COMPOSITION AND WEIGHTED COMPOSITION OPERATORS ACTING ON SEQUENCE SPACES DEFINED BY MODULUS FUNCTIONS

¹Kuldip Raj, ²B. S. Komal and ³Vinay Khosla

¹School of Mathematics Shri Mata Vaishno Devi University, Katra -182320, J&K (India)

²Department of Mathematics University of Jammu, Jammu (India)

E-mail: kuldeepraj68@hotmail.com

(Received on: 04-01-11; Accepted on: 18-01-11)

ABSTRACT

In this paper we study composition operators and weighted composition operators on sequence spaces defined by modulus functions.

Keywords: Composition operator, Weighted composition operator, Fredholm operator, Closed range and Invertible operator.

induced by u.

Mathematics subject classification: Primary 47B20, Secondary 47B38.

1. INTRODUCTION AND PRELIMINARIES:

A modulus function is a function $f:[0,\infty) \to [0,\infty)$ such that

- (i) f(x) = 0 if and only if x = 0.
- (ii) $f(x+y) \le f(x) + f(y)$ for all $x \ge 0, y \ge 0$.
- (iii) f is increasing.
- (iv) f is continuous from right at 0.

It follows that f must be continuous everywhere on $[0,\infty)$. The modulus function may be bounded or unbounded. For example

take
$$f(x) = \frac{x}{x+1}$$
, then $f(x)$ is bounded. If

 $f(x) = x^p$, 0 then the modulus function <math>f(x) is unbounded. Let f be a modulus function and $A = (a_{nk})$ be a

non-negative matrix such that $\sup_{n} \sum_{k=1}^{\infty} a_{nk}$ is finite. If we

denote by C , the space of all sequence $x = \{x_k\}$, then by

*Corresponding author: ¹Kuldip Raj

that $\lim_n \sum_{k=1}^\infty a_{n,k} f(|x_k|) = 0$. The class $W_0(A,f)$ is a linear space over the complex field C, For every $x \in W_0(A,f)$, we define $\|x\|_{A,f} = \sup_n \sum_{k=1}^\infty a_{nk} f(|x_k|)$. Bhardwaj and Singh[1] proved that $\|...|_{A,f}$ is a paranorm on $W_0(A,f)$ and $(W_0(A,f),|...|_{A,f})$ is a complete linear topological space. If $v:N\to N$ and $u:N\to C$ be two mappings. Then a bounded linear transformation $m_{u,v}:W_0(A,f)\to W_0(A,f)$ defined by $(m_{u,v}f)(x)=u(x)f(v(x))$ is called a weighted composition operator induced by (u,v). If we take u(x)=1, the constant one function, we write $m_{u,v}$ as T_v and call it a composition operator. In case v(x)=x, for every x we write $m_{u,v}$ as m_u and call it multiplication operator on $W_0(A,f)$

^{*}e-mail: kuldeepraj68@hotmail.com

H.Takagi and K.Yokouchi [9] initiated the study of multiplication and composition operators between L^p – spaces, whereas the study of weighted composition operators on some function spaces are considered by Carlson([2],[3]), Jamison and Rajagopalan [4], Kamowitz[5], Komal, B. S., Raj, Kuldip and Gupta Sunil[6], Takagi[8]. For more details see Singh and Manhas [7].

In this paper we plan to study composition and weighted composition operators acting on sequence spaces defined by modulus functions.

2. COMPOSITION OPERATORS ACTING ON SEQUENCE SPACES DEFINED BY MODULUS FUNCTION:

In this section we discuss composition operators acting on sequence spaces defined by modulus functions.

Theorem: 2.1 Let $T_{v}:W_{0}(A,f) \to W_{0}(A,f)$ be a linear transformation. Then T_{v} is bounded if there exists M>o such that $\sum_{m \in v^{-1}(k)} a_{nm} \leq M a_{nk}$ for all $k \in N$ and $n \in N$.

Proof: Suppose that the condition of the theorem is true. if $x \in W_0(A, f)$, then

$$\lim_{n\to\infty} \sum_{k=1}^{\infty} \sum_{m \in v^{-1}(k)} a_{n,m} f(|x_k|) \le M \lim_{n\to\infty} \sum_{k=1}^{\infty} a_{nk} f(|x_k|) = 0$$

Which shows that $T_{v}x \in W_{0}(A, f)$, Further

$$\|T_{\nu}x\|_{A,f} = \sup_{n} \left\{ \sum_{k=1}^{\infty} a_{nk} f(x_{0}\nu(k)) \right\}$$

$$\leq M \sup_{n} \sum_{k=1}^{\infty} a_{nk} f(x_{k})$$

$$= M \|x\|_{A,f}$$
(1)

The continuity of T_{ν} at origin follows from the inequality (i). Since T_{ν} is linear, so it is continuous everywhere.

Theorem: 2.2 If T_{ν} is bounded, then there exists M>o such that

$$\sup_{n} \sum_{m \in \mathcal{V}^{-1}(k)} a_{nm} \le M \sup_{n} a_{nk} \tag{2}$$

Proof: If the condition (ii) is not satisfied then for every positive integer k > 0, there exists positive integer p_k and n_k such that

$$\sup_{n} \sum_{m \in v^{-1}(k)} a_{nm} > k \sup_{n} a_{nk} \text{ Let } x^{pk} \in W_0(A, f) \text{ be such}$$

that

$$x^{pk}(s) = \begin{cases} f^{-1} \left(\frac{1}{\sup \sum_{m \in v^{-1}(k)} a_{nm}} \right) & \text{if } s = p_k \\ 0, & \text{elsewhere} \end{cases}$$

Then

$$\|x^{pk}\|_{A,f} = \sup_{n} \left\{ \sum_{m=1}^{\infty} a_{nm} f\left(x^{pk}(m)\right) \right\}$$

$$= \sup_{n} \left\{ \sum_{m=1}^{\infty} a_{n,p_{k}} \frac{1}{\sup_{n} \sum_{m \in v^{-1}(pk)} a_{nm}} \right\}$$

$$= \frac{1}{k} \to 0 \text{ as } k \to \infty.$$

And

$$\left\|T_{\nu}x^{pk}\right\|_{A,f} = \sup_{n} \left\{ \sum_{m=1}^{\infty} a_{nm} f\left(x^{pk} \left(v(m)\right)\right) \right\}$$

$$= 1.$$

This contradicts the continuity of $T_{\scriptscriptstyle V}$. Hence the condition (2) must be true.

Theorem: 2.3 Let $T_{\nu} \in B(W_{0(A,f)})$. Then T_{ν} has closed range if there exists $\delta > 0$ such that

$$\sum_{m \in v^{-1}(k)} a_{nm} \ge \delta a_{nk} \tag{3}$$

for every $k \in N$ and $n \in N$.

Proof: We first assume that the condition (3) is true and then show that T_v has closed range. Let $x \in ranT_v$ and let $\{x^n\}$ be

a sequence in $W_0(A,f)$ such that $T_{\nu}x^n \to x$. Then for every $\varepsilon>0$ there exists positive integer n_0 such that $\left\|T_{\nu}x^n-T_{\nu}x^m\right\|_{A,f}<\varepsilon$ for all $n,m\geq n_0$ or equivalently,

$$\varepsilon > \sup \left\{ \sum_{k=1}^{\infty} \sum_{p \in v^{-1}(k)} a_{np} f(|x_n(p) - x_m(p)|) \right\}$$

$$\geq \delta \left| \sup_{n} \left\{ \sum_{k=1}^{\infty} a_{nk} f(|x^n(p) - x^m(p)|) \right\} \right|$$

$$= \delta ||x^n - x^m||_{A,f}$$
(4)

for all $n,m \geq n_0$. From (4) it follows that $\{x_n\}$ is a cauchy sequence in $W_0(A,f)$. In view of completeness of $W_0(A,f)$ there exists $y \in W_0(A,f)$ such that $x^n \to y$. From the continuity of T_v , $T_v x^n \to T_v y$. Hence $x = T_v y$. So that $x \in ranT_v$. Hence $ranT_v$ is closed.

Theorem: 4 Let $T_{\nu}x \in B(W_0(A, f))$. Then T_{ν} is invertible

if

- (i) v is invertible
- (ii) $\sup_{n} a_{n\nu(m)} \le M \sup_{n} a_{nm} \text{ for every } n, m \in N \text{ where}$

 $M_{\text{is a constant such that}} M > o$

Proof. Suppose T_v is an invertible operator. We show that v is invertible. If , $k \notin v(N)$ then $T_v e_k = 0$,

where e_k is defined as

$$e_{k}(s) = \begin{cases} f^{-1} \left(\frac{1}{\sup a_{nk}} \right) & if \quad s - k \\ 0, \quad elsewhere \end{cases}$$

So that T_{ν} has non-trivial kernel. Hence ν must be surjective. Next, if ν is not injective,then $v(n_1) = v(n_2)$ for two distinct positive integers n1 and n2 so that en1 does not belong to the range of T_{v} . Hence v must be injective. Let w be the inverse of v. Clearly T_{w} is the inverse of v. Since v is continuous, in view of theorem (2.2) we have

$$\sup_{n} \sum_{m \in v^{-1}(k)} a_{nm} \le M \sup_{n} a_{nk} \text{ for every } k \in N.$$

Hence $a_{nv(k)} \le Ma_{nk}$ for every k.

Theorem: 2.5 Let $T_v \in B(W_0(A, f))$. Then T_v is an isometry if $\sum_{m \in v^{-1}(k)} a_{nm} = a_{nk}$ for every $k, n \in N$..

Proof: If the condition of the theorem is satisfied, then for every $x \in W_0(A, f)$, we have

$$\begin{aligned} \left\| T_{v} x \right\|_{A,f} &= \sup_{n} \left\{ \sum_{k=1}^{\infty} \sum_{m \in v^{-1}(k)} a_{nm} f \left| x_{k} \right| \right\} \\ &= \sup_{n} \left\{ \sum_{m=1}^{\infty} a_{nk} f \left(x^{pk} \left(m \right) \right) \right\} \\ &= \left\| x \right\|_{A,f} \end{aligned}$$

This proves the theorem.

Theorem: 2.6 Let $T_{\nu}:W_0(A,f) \to W_0(A,g)$ be linear transformation. Then T_{ν} is bounded if there exists M>o

$$\sum_{m \in v^{-1}(k)} a_{nm} g(y) \le M a_{nk} f(y)$$

for all $k, n \in \mathbb{N}$. and $y \in \mathbb{R}^+$. (5)

Proof: Suppose the condition (5) is true. Then for $x \in W_0(A, f)$ we have

$$\lim_{n\to\infty}\sum_{k=1}^{\infty}\sum_{m\in v^{-1}(k)}a_{nm}g\left(\left|x_{k}\right|\right)\leq\lim_{n\to\infty}M\sum_{k=1}^{\infty}a_{nk}f\left(\left|x_{k}\right|\right)$$

=0

Which proves that $T_{v}x \in B(W_{0}(A,g))$ Further,

$$||T_{v}x||_{A,g} = \sup_{n} \left\{ \sum_{k=1}^{\infty} a_{nk} g(|x(v(x))|) \right\}$$

$$= M \sup_{n} \left\{ \sum_{k=1}^{\infty} a_{nk} f(|x_{k}|) \right\}$$
$$= ||x||_{A_{f}}.$$

This shows that T_{ν} is continuous at the origin. From linearity of T_{ν} it is continuous everywhere.

Theorem: 2.7 Let $T_v \in B(W_0(A,f),W_0(A,g))$ Then T_v has closed range if there exists $\delta > 0$ such that

$$\sum_{n \in v^{-1}(k)} a_{nm} g(y) \ge \delta a_{nk} f(y) \text{ for all } k, n \in \mathbb{N}. \text{ and } y \in \mathbb{R}^+.$$

Proof: Assume that the condition of the theorem is satisfied. We show that T_{ν} has closed range.

Let $x \in ranT_v$. Then there exists a sequence $\{x_n\} \subset W_0(A,f)$ such that $T_v x_n \to x$. So for every $\mathcal{E} > o$ there exists a positive integer n_0 such that $\|T_v x_n - T_v x_m\|_{A,g} < \mathcal{E}$ for all $n,m \geq n_0$ or equivalently,

$$\varepsilon > \sup \left\{ \sum_{k=1}^{\infty} \sum_{p \in v^{-1}(k)} a_{np} g\left(\left| x_n(p) - x_m(p) \right| \right) \right\}$$
$$= \delta \left\| x_n - x_m \right\|_{A_f}$$

It follows that $\{x_n\}$ is a cauchy sequence in $W_0(A,f)$. In view of completeness of $W_0(A,f)$, there exists $y\!\in\!W_0(A,f)$ such that $x_n\to y$. From the continuity of T_v we have $T_vx_n\to T_vy$ Thus $x=T_vy$ Hence $x\in ramT_v$. So that $ranT_v$ is closed.

3. WEIGHTED COMPOSITION OPERATORS ACTING BETWEEN SEQUENCE SPACES DEFINED BY MODULUS FUNCTION

In this section we discuss weighted composition operators acting between sequence spaces defined by modulus functions.

Theorem: 3.1 Let $m_{u,v}:W_0(A,f)\to W_0(A,g)$ be a linear transformation. Then $m_{u,v}$ is bounded if

there exists M > o such that

$$\sum_{n \in \mathbb{N}^{-1}(x)} a_{nm} g(|u(p)|) \le M a_{np} f(y) \tag{6}$$

for all $p, n \in N$ and $y \in R^+$.

Proof: Suppose that the condition (6) is true. If $x \in W_0(A, f)$ then

$$\lim_{n\to\infty}\sum_{p=1}^{\infty}\sum_{m\in v^{-1}(p)}a_{nm}g(x_p|)\leq M\lim_{n\to\infty}\sum_{p=1}^{\infty}a_{np}f(x_p|)=0,$$

Which shows that $m_{u,v} x \in W_0(A, g)$. Further,

$$\|m_{u,v}x\|_{A,f} = \sup_{n} \left\{ \sum_{p=1}^{\infty} a_{np} g(|u(p)xov(p)|) \right\}$$

$$\leq M \sup_{n} \sum_{p=1}^{\infty} a_{np} f(|x_{p}|)$$

$$= M \geq \|x\|_{A,f}$$
(7)

The continuity of $m_{u,v}$ at the origin follows from the inequality (7). Since $m_{u,v}$ is linear so it is continuous everywhere.

Corollary: 3.2. If $m_{u,v}$ is bounded, then there exists M > o such that

$$\sup_{n} \sum_{m \in v^{-1}(p)} a_{nm} g(|u(p)y|) \leq M \sup_{n} a_{np} f(y)$$

for all $p, n \in N$ and $y \in R^+$.

Theorem: 3.3 Let $m_{u,v} \in B(W_0(A, f), W_0(A, g))$. Then $m_{u,v}$ has closed range if there exists $\delta > 0$ such that

$$\sum a_{nm} g(|u(k)y|) \ge \delta a_{nk} f(y) \quad \text{for all } k, n \in \mathbb{N} \quad \text{and}$$
$$y \in \mathbb{R}^+.$$

Proof: Assume that the condition of the theorem is satisfied. We show that $m_{u,v}$ has closed range.

Let $x\in ranm_{u,v}$. Then there exists a sequence $\{x_n\}\subset W_0(A,f)$ such that $m_{u,v}x^n\to x$ So for every

 $\mathcal{E}>0 \ \ \text{there exists} \ \ n_0 \ \ \text{such that} \ \left\|m_{u,v}x_n-m_{u,v}x_m\right\|_{A,g}<\mathcal{E}$ for all $n,m\geq n_0$ or equivalently,

$$\varepsilon > \sup \left\{ \sum_{k=1}^{\infty} \sum_{p \in v^{-1}(k)} a_{np} g(|u(p)(x_n(p) - x_m(p))|) \right\}$$

$$\geq \delta \left| \sup_{n} \left\{ \sum_{k=1}^{\infty} a_{nk} f(|x_n(p) - x_m(p)|) \right\} \right|$$

$$= \delta ||x_n - x_m||_{A, f}.$$

It follows that $\{x_n\}$ is a cauchy sequence in $W_0(A,f)$ In view of completeness of $W_0(A,f)$ there exists $y \in W_0(A,f)$ such that $x_n \to y$. From the continuity $m_{u,v}$ we have $m_{u,v}x_n \to m_{u,v}y$. Hence $x = (m_{u,v}y) \in ranm_{u,v}$. So that ran $m_{u,v}$ is closed.

Corollary: 3.4 Let $m_{u,v} \in B(W_0(A,f),W_0(A,g))$ be such that $m_{u,v}$ has closed range if there exists $\delta > 0$ such that $\sup_n \sum_{m \in v^{-1}(p)} a_{nm} g(|u(k)y|) \ge \delta \sup_n a_{nk} f(y) \text{ for all } k,n \in N$ and $y \in R^+$.

REFERENCES:

- [1] Bhardwaj, Vinod K. and Singh, Niranjan, On some sequence spaces defined by a modulus, Indian J.Pure Appl.Math. 30(8)(1999), 809-817.
- [2] Carlson, J. W., Weighted Composition operators on l^2 , Ph.D. thesis, Purdue Univ. (1985).
- [3] Carlson, J. W., Hyponormal and quasinormal weighted composition operators on l^2 , Rocky Mountain Journal of Mathematics, 20 (1990), 399-407.
- [4] Jamison, J. E. and Rajagopalan , M., Weighted composition Operators on C(X,E) , Journal of operator Theory, 19(1988), 307-317.
- [5] Kamowitz, H., Compact weighted endomorphism of C(X)Proc. Amer. Math. Soc. 83(1981), 517-521.

- [6] Komal, B. S., Raj, Kuldip and Gupta, Sunil, On operators of weighted substitution on the generaliged spaces of entire functions-I math today Vol.XV (1997), 3-10.
- [7] Singh, R. K. and Manhas, J. S., Composition operators on function spaces, North-Holland, 1993.
- [8] Takagi, H.,Fredholm Weighted composition operators, Integ.Eqns. Oper.Theory, 16(1993), 267-276.
- [9] Takagi, H. and Yokouchi, K., Multiplication and composition operators between L_p -spaces, Contemporary Math., 232(1999), 321-338.