\}, \{c, d\}, \{d\}, \{c\}\}$ . Then the  $(1,2)^*$ - $\pi$ wg-open sets are  $\{\phi, X, \{a, b, d\}, \{a, b, c\}, \{b, c\}, \{b, c\}, \{a, d\}, \{a, c\}, \{a\}\}$ . Here  $A = \{b, d\}, B = \{b, c\}, \{a, c\}, \{c\}, \{d\}$  are not  $\tau_{1,2}$ -open but they are  $(1, 2)^*$ - $\pi$ wg-open.

**Example: 3.29** Let  $X = \{a, b, c, d\}, \tau_1 = \{\phi, X, \{b\}, \{b, c\}\}, \tau_2 = \{\phi, X, \{c\}, \{b, c, d\}\}$ . Then  $\tau_{1,2}$ -open =  $\{\phi, X, \{b\}, \{c\}, \{b, c\}, \{b, c, d\}\}$  and  $\tau_{1,2}$ -closed =  $\{\phi, X, \{(\{a, c, d\}, \{a, b, d\}, \{a, d\}, \{a\}\}\}$ 

Here A = {a, b}, B= {a, c}, C= {a}, D= {b} are  $(1, 2)^*$  -  $\pi$ wg-open but not  $(1, 2)^*$  -g-open.

**Example: 3.30** In example 3.29, the sets  $\{a\}$ ,  $\{a, b\}$ ,  $\{a, c\}$  are  $(1, 2)^*$  -  $\pi$ wg-open but not  $(1, 2)^*$  -wg-open.

**Theorem: 3.31** If A is  $(1, 2)^*$ -  $\pi$ wg-open and  $\tau_{1,2}$ -int  $\tau_{1,2}$ -cl (A)  $\subset$  B  $\subset$  A. Then B is  $(1, 2)^*$ -  $\pi$ wg-open.

**Proof:** Let A be  $(1, 2)^*$ -  $\pi$ wg-open set, A<sup>c</sup> is  $(1,2)^*$ -  $\pi$ wg-closed set. Since  $\tau_{1,2}$ -int $(\tau_{1,2}$ -cl(A))  $\subset B \subset A$ , A<sup>C</sup>  $\subset B^C \subset [\tau_{1,2}$ -int  $(\tau_{1,2}$ -cl (A))]<sup>C</sup>. By theorem (3.20), B<sup>C</sup> is  $(1,2)^*$ -  $\pi$ wg-closed.

 $\Rightarrow$  B is (1, 2)\*-  $\pi$ wg-open.

## 4. $(1, 2)^*$ - $\pi$ wg – Continuous and $(1, 2)^*$ - $\pi$ wg -Irresolute function.

**Definition: 4.1** A function f:  $(X,\tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$  is called  $(1,2)^* - \pi wg$ - continuous if every  $f^1(V)$  is  $(1,2)^* - \pi wg$ closed in  $(X, \tau_1, \tau_2)$  for every closed set V of  $(Y, \sigma_1, \sigma_2)$ .

**Definition:** 4.2 A function f:  $(X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$  is called  $(1, 2)^* - \pi wg$ - irresolute if every  $f^1(V)$  is  $(1, 2)^* - \pi wg$ -closed in  $(X, \tau_1, \tau_2)$  for every  $(1, 2)^* - \pi wg$ -closed set V of  $(Y, \sigma_1, \sigma_2)$ .

**Theorem: 4.3:** Every  $(1, 2)^*$ - continuous map is  $(1, 2)^*$ -  $\pi$ wg-continuous.

**Proof:** Let f:  $(X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$  be a  $(1, 2)^*$ - continuous map and V be any  $\sigma_{1,2}$ -closed set in Y. Then  $f^1(V)$  is  $\tau_{1,2}$ -closed in X. Every  $\tau_{1,2}$ -closed set is  $(1,2)^*$ -  $\pi$ wg-closed. Then  $f^1(V)$  is  $(1, 2)^*$ -  $\pi$ wg-closed in X. Therefore, f is  $(1, 2)^*$ -  $\pi$ wg-continuous.

Remark: 4.4 The converse of the above need not be true as shown in the following example.

**Example: 4.5** Let  $X = \{a, b, c\}$ ,  $\tau_1 = \{\phi, X, \{b\}\}$ ,  $\tau_2 = \{\phi, X, \{a, c\}\}$ . Then  $\tau_{1,2}$ -open  $= \{\phi, X, \{b\}, \{a, c\}$  and  $\tau_{1,2}$ -closed  $= \{\phi, X, \{a, c\}, \{b\}\}$ . Then  $(1,2)^*$  -  $\pi$ wg-closed sets are  $=\{\phi, X, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}\}$ . Let  $Y = \{a, b, c\}$ ,  $\sigma_1 = \{\phi, X, \{b, c\}\}$ ,  $\sigma_2 = \{\phi, X, \{c\}, \sigma_{1,2}$ -open  $= \{\phi, Y, \{c\}, \{b, c\}\}$   $\sigma_{1,2}$ -closed  $= \{\phi, Y, \{a, b\}, \{a\}\}$ . Define f:  $(X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$  by f(a)=a, f(b)=b, f(c)=c. The inverse image of the closed set in  $\sigma_{1,2}$  are  $(1,2)^*$ - $\pi$ wg-closed in X.

Hence f is  $(1, 2)^*$ -  $\pi$ wg-continuous. But f is not  $(1, 2)^*$ - continuous, because f<sup>1</sup> ({c}) = {c} and f<sup>1</sup>({b, c}) = {b, c} are not  $\tau_{1,2}$ -closed in X.

**Theorem: 4.6** If f is  $(1, 2)^*$ -g- continuous, then f is  $(1, 2)^*$ - $\pi$ wg- continuous.

**Proof:** Similar to that of the proof in theorem 4.3.

Remark: 4.7 The converse of the above need not be true as seen in the following example.

**Example: 4.8** Let  $X = Y = \{a, b, c, d\}, \tau_1 = \{\phi, X, \{d\}, \{b, c, d\}\}, \tau_2 = \{\phi, X, \{b\}, \{d\}, \{b, d\}, \{a, b, d\}, \{b, c, d\}\}$ . Then  $\tau_{1,2}$ -open =  $\{\phi, X, \{b\}, \{d\}, \{b, d\}, \{a, b, d\}, \{b, c, d\}\}$  and  $\tau_{1,2}$ -closed =  $\{\phi, X, \{a, c, d\}, \{a, b, c\}, \{a, c\}, \{c\}, \{a\}\}$ . Let  $\sigma_1 = \{\phi, Y, \{a\}\}, \sigma_2 = \{\phi, Y, \{d\}, \{a, d\}\}$ . Then  $\sigma_{1,2}$ - open =  $\{\phi, Y, \{a\}, \{d\}, \{a, d\}\}$ .  $\sigma_{1,2}$ - closed =  $\{\phi, Y, \{b, c, d\}, \{a, b, c\}, \{b, c\}\}$ . Define f:  $(X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$  by f(a)=a, f(b)=b, f(c)=c, f(d)=d. Then the inverse images of the above are the same. Here the inverse image of the elements in  $\sigma_{1,2}$ - closed set are  $(1, 2)^{*-} \pi$ wg- closed in X and f<sup>1</sup>( $\{b, c, d\}$ ) =  $\{b, c, d\}, f^1(b, c)=\{b, c\}$  are not  $(1,2)^{*-}$  g-closed in X.

**Theorem: 4.9** If f is wg- continuous, then f is  $(1, 2)^*$ -  $\pi$ wg- continuous.

**Proof:** Similar to the proof as in theorem 4.3

**Remark: 4.10** The converse of the above need not be true is shown in the following example.

© 2012, IJMA. All Rights Reserved

**Example: 4.11** Let  $X = Y = \{a, b, c, d\}$ ,  $\tau_1 = \{\phi, X, \{b\}, \tau_2 = \{\phi, X, \{c\}, \{b, c\}, \{b, c, d\}\}$ . Then  $\tau_{1,2}$ -open =  $\{\phi, X, \{b\}, \{c\}, \{b, c\}, \{b, c\}, \{b, c, d\}\}$  and  $\tau_{1,2}$ -closed =  $\{\phi, X, \{a, c, d\}, \{a, b, d\}, \{a, d\}, \{a\}\}$ . Let  $\sigma_1 = \{\phi, Y, \{a, b, c\}\}$ ,  $\sigma_2 = \{\phi, Y, \{a, c\}\}$ ,  $\sigma_{1,2}$ -open =  $\{\phi, Y, \{a, c\}, \sigma_{1,2}$ -closed =  $\{\phi, Y, \{b, d\}, \{d\}\}$  Define f:  $(X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$  by f(a)=a, f(b) = b, f(c) = c, f(d) = d. Here the inverse image of the elements in  $\sigma_{1,2}$ - closed set are  $(1, 2)^*$ -  $\pi$ wg- closed in X and f<sup>1</sup>( $\{b, d\}$ ) =  $\{b, d\}$  is not  $(1, 2)^*$ - wg -closed in X.

**Theorem: 4.12** Every  $(1, 2)^*$ -  $\pi$ g- Continuous map is  $(1,2)^*$ -  $\pi$ wg-continuous.

**Proof:** Similar to that of the proof in theorem 4.3

Remark: 4.13 The converse of the above need not be true as seen in the following example.

**Example: 4.14** Let  $X = \{a, b, c, d\} = Y$ ,  $\tau_1 = \{\phi, X, \{a\}, \{c, d\}, \{a, c, d\}\}, \tau_2 = \{\phi, X, \{a\}, \{c\}, \{a, c\}\}$ . Then  $\tau_{1,2}$ -open  $= \{\phi, X, \{a\}, \{c\}, \{a, c\}, \{c, d\}, \{a, c, d\}\}, \tau_{1,2}$ -closed= $\{\phi, X, \{b, c, d\}, \{a, b, d\}, \{b, d\}, \{a, b\}, \{b\}\}, \sigma_1 = \{\phi, Y, \{a\}\}, \sigma_2 = \{\phi, Y, \{a, b, c\}\}, \sigma_{1,2}$ -open  $= \{\phi, Y, \{a, b, c\}\}, \sigma_{1,2}$ -closed= $\{\phi, Y, \{b, c, d\}, \{d\}\}$  Define f: $(X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$  by f(a)=a, f(b)=b, f(c)=c, f(d)=d. The map is  $(1, 2)^*$ -  $\pi$ wg- continuous, but f<sup>1</sup>{d} = {d} is not  $(1, 2)^*$ -  $\pi$ g-closed. Hence the map is not  $(1, 2)^*$ -  $\pi$ g- continuous.

**Theorem: 4.15** Every  $(1, 2)^*$ -  $\pi$ wg - continuous map is  $(1, 2)^*$  - rwg continuous.

Proof: Straight forward.

Remark: 4.16 The converse of the above need not be true as shown in the following example.

**Example: 4.17** Let  $X = \{a, b, c\}, \tau_1 = \{\phi, X, \{b\}, \{b, c\}\}, \tau_2 = \{\phi, X, \{c\}\}$ . Then  $\tau_{1,2}$ -open =  $\{\phi, X, \{b\}, \{c\}, \{b, c\}\}$  and  $\tau_{1,2}$ -closed =  $\{\phi, X, \{a, c\}, \{a, b\}, \{a\}\}$ . Let  $Y = \{a, b, c\}, \sigma_1 = \{\phi, X, \{a\}\}, \sigma_2 = \{\phi, X, \{b, c\}\}, \sigma_{1,2}$ -open =  $\{\phi, Y, \{a\}, \{b, c\}\}, \sigma_{1,2}$ -closed =  $\{\phi, Y, \{b, c\}, \{a\}\}$ . Define f:  $(X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$  by f(a)=a, f(b)=b, f(c)=c. Then the inverse images are also the same. The inverse image of the closed set in  $\sigma_{1,2}$  are  $(1,2)^*$ - rwg-closed in X. Hence f is  $(1, 2)^*$ -rwg-continuous. But f is not  $(1, 2)^*$ -  $\pi$ wg-continuous, because f<sup>1</sup>( $\{b, c\}$ ) =  $\{b, c\}$  is not  $(1, 2)^*$ -  $\pi$ wg- closed in X.

**Theorem: 4.18** Every  $(1, 2)^*$  -  $\pi$ wg - continuous map is  $(1, 2)^*$  - gpr- continuous.

**Proof:** Straight forward.

Remark: 4.19 The converse of the above need not be true as shown in the following example.

**Example: 4.20** In Example 4.17, the map f is  $(1, 2)^*$  - gpr continuous but  $f^1(\{b, c\}) = \{b, c\}$  is not  $(1, 2)^*$ -  $\pi$ wg- closed in X. Hence f is not  $(1, 2)^*$ -  $\pi$ wg-continuous.

**Remark:** 4.21 The concepts of  $(1, 2)^*$ -  $\pi$ wg-continuous and  $(1, 2)^*$ - rg- continuous are independent.

**Example: 4.22** Let X=Y= {a, b, c, d},  $\tau_1 = \{\varphi, X, \{a\}, \{c, d\}, \{a, c, d\}\}, \tau_2 = \{\varphi, X, \{a\}, \{c\}, \{a, c\}\}$ . Then  $\tau_{1,2}$ -open =  $\{\varphi, X, \{a\}, \{c\}, \{a, c\}, \{c, d\}, \{a, c, d\}\}, \tau_{1,2}$ -closed=  $\{\varphi, X, \{b, c, d\}, \{a, b\}, \{b, d\}, \{a, b\}, \{b\}\}$   $\sigma_1 = \{\varphi, Y, \{a\}, \{a, b\}\}, \sigma_2 = \{\varphi, Y, \{b\}\}, \sigma_{1,2}$ -open=  $\{\varphi, Y, \{a\}, \{b\}, \{a, b\}\}, \sigma_{1,2}$ -closed=  $\{\varphi, Y, \{b, c, d\}, \{a, c, d\}, \{c, d\}\}$ . Define f:  $(X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$  by f(a)=c, f(b)=b, f(c)=a, f(d)=d. Here The inverse image of all  $\sigma_{1,2}$ - closed sets are (1,2)\*- rg-closed in X, but not (1,2)\*-  $\pi$ wg-closed in X. Hence the function f is (1,2)\*- rg-continuous and not (1,2)\*-  $\pi$ wg-continuous. (i.e, f<sup>1</sup>{a, c, d}={a, c, d} is not (1, 2)\*-  $\pi$ wg-closed in X)

Let X, Y,  $\tau_1$ ,  $\tau_2$ ,  $\tau_{1,2}$ -open,  $\tau_{1,2}$ -closed be as above in the same example.

Let  $\sigma_1 = \{ \phi, Y, \{a\}\}, \sigma_1 = \{ \phi, Y, \{a, b, c\}\}$ . Then  $\sigma_{1,2}$ -open =  $\{ \phi, Y, \{a\}, \{a, b, c\}\}$  and  $\sigma_{1,2}$ -closed =  $\{\phi, Y, \{b, c, d\}, \{d\}\}$ .

Define f:  $(X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$  by f(a)=c, f(b)=b, f(c)=a, f(d)=d. Here the inverse image of all  $\sigma_{1,2}$ - closed sets are  $(1,2)^*$ -  $\pi$ wg-closed in X, but not  $(1,2)^*$ -rg-closed in X. Hence f is  $(1, 2)^*$ -  $\pi$ wg-continuous in X and not  $(1, 2)^*$ - rg-closed in X)

**Remark: 4.23** The concepts of  $(1, 2)^*$ -  $\pi$ wg continuous,  $(1, 2)^*$ - rg $\alpha$ - continuous are independent.

**Example: 4.24** Let  $X = Y = \{a, b, c\}, \tau_1 = \{\phi, X, \{b\}, \tau_2 = \{\phi, X, \{c\}, \{b, c\}\}$ . Then  $\tau_{1,2}$ -open  $=\{\phi, X, \{b\}, \{c\}, \{b, c\}\}$  and  $\tau_{1,2}$ -closed  $= \{\phi, X, \{a, c\}, \{a, b\}, \{a\}\}$ . Let  $\sigma_1 = \{\phi, Y, \{a\}\}, \sigma_2 = \{\phi, Y\}\}, \sigma_{1,2}$ -open  $= \{\phi, Y, \{a\}\}, \sigma_{1,2}$ -closed  $= \{\phi, Y, \{b, c\}\}$ . Define f:  $(X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$  by f(a)=a, f(b)=b, f(c)=c. Here f<sup>1</sup>({b, c}) = {b, c}, is not (1, 2)^\*- \pi wg-closed in X. But the inverse image of  $\sigma_{1,2}$ -closed sets are  $(1, 2)^*$ - rga-closed in X. Hence f is  $(1, 2)^*$  - rga -continuous and not  $(1, 2)^*$ -  $\pi wg$ -continuous.

Let  $X = Y = \{a, b, c, d\}, \tau_1 = \{\phi, X, \{d\}, \{b, c, d\}\}, \tau_2 = \{\phi, X, \{b\}, \{d\}, \{b, d\}, \{a, b, d\}, \{b, c, d\}\}$ . Then  $\tau_{1,2}$ -open =  $\{\phi, X, \{b\}, \{d\}, \{b, d\}, \{a, b, d\}, \{b, c, d\}\}$  and  $\tau_{1,2}$ -closed =  $\{\phi, X, \{a, c, d\}, \{a, b, c\}, \{a, c\}, \{c\}, \{a\}\}$ . Let  $\sigma_1 = \{\phi, Y, \{d\}\}, \sigma_2 = \{\phi, Y, \{c, d\}\}$ . Then  $\sigma_{1,2}$ - open =  $\{\phi, Y, \{d\}, \{c, d\}\}, \sigma_{1,2}$ - closed =  $\{\phi, Y, \{a, b, c\}, \{a, b\}\}$ . Define f:  $(X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$  by f(a)=a, f(b)=b, f(c)=c, f(d)=d. Here the  $(1,2)^*$ - mwg- closed sets are  $\{\phi, X, \{a\}, \{c\}, \{a, b\}, \{a, c\}, \{a, b\}, \{a, c\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\}\}$  and  $(1,2)^*$ - rga-closed sets are  $\{\phi, X, \{a\}, \{c\}, \{a, c\}, \{b, d\}, \{a, b, c\}, \{a, b, d\}, \{b, c, d\}\}$ . Here the inverse image of all  $\sigma_{1,2}$ - closed sets are  $(1,2)^*$ - mwg-closed in X, but f<sup>-1</sup> \{a, b\} = \{a, b\} is not  $(1,2)^*$ - rga-closed in X. Hence f is  $(1,2)^*$ - mwg-continuous in X and not  $(1,2)^*$ - rga-continuous in X.

**Remark:** 4.25 The concepts of  $(1, 2)^*$ -  $\pi$ wg-continuous,  $(1, 2)^*$  - rw-continuous are independent.

**Example: 4.26** Let  $X = Y = \{a, b, c, d\}$ ,  $\tau_1 = \{\phi, X, \{d\}, \{b, c, d\}\}$ ,  $\tau_2 = \{\phi, X, \{b\}, \{d\}, \{b, d\}, \{a, b, d\}, \{b, c, d\}\}$ . Then  $\tau_{1,2}$ -open =  $\{\phi, X, \{b\}, \{d\}, \{b, d\}, \{d\}, \{b, d\}, \{a, b, d\}, \{b, c, d\}\}$  and  $\tau_{1,2}$ -closed =  $\{\phi, X, \{a, c, d\}, \{a, b, c\}, \{a, c\}, \{c\}, \{a\}\}$ . Let  $\sigma_1 = \{\phi, Y, \{a\}, \{a, c\}\}$ ,  $\sigma_2 = \{\phi, Y, \{c\}\}$ . Then  $\sigma_{1,2}$ - open =  $\{\phi, Y, \{a\}, \{c\}, \{a, c\}\}$ .  $\sigma_{1,2}$ - closed =  $\{\phi, Y, \{a\}, \{a, c\}\}$ ,  $\sigma_2 = \{\phi, Y, \{c\}\}$ . Then  $\sigma_{1,2}$ - open =  $\{\phi, Y, \{a\}, \{c\}, \{a, c\}\}$ .  $\sigma_{1,2}$ - closed =  $\{\phi, Y, \{b, c, d\}, \{a, b, d\}, \{b, c\}, \{c, d\}, \{a, b, c\}, \{a, b, d\}, \{c\}, \{a, c\}\}$ . Let  $\{\phi, X, \{a\}, \{c\}, \{a, c\}, \{a, d\}, \{b, c\}, \{c, d\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, \{b, c\}, \{a, b\}, \{a, c\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, \{b, c\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, \{b, c\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, \{b, c\}, \{a, b\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, \{b, c\}, \{a, b\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, \{b, c\}, \{a, b\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, \{b, c\}, \{a, b\}, \{a, c\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, \{b, c\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, \{b, c\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, \{b, c\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, \{b, c\}, \{a, b, d\}, \{a, c, d\}, \{b, c\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, \{b, c\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, \{b, c\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, \{b, c\}, \{a, b, c\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, \{b, c\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, \{b, c\}, \{a, b, c\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, \{b, c\}, \{a, b, c\}, \{a, b, c\}, \{a, b, c\}, \{a, b, c\}, \{a, c\}, \{a, b, c\}, \{a, b, c\}, \{a, b, c\}, \{a, c\}, \{b, c\}, \{a, b, c\}, \{a, b, c\}, \{a, c\}, \{b, c\}, \{a, b, c\}, \{a, c\}, \{b, c\}, \{a, b, c\}, \{a, c\}, \{b, c\}, \{a, c\}, \{c\}, a\}, \{a, c\}, \{c\}, a\}, \{a, c\}, \{c\}, a\}, \{a, c\}, \{a, c\}, \{a, c\}, a\}, \{a, c\}, \{a, c\}, a\}, \{a, c\}, \{a, c\}, a\}, \{a, c\}, a\}, a\}$ . Here the inverse image of all  $\sigma_{1,2}$ - closed sets are  $\{a, c\}, \{a, c\}, \{a, c\}, \{a, c\}, a\}, a\}$ . Here the inverse image of all  $\sigma_{1,2}$ - closed in X). Hence f is (1,

Suppose, let f:  $(X,\tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$  be defined as f{a}={b}, f{b}={a}, f{c}= {c}, f(d]={d}. Then the inverse image of all  $\sigma_{1,2}$ - closed sets are  $(1, 2)^*$ -  $\pi$ wg-closed in X, but not  $(1, 2)^*$ -  $\pi$ wc-closed in X (i.e, f<sup>1</sup>{b, d}={a, d} is not  $(1, 2)^*$ -  $\pi$ wc-closed in X). Hence f is  $(1, 2)^*$ -  $\pi$ wg -continuous but not  $(1, 2)^*$ -  $\pi$ wc-continuous.

Remark: 4.27 From the above discussions and known results we have the following implications.



**Remark:** 4.26 The composition of two  $(1, 2)^*$ - $\pi$ wg-continuous functions need not be  $(1, 2)^*$ - $\pi$ wg continuous.

The fact given above is shown in the following example.

**Example: 4.27** Let X=Y=Z={a, b, c},  $\tau_1=\{\phi, X, \{a\}, \{a, b\}\}, \tau_2=\{\phi, X, \{b\}, \tau_{1,2}$ -open = { $\phi, X, \{a\}, \{b\}, \{a, b\}\}, \tau_{1,2}$ - closed = { $\phi, X, \{b, c\}, \{a, c\}, \{c\}\}, \sigma_1= \{\phi, Y, \{a\}, \sigma_2= \{\phi, Y, \{a, b\}\}, \sigma_{1,2}$ -open = { $\phi, Y, \{a\}, \{a, b\}\}, \sigma_{1,2}$ - closed = { $\phi, Y, \{b, c\}, \{c\}\}, \eta_1= \{\phi, Z, \{a\}\}, \eta_2= \{\phi, Z, \{a, b\}\}, \eta_{1,2}$ -open = { $\phi, Z, \{a\}, \{a, b\}\}, \eta_{1,2}$ - closed = { $\phi, Z, \{b, c\}, \{c\}\}, \eta_1= \{\phi, Z, \{a\}, \eta_2= \{\phi, Z, \{a, b\}\}, \eta_{1,2}$ - open = { $\phi, Z, \{a\}, \{a, b\}\}, \eta_{1,2}$ - closed = { $\phi, Z, \{b, c\}, \{c\}\}$ . Define f: X→Y by f(a)= b, f(b)=a, f(c)=c. Here f is (1, 2)\*-  $\pi$ wg continuous. Define g: Y→Z by g(a)=a, g(b)=b, g(c)=c. Also the map g is (1, 2)\*-  $\pi$ wg- continuous. But (gof )<sup>-1</sup>({b, c}) = {a, c} is not (1,2)\*-  $\pi$ wg continuous.

**Theorem: 4.28** Every  $(1, 2)^*$ -  $\pi$ wg - irresolute function is  $(1, 2)^*$ -  $\pi$ wg - continuous, but not conversely.

**Proof:** Let f:  $(X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$  is  $(1, 2)^*$ -  $\pi$ wg - irresolute and V is  $\sigma_{1,2}$ -closed set in Y. Then V is  $(1, 2)^*$ -  $\pi$ wg - closed in Y. Also, f is  $(1, 2)^*$   $\pi$ wg - irresolute, f<sup>1</sup>(V) is  $(1, 2)^*$ -  $\pi$ wg-closed in X. Hence f is  $(1, 2)^*$ -  $\pi$ wg - continuous. The converse of the above need not be true. We show the converse by the following example.

**Example: 4.29** Let  $X = Y = \{a, b, c\}, \tau_1 = \{\phi, x, \{a\}, \{a, c\}\}, \tau_2 = \{\phi, x, \{c\}\}, \tau_{1,2}$ -open =  $\{\phi, x, \{a\}, \{c\}, \{a, c\}\}, \tau_{1,2}$ -closed=  $\{\phi, x, \{b\}, \{a, b\}, \{b, c\}\}, \sigma_1 = \{\phi, Y, \{a\}, \{a, b\}\}, \sigma_2 = \{\phi, Y\}, \sigma_{1,2}$ -open =  $\{\phi, Y, \{a\}, \{a, b\}\}, \sigma_{1,2}$ -closed =  $\{\phi, Y, \{b, c\}, \{c\}\}, \text{ Define f: } (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2) \text{ by } f(a) = a, f(b) = c, f(c) = b.$  Here the map f is  $(1, 2)^*$ -  $\pi$ wg-continuous. But  $f^1\{b\} = \{c\}$  and  $f^1(\{a, b\}) = \{a, c\}$  are not  $(1, 2)^*$ -  $\pi$ wg- closed in X. Hence f is not  $(1, 2)^*$ -  $\pi$ wg-irresolute.

**Theorem: 4.30** Let f:  $X \rightarrow Y$  and g:  $Y \rightarrow Z$  be any two functions. Then (gof) is  $(1, 2)^*$ -  $\pi wg$ -continuous if g is  $(1, 2)^*$ - continuous and f is  $(1, 2)^*$ -  $\pi wg$ -continuous.

**Proof:** Let V be any  $\eta_{1,2}$ -closed set in Z. Then  $g^{-1}(V)$  is  $\sigma_{1,2}$ -closed in Y. Since g is  $(1, 2)^*$ - continuous.

Thus  $f^1[g^{-1}(V)]$  is  $(1, 2)^*$ -  $\pi wg$  - closed in X and f is  $(1, 2)^*$ -  $\pi wg$  -continuous. Then (gof) is  $(1, 2)^*$ -  $\pi wg$ - continuous.

**Theorem: 4.31** Let f:  $X \rightarrow Y$  and g:  $Y \rightarrow Z$  be any two functions. Then (gof) is  $(1, 2)^*$ -  $\pi$ wg -irresolute if g is  $(1, 2)^*$  - irresolute and f is  $(1, 2)^*$ -  $\pi$ wg- irresolute.

**Proof:** Let U be any  $(1, 2)^*$ -  $\pi$ wg- closed set in Z. Since g is  $(1, 2)^*$ -  $\pi$ wg irresolute, g<sup>-1</sup>(U) is  $(1, 2)^*$ -  $\pi$ wg-closed in Y. Then f<sup>1</sup>[g<sup>-1</sup>(U)]= (gof)<sup>-1</sup>(U) is  $(1, 2)^*$ -  $\pi$ wg -closed in X. Therefore, (gof) is  $(1, 2)^*$ -  $\pi$ wg -irresolute.

**Theorem: 4.31** Let f:  $X \rightarrow Y$  and g:  $Y \rightarrow Z$  be any two functions. Then (gof) is  $(1, 2)^*$ -  $\pi wg$  -continuous if g is  $(1, 2)^*$  -  $\pi wg$ -continuous and f is  $(1, 2)^*$ -  $\pi wg$ - irresolute.

**Proof:** Let V be any  $\eta_{1,2}$  - closed set in Z. Since g is  $(1, 2)^*$ -  $\pi$ wg -continuous, g<sup>-1</sup>(V) is  $(1, 2)^*$ -  $\pi$ wg -closed in Y. Then f<sup>1</sup>[g<sup>-1</sup>(V)]= (gof)<sup>-1</sup>(V) is  $(1, 2)^*$ -  $\pi$ wg- closed in X and f is  $(1, 2)^*$  -  $\pi$ wg -irresolute. Therefore (gof) is  $(1, 2)^*$ -  $\pi$ wg -continuous.

## 5. APPLICATIONS

Here, we introduce and study  $(1, 2)^*$ - T<sub>mwg</sub>-Space and study its relationship with other existing spaces.

**Definition: 5.1** A Bitopological space X is called  $(X, \tau_1, \tau_2)$  is

- 1)  $(1,2)^* \pi wg T_{1/2}$  space if every  $(1,2)^* \pi wg$ -closed set in X is  $(1,2)^*$ -g-closed in X.
- 2)  $(1,2)^*$ -T <sub>mwg</sub>-space if every  $(1,2)^*$  mwg -closed subset of X is closed in X.

**Proposition: 5.2** Every  $(1, 2)^*$ -T<sub>mwg</sub>-Space is

(i)  $(1, 2)^*$ -T<sub>wg</sub>-space, (ii)  $(1, 2)^*$ - $\alpha$ -space, (iii)  $(1, 2)^*$ -T<sub>1/2</sub>-space and (iv)  $(1, 2)^*$ -T<sub> $\omega$ </sub>-space.

**Proof:** Let  $(X, \tau_1, \tau_2)$  is  $(1,2)^*$ -  $T_{\pi wg}$ -Space and let A be  $(1,2)^*$ -wg closed set in X. Then it is  $(1, 2)^*$ -  $\pi wg$ -closed. Since X is  $(1, 2)^*$ -  $T_{\pi wg}$ -space, A is closed, hence X is  $(1, 2)^*$ -  $T_{wg}$ -space.

Remark 5.3: Similar arguments for (ii), (iii) and (iv).

Remark 5.4: The converse of the above need not be true as seen in the following examples.

**Example: 5.5** Let X = {a, b, c, d},  $\tau_1 = \{\varphi, X, \{a\}, \{b\}, \{a, b\}\}, \tau_2 = \{\varphi, X, \{a\}, \{b\}, \{a, b\}, \{a, b, d\}, \{a, b, c\}\}, \tau_{1,2}$ -open = { $\varphi, X, \{a\}, \{b\}, \{a, b\}, \{a, b, d\}, \{a, b, c\}\}, \tau_{1,2}$ -closed = { $\varphi, X, \{b, c, d\}, \{a, c, d\}, \{c, d\}, \{c\}\}$ . Here the (1, 2)\*-wg - closed sets are in  $\tau_{1,2}$ - closed in X and not (1,2)\*-  $\pi$ wg -closed in X. Hence the space is  $T_{wg}$ -space but not  $T_{\pi wg}$ - space.

**Example: 5.6** In Example 5.4,  $(1, 2)^*$ -  $\alpha$  closed sets are  $\tau_{1,2}$ - closed in X. Hence the space is  $(1, 2)^*$ -  $\alpha$  space. But the  $(1, 2)^*$ -  $\pi$ wg -closed sets are not  $\tau_{1,2}$ - closed in X. Hence the  $(1, 2)^*$ -  $\alpha$ - space need not be a  $(1, 2)^*$ -  $\pi$ wg - space.

**Example: 5.7** Let  $X = \{a, b, c\}, \tau_1 = \{\phi, X, \{b\}\}, \tau_2 = \{\phi, X, \{b\}, \{a, b\}, \{b, c\}\}, \tau_{1,2}$ -open =  $\{\phi, X, \{b\}, \{a, b\}, \{b, c\}\}, \tau_{1,2}$ - closed =  $\{\phi, X, \{a, c\}, \{c\}, \{a\}\}$ . Here the (1, 2)\*-g-closed sets are closed in X. Hence the space X is (1, 2)\*- $T_{1/2}$ - Space. But the (1, 2)\*- $\pi$ wg-closed sets are not  $\tau_{1,2}$ -closed in X. Hence every (1, 2)\*- $\pi$ wg-space is a (1, 2)\*- $T_{1/2}$ -space but not conversely.

**Example: 5.8** In Example 3.12, the  $(1, 2)^*$  - w-closed sets are  $\tau_{1,2}$ -closed in X. Hence the space X is a  $(1, 2)^*$ -T<sub> $\omega$ </sub>-space, but the  $(1, 2)^*$ -  $\pi$ wg -closed sets are not  $\tau_{1,2}$ - closed in X. So,  $(1, 2)^*$ -T<sub> $\omega$ </sub> -space need not be a  $(1, 2)^*$ -T<sub> $\pi$ wg</sub>-Space.

**Proposition: 5.8** If a space X is  $(1, 2)^*$ -  $\pi$ wg-T<sub>1/2</sub> -Space, then every singleton set of X is either  $(1, 2)^*$ -  $\pi$ -closed or  $(1, 2)^*$ - g -open.

**Proof:** Let  $x \in X$  and assume that  $\{x\}$  is not  $(1, 2)^*$ -  $\pi$ -closed. Then clearly X- $\{x\}$  is trivially a  $(1, 2)^*$ -  $\pi$ wg- closed set. By our assumption,  $\{x\}$  is  $(1, 2)^*$ -g -open.

**Proposition: 5.9** For a space  $(X, \tau_1, \tau_2)$ ,

(i) (1, 2)\*-GO(X,  $\tau_1, \tau_2$ )  $\subset$  (1, 2)\*-  $\pi$ WGO(X,  $\tau_1, \tau_2$ ). (ii) A space is (1, 2)\*-  $\pi$ wg-T<sub>1/2</sub>-space iff (1, 2)\*-GO(X,  $\tau_1, \tau_2$ ) = (1, 2)\*-  $\pi$ WGO(X,  $\tau_1, \tau_2$ ). **Proof (i):** Let A be  $(1, 2)^*$ -g -open set, then X-A is  $(1,2)^*$ -g-closed set. Since every  $(1, 2)^*$ -g-closed set is  $(1, 2)^*$ -

Hence X-A is  $(1, 2)^*$ -  $\pi$ WGC(X) and hence A is  $(1, 2)^*$ -  $\pi$ WGO(X).

 $\Rightarrow (1, 2)^* \text{-} \text{GO}(X, \tau_1, \tau_2) \subset (1, 2)^* \text{-} \pi \text{WGO}(X)(X, \tau_1, \tau_2).$ 

**Proof (ii):** Let X be  $(1, 2)^*$ -  $\pi$ wg-T<sub>1/2</sub>.space .Then A  $\in$   $(1, 2)^*$ -  $\pi$ wg-open  $(X, \tau_1, \tau_2)$ .

Then X-A is  $(1, 2)^*$ -  $\pi$ wg-closed in X. By hypothesis, X-A is  $(1, 2)^*$ -g-closed and then A $\in$ (1,2)\*- GO(X,  $\tau_1, \tau_2$ ).

Therefore,  $(1, 2)^*$ - GO  $(X, \tau_1, \tau_2) = (1, 2)^*$  -  $\pi$ wg-open  $(X, \tau_1, \tau_2)$ .

Conversely, let  $(1, 2)^*$ - GO  $(X, \tau_1, \tau_2) = (1, 2)^*$  -  $\pi$ wg-open  $(X, \tau_1, \tau_2)$ .

Let A be  $(1, 2)^*$ -  $\pi$ wg-closed set. Then X-A is  $(1, 2)^*$ -  $\pi$ wg-open set. By assumption, X-A is  $(1, 2)^*$ -GO(X). And then A is  $(1, 2)^*$ -g-closed in X. Hence X is  $(1, 2)^*$ -  $\pi$ wg-T<sub>1/2</sub>-Space.

**Theorem: 5.10** Every  $(1, 2)^*$ -T<sub>*mwg*</sub>- Space is  $(1, 2)^*$ - *mwg*-T<sub>1/2</sub>-Space.

**Proof:** Straight forward.

Remark: 5.11 The converse of the above need not be true as shown in the following example.

**Example: 5.12** In Example 4.8, the  $(1,2)^*$ -  $\pi$ wg-closed sets are  $(1,2)^*$ -g-closed in X but the  $(1,2)^*$ -  $\pi$ wg-closed sets are not  $\tau_{1,2}$ -closed in X. Hence the space is  $(1,2)^*$ -  $\pi$ wg-T<sub>1/2</sub>-Space but not  $(1,2)^*$ -  $\pi$ wg-Space.

**Theorem: 5.13** Let f:  $X \rightarrow Y$  and g:  $Y \rightarrow Z$  be any two functions. Then (gof) is  $(1, 2)^*$ - g- continuous if f is  $(1, 2)^*$ - $\pi$ wg-irresolute, g is  $(1,2)^*$ - $\pi$ wg-continuous and Y is a  $(1,2)^*$ - $\pi$ wg- $T_{1/2}$ -space.

**Proof:** Let V be a  $\eta_{1,2}$ -closed set in Z. Then  $g^{-1}(V)$  is  $(1, 2)^*$ -  $\pi wg$  closed in Y, since g is  $(1, 2)^*$ -  $\pi wg$ -continuous. As Y is a  $(1, 2)^*$ -  $\pi wg$ -T<sub>1/2</sub>-space,  $g^{-1}(V)$  is  $(1,2)^*$ -g-closed in Y. Irresoluteness of f implies that  $f^{-1}[g^{-1}(V)]$  is  $(1,2)^*$ -g-closed in X. Hence (gof) is  $(1, 2)^*$ -g-continuous.

## REFERENCES

[1] Antony Rex Rodrigo. J, Ravi. O, Pandi. A, Santhana. C.M, On  $(1, 2)^*$ -s-Normal spaces and Pre –  $(1, 2)^*$ -gs-closed functions, Int. J. of Algorithms, Computing and Mathematics, Vol.4, No1, Feb -2011, 29-42.

[2] Arokiarani.I, Mohana.K,  $(1, 2)^*$ -  $\pi g\alpha$ - Closed Maps in Bitoplogical spaces, Int. Journal of Math. Analysis, Vol. 5, 2011, no. 29, 1419 - 1428.

[3] Dontchev. J, Noiri.T, Quasi normal spaces and πg-closed sets, Acta Math. Hungar, 89(3), 2000, 211-219.

[4] Fututake, On generalized closed sets in bitopological spaces, Bull. Fukuoka Univ. Ed. Part -III, 35, (1986), 19-28.

[5] Jafari.S, M.Lellis Thivagar ans Nirmala Mariappan, On  $(1, 2)^*$ - $\alpha \hat{g}$ -closed sets, J. Adv. Math. Studies, 2(2) (2009), 25-34

[6] Kelly.J.C, Bitopological spaces, proceedings, London, Math. Soc., Vol.13, pp-71-89, 1983.

[7] Levine.N, generalized closed sets in topology, Rend.circ. Mat.Palermo, 19(1970), 89-96.

[8] Lellis Thivagar.M and Nirmala Mariappan,  $(1, 2)^*$ - Strongly Semi-pre  $-T_{1/2}$  –spaces, Bol. Soc. Paran. Mat, Vol 27 2(2009), 15-22.

[9] Lellis Thivagar.M and M.Margaret Nirmala, R. Raja Rajeshwari and E. Ekici, "A note on (1,2)\*- gpr-closed sets, Math .Maced, Vol.4,pp.33-42,2006.

[10] Ravi.O, Pious Missier, Salai Parkunan .T and Pandi.A, Remarks on Bitopological (1,2)\*-rw-homeomorphisms, IJMA-2(4), Apr- 2011, 465-475.

[11] Ravi.O and Lellis Thivagar .M, Ekici.E, On (1, 2)\*-sets and decomposition of bitopological (1, 2)\*- continuous mappings, Kochi J. Math., 3(2008), 181-189.

[12] Ravi.O,Pious Missier, Salai Parkunan .T and Mahaboob Hassain Sherief, On (1,2)\*- semi generalized star homeomorphisms, Int, J. of Computer Sci. & Engg. Tech., Vol 2, april-2011, 312-318.

[13] Ravi.O, Pious Missier and Mahaboob Hassain Sherief, A note on (1,2)\*- gpr-closed sets, Archimedes J. Math.(To appear)

[14] Ravi.O and Lellis Thivagar, "On Stronger forms of (1,2)\*- quotient mappings in bitopological spaces:, Internat. J. Math. Game theory and Algebra, Vol.14, No.6, pp.481-492, 2004.

[15] Ravi.O and Lellis Thivagar, A bitopological (1, 2)\*-semi-generalized continuous maps, Bull. Malays. Math. Sci. Soc., (2), 29(1) (2006), 79-88.

[16] Ravi.O and Lellis Thivagar, K. Kayathiri and M. Jopseph Isreal, Decompositions of (1, 2)\*-rg-continuous maps in bitopological spaces. Antarctica Journal Math.6 (1) (2009), 13-23.

[17] Ravi.O and Lellis Thivagar, K. Kayathiri and M. Jopseph Isreal."Mildly (1, 2)\*-Normal Spaces and some bitopological functions", Mathematica Bohemica, Vol. 135, No.1, pp. 1-13, 2010.

[18] Ravi.O and Lellis Thivagar, M.E.Abd El-Monsef, "Remarks on bitopological (1,2)\*- quotient mappings", J. Egypt Math. Soc. Vol.16, No.1, pp.17-25, 2008.

[19] Ravi.O , Lellis Thivagar and M.Joseph Isreal ."A Bitopological approach on  $\pi$ g-closed ets and continuity, International Mathematical Forum.(To appear).

[20] Ravi.O, Pious Missier and Mahaboob Hassain Sherief, On (1, 2)\*- sets and weakly generalized (1, 2)\*-continuous maps in bitopological spaces(submitted)

Source of support: Nil, Conflict of interest: None Declared