International Journal of Mathematical Archive-3(5), 2012, 2083-2088 MA Available online through <u>www.ijma.info</u> ISSN 2229 - 5046

$(1, 2)^*$ -M_{$\delta\pi$}-Closed Sets in Bitopological Spaces

K. Mohana* & I. Arockiarani**

*Lecturer, Department of Quantitative Techniques, T. John College, Bangalore-560 083, India **Associate Professor Department of Mathematics, Nirmala College for Women, Coimbatore (TN), India

(Received on: 07-02-12; Revised & Accepted on: 11-06-12)

ABSTRACT

In this paper, a new class of sets, namely $(1, 2)^*-M_{\delta\pi}$ -closed sets is introduced in bitopological spaces. We prove that this class lies between the class of $(1, 2)^*-\delta$ -closed sets and the class of $(1, 2)^*-\delta$ g-closed sets. Also we discuss some basic properties and applications of $(1, 2)^*-M_{\delta\pi}$ -closed sets, which defines a new class of space namely $(1, 2)^*-T_{\delta\pi g}$ -space.

Keywords: $(1, 2)^*$ - πg -closed set, $(1, 2)^*$ - δ -closed set, $(1, 2)^*$ - $M_{\delta \pi}$ -closed set, $(1, 2)^*$ - $T_{\delta \pi g}$ -space.

2000 mathematics subject classification: 54E55, 54C55.

1. INTRODUCTION

Njastad[9], Velicko[10] introduced the concept of α -open sets and δ -closed sets respectively. Dontchev and Ganster [3] studied δ -generalized closed set in topological spaces. Levine[5] introduced generalization of closed sets and discussed their properties. Also M. E. Abd El-Monsef [1] et al investigated α -closed sets in topological spaces. Thivagar et al [5] have developed the concepts of (1, 2)*-semi-open sets, (1, 2)*- α -open sets, (1, 2)*-generalised closed sets and (1, 2)*- α -generalized closed sets in bitopological spaces. Recently Arockiarani and Mohana [2] discussed (1, 2)*- π g α -closed sets in bitopological spaces. The purpose of the present paper is to define a new class of closed sets called (1, 2)*- $M_{\delta\pi}$ -closed sets and we discuss some basic properties of (1, 2)*- $M_{\delta\pi}$ -closed sets in bitopological spaces.

2. PRELIMINARIES

Throughout this paper by a space X and Y represent non-empty bitopological spaces on which no separation axioms are assumed, unless otherwise mentioned. We recall the following definitions and results which are useful in the sequel.

Definition: 2.1 [5] A subset S of a bitopological space X is said to be $\tau_{1,2}$ -open if S=A \cup B where $A \in \tau_1$ and $B \in \tau_2$. A subset S of X is said to be (i) $\tau_{1,2}$ -closed if the complement of S is $\tau_{1,2}$ -open. (ii) $\tau_{1,2}$ -clopen if S is both $\tau_{1,2}$ -open and $\tau_{1,2}$ -closed.

Definition: 2.2 [5] Let S be a subset of the bitopological space X. Then the $\tau_{1,2}$ -interior of S denoted by $\tau_{1,2}$ -int(S) is defined by \cup {G: G \subseteq S and G is $\tau_{1,2}$ -open} and the $\tau_{1,2}$ -closure of S denoted by $\tau_{1,2}$ -cl(S) is defined by \cap {F: S \subseteq F and F is $\tau_{1,2}$ - closed}.

Definition: 2.3 A subset A of a bitopological space X is called

- (i) $(1, 2)^*$ -regular open [5] if A= $\tau_{1,2}$ -int ($\tau_{1,2}$ -cl (A)).
- (ii) $(1, 2)^* \alpha$ -open [5] if A $\subseteq \tau_{1, 2}$ -int $(\tau_{1, 2}$ -cl $(\tau_{1, 2}$ -int (A))).
- (iii) (1, 2)*-semi-open [5] if $A \subseteq \tau_{1,2}$ -cl ($\tau_{1,2}$ -int(A))

The complement of the sets mentioned from (i) to (iii) are called their respective closed sets.

Definition: 2.4 [2] Let S be a subset of the bitopological space X. Then

(i) The (1, 2)*-α-interior of S denoted by (1, 2)*-α-int(S) is defined by ∪ {G: G⊆S and G is (1, 2)*-α-open}.
(ii) The (1, 2)*-α-closure of S denoted by (1, 2)*-α-cl (S) is defined by ∩ {F: S⊆F and F is (1, 2)*-α-closed}.

Definition: 2.5 A subset A of a bitopological space X is called

- (i) $(1, 2)^* \pi g \alpha$ closed [2] if $(1, 2)^* \alpha cl$ (A) $\subseteq U$ whenever $A \subseteq U$ and U is $\tau_{1, 2} \pi$ open.
- (ii) (1, 2)*- π g- closed [7] if $\tau_{1,2}$ -cl (A) \subseteq U whenever $A \subseteq U$ and U is $\tau_{1,2}$ - π -open.
- (iii) (1, 2)*- strongly- $\pi g \alpha$ closed [8] if (1, 2)*- αcl (A) $\subset U$ whenever $A \subset U$ and U is (1, 2)*- πg -open.
- (iv) (1, 2)*-g- closed [5] if $\tau_{1,2}$ -cl (A) \subseteq U whenever $A \subseteq U$ and U is $\tau_{1,2}$ -open.
- (v) $(1, 2)^*$ ga- closed [5] if $(1, 2)^*$ -acl (A) \subset A whenever $A \subset U$ and U is $(1, 2)^*$ -a-open.
- (vi) $(1, 2)^*$ αg closed [5] if $(1, 2)^*$ - $\alpha cl(A) \subseteq A$ whenever $A \subseteq U$ and U is $\tau_{1, 2}$ -open.
- (vii) $(1, 2)^*$ gs- closed [5] if $(1, 2)^*$ -scl (A) \subseteq A whenever $A \subseteq U$ and U is $\tau_{1, 2}$ -open.
- (viii) (1, 2)*- g closed [4] if $\tau_{1,2}$ -cl (A) \subseteq A whenever $A \subseteq U$ and U is (1, 2)*-semi-open. and the complement of the sets mentioned from (i) to (viii) are called their respective open sets.

Definition: 2.6 [5] A space X is called $(1, 2)^*$ -T_{1/2}-space if every $(1, 2)^*$ -g-closed set in it is an $\tau_{1, 2}$ -closed.

3. $(1, 2)^*$ -M_{$\delta\pi$}-Closed sets

Definition: 3.1 The $(1, 2)^*$ - δ -interior of a subset A of X is the union of all $(1, 2)^*$ -regular open set of X contained in A and is denoted by $(1, 2)^*$ - δ -int (A). The subset A is called $(1, 2)^*$ - δ -open if A = $(1, 2)^*$ - δ -int (A), (i. e), a set is $(1, 2)^*$ - δ -open if it is the union of $(1, 2)^*$ -regular open sets. The complement of a $(1, 2)^*$ - δ -open set is called $(1, 2)^*$ - δ -closed. Alternatively, a sub set A in X is called $(1, 2)^*$ - δ -closed if A = $(1, 2)^*$ - δ -cl (A), where $(1, 2)^*$ - δ -cl (A) = {x \in X: \tau_{1,2}-int (\tau_{1,2}-cl (U)) \cap A \neq \phi, U \in \tau_{1,2} \text{ and } x \in U}.

Definition: 3. 2 A subset A of a space X is called $(1, 2)^*$ - $M_{\delta\pi}$ -closed set if $(1, 2)^*$ - $\delta cl (A) \subseteq U$ whenever $A \subseteq U$ and U is $(1, 2)^*$ - πg -open set in X.

Proposition: 3. 3 Every $(1, 2)^*$ - δ -closed set is $(1, 2)^*$ - $M_{\delta\pi}$ -closed set.

Proof: Let A be an $(1, 2)^*$ - δ -closed set and U be any $(1, 2)^*$ - π g-open set containing A. Since A is $(1, 2)^*$ - δ -closed, $(1, 2)^*$ - δ cl (A) = A, for every subset A of X. Therefore, $(1, 2)^*$ - δ cl (A) \subseteq U and hence A is $(1, 2)^*$ - $M_{\delta\pi}$ -closed set.

Remark: 3. 4 The converse of the above theorem is not true as shown in the following example.

Example: 3. 5 Let $X = \{a, b, c, d\}, \tau_1 = \{\Phi, X, \{a\}, \{d\}, \{a, d\}\}, \tau_2 = \{\Phi, X, \{a, c\}, \{c, d\}, \{a, c, d\}\}$. Here $\{a, b\}, \{a, b, d\}$ are $(1, 2)^*$ -M_{$\delta\pi$}-closed set, but not $(1, 2)^*$ - δ -closed set in X.

Proposition: 3. 6 Every $(1, 2)^*$ -M_{$\delta\pi$}-closed set is $(1, 2)^*$ - π g-closed set.

Proof: Let A be an $(1, 2)^*$ - $M_{\delta\pi}$ -closed set and U be an any $\tau_{1,2}$ - π -open set containing A in X. Since every $\tau_{1,2}$ - π -open set is $\tau_{1,2}$ -open set and therefore $(1, 2)^*$ - π g-open set. Also A is $(1, 2)^*$ - $M_{\delta\pi}$ -closed, $(1, 2)^*$ - $\delta cl (A) \subseteq U$, for every subset A of X. Since $\tau_{1,2}$ -cl (A) \subseteq (1, 2)*- $\delta cl (A) \subseteq U$ implies $\tau_{1,2}$ - cl (A) \subseteq U and hence A is $(1, 2)^*$ - π g-closed set.

Remark: 3.7 An $(1, 2)^*$ - π g-closed set need not be $(1, 2)^*$ - $M_{\delta\pi}$ -closed set as shown in the following example.

Example: 3. 8 Let $X = \{a, b, c, d\}$, $\tau_1 = \{\Phi, X, \{a\}, \{b\}, \{a, b\}\}$, $\tau_2 = \{\Phi, X, \{a, b, d\}\}$. Then the sets $\{c\}, \{d\}, \{a, d\}, \{b, c\}, \{b, d\}, \{a, b, c\}, \{a, b, d\}$ are $(1, 2)^*$ - π g-closed set, but not $(1, 2)^*$ - $M_{\delta\pi}$ -closed set in X.

Proposition: 3. 9 Every $(1, 2)^*$ - $M_{\delta \pi}$ -closed set is $(1, 2)^*$ - $\pi g \alpha$ -closed set.

Proof: It is true that $(1, 2)^*$ - α cl (A) $\subseteq (1, 2)^*$ - δ cl (A) for every subset A of X.

Remark: 3. 10 A (1, 2)*- π g α -closed set need not be (1, 2)*- $M_{\delta\pi}$ -closed set as shown in the following example.

Example: 3. 11 Let $X = \{a, b, c, d\}, \tau_1 = \{\Phi, X, \{a\}, \{a, b, d\}\}, \tau_2 = \{\Phi, X, \{b\}, \{a, b\}\}$. Then the set $\{a, b, c\}$ is $(1, 2)^*$ - $\pi g \alpha$ -closed set, but not $(1, 2)^*$ - $M_{\delta \pi}$ -closed set in X.

Proposition: 3. 12 Every $(1, 2)^*$ - $M_{\delta\pi}$ -closed set is $(1, 2)^*$ -strongly- π g α -closed set.

Proof: It is true that $(1, 2)^*-\alpha cl(A) \subseteq (1, 2)^*-\delta cl(A)$ for every subset A of X.

K. Mohana^{*} & I. Arockiarani^{**/} (1, 2)^{*}- $M_{\delta\pi}$ -Closed Sets in Bitopological Spaces/ IJMA- 3(5), May-2012, 2083-2088

Remark: 3. 13 A (1, 2)*-strongly- $\pi g\alpha$ -closed set need not be (1, 2)*- $M_{\delta\pi}$ -closed set as shown in the following example.

Example: 3. 14 Let $X = \{a, b, c, d\}, \tau_1 = \{\Phi, X, \{a\}, \{d\}, \{c, d\}, \{a, d\}, \{a, c, d\}\}, \tau_2 = \{\Phi, X, \{a, c\}\}$. Then the set $\{b, d\}$ is $(1, 2)^*$ -strongly- $\pi g \alpha$ -closed set, but not $(1, 2)^*$ - $M_{\delta \pi}$ -closed set in X.

Definition: 3. 15 A subset A of a bitopological space X is called $(1, 2)^*$ - δg - closed if $(1, 2)^*$ - $\delta cl(A) \subseteq A$ whenever $A \subset U$ and U is $\tau_{1, 2}$ -open.

Proposition: 3. 16 Every $(1, 2)^*$ -M_{$\delta\pi$} -closed set is $(1, 2)^*$ - δ g-closed set.

Proof: Let A be an $(1, 2)^*$ -M_{$\delta\pi$} -closed set and U be an any $\tau_{1, 2}$ -open set containing A in X. Since every $\tau_{1, 2}$ -open set is $(1, 2)^*$ - π g-open set, $(1, 2)^*$ - δ cl (A) \subseteq U, whenever A \subseteq U and U is $(1, 2)^*$ - π g-open set. Therefore, $(1, 2)^*$ - δ cl (A) \subseteq U and U is $\tau_{1, 2}$ -open. Hence A is $(1, 2)^*$ - δ g-closed set.

Remark: 3. 17 A (1, 2)*- δ g-closed set need not be (1, 2)*- $M_{\delta\pi}$ -closed set as shown in the following example.

Example: 3. 19 Let $X = \{a, b, c, d\}, \tau_1 = \{\Phi, X, \{a\}, \{c\}, \{a, c\}, \{a, b, d\}\}, \tau_2 = \{\Phi, X, \{b, c, d\}\}$. Then the sets $\{b\}, \{d\}, \{c, d\}, \{a, d\}, \{b, c\}, \{a, c, d\}, \{a, b, c\}$ are $(1, 2)^*$ - δg -closed set, but not $(1, 2)^*$ - $\delta _{\delta \pi}$ -closed set in X.

Remark: 3. 20 The class of $(1, 2)^*$ - $M_{\delta\pi}$ -closed sets is properly placed between the classes of $(1, 2)^*$ - δ -closed and $(1, 2)^*$ - δ g-closed sets.

Proposition: 3. 21 Every $(1, 2)^*$ -M_{$\delta\pi$} -closed set is $(1, 2)^*$ -gs-closed set.

Proof: It is true that $(1, 2)^*$ -scl(A) $\subseteq (1, 2)^*$ - δ cl(A) $\subseteq U$, $(1, 2)^*$ -scl(A) $\subseteq U$ and hence A is $(1, 2)^*$ -gs-closed set.

Remark: 3. 22 A (1, 2)*-gs-closed set need not be (1, 2)*-M_{$\delta\pi$}-closed set as shown in the following example.

Example: 3. 23 Let $X = \{a, b, c, d\}, \tau_1 = \{\Phi, X, \{a\}, \{a, b, d\}\}, \tau_2 = \{\Phi, X, \{c\}, \{a, c\}, \{b, c, d\}\}$. Then the sets $\{a\}, \{b\}, \{d\}, \{a, d\}, \{c, d\}, \{b, c\}, \{a, b, c\}, \{a, c, d\}$ are $(1, 2)^*$ -gs-closed set, but not $(1, 2)^*$ - $M_{\delta \pi}$ -closed set in X.

Proposition: 3. 24 Every $(1, 2)^*$ - $M_{\delta \pi}$ -closed set is $(1, 2)^*$ - αg -closed set.

Proof: It is true that, $(1, 2)^*$ - α cl (A) \subseteq $(1, 2)^*$ - δ cl (A) for every subset A of X.

Remark: 3. 25 A (1, 2)*- α g-closed set need not be (1, 2)*- $M_{\delta\pi}$ -closed set as shown in the following example.

Example: 3. 26 Let $X = \{a, b, c, d\}, \tau_1 = \{\Phi, X, \{a\}, \{a, b\}\}, \tau_2 = \{\Phi, X, \{b\}\}$. Then the sets $\{c\}, \{d\}, \{a, c\}, \{a, d\}, \{b, c\}, \{b, d\}, \{a, b, c\}, \{a, b, d\}$ are $(1, 2)^*$ - α g-closed set, but not $(1, 2)^*$ - $M_{\delta\pi}$ -closed set in X.

Proposition: 3. 27 Every $(1, 2)^*$ - $M_{\delta\pi}$ -closed set is $(1, 2)^*$ -g-closed set.

Proof: The proof is obvious.

Remark: 3. 28 A (1, 2)*- g-closed set need not be (1, 2)*- $M_{\delta\pi}$ -closed set as shown in the following example.

Example: 3. 29 Let $X = \{a, b, c, d\}, \tau_1 = \{\Phi, X, \{a\}\}, \tau_2 = \{\Phi, X, \{b\}\}$. Then the sets $\{c\}, \{d\}, \{a, c\}, \{a, d\}, \{b, c\}, \{b, d\}, \{a, b, c\}, \{a, b, d\}$ are $(1, 2)^*$ -g-closed set, but not $(1, 2)^*$ -M_{$\delta\pi$}-closed set in X.

Definition: 3. 30 A subset A of a bitopological space X is called $(1, 2)^*$ - δg - closed if $(1, 2)^*$ - $\delta cl(A) \subseteq A$ whenever $A \subset U$ and U is $(1, 2)^*$ - \hat{g} -open.

Proposition: 3. 31 Every $(1, 2)^*$ - M_{$\delta\pi$} -closed set is $(1, 2)^*$ - δg -closed set.

Proof: The proof is straightforward, since every $(1, 2)^*$ - g -closed set is $(1, 2)^*$ - π g-closed.

Remark: 3. 32 A (1, 2)*- δg -closed set need not be (1, 2)*- $M_{\delta\pi}$ -closed set as shown in the following example.

K. Mohana* & I. Arockiarani**/ (1, 2)*-Mon-Closed Sets in Bitopological Spaces/ IJMA- 3(5), May-2012, 2083-2088

Example: 3. 33 Let X = {a, b, c}, $\tau_1 = \{\Phi, X, \{a\}, \{a, b\}\}, \tau_2 = \{\Phi, X, \{b\}, \{a, c\}\}$. Then the sets {c}, {b, c} are (1, 2)*- $\hat{\delta q}$ -closed set, but not (1, 2)*- $M_{\delta \pi}$ -closed set in X.

Remark: 3. 34 The following examples show that $(1, 2)^*$ - $M_{\delta\pi}$ -closedness is independent from $(1, 2)^*$ -ga-closed set, $(1, 2)^*$ - α -closed.

Example: 3. 35 Let $X = \{a, b, c\}, \tau_1 = \{\Phi, X, \{a\}, \{a, b\}\}, \tau_2 = \{\Phi, X, \{b\}, \{a, c\}\}$. Then the set $\{b\}$ & $\{a, c\}$ are $(1, 2)^*$ - $M_{\delta\pi}$ -closed set, but neither $(1, 2)^*$ -ga-closed nor $(1, 2)^*$ -a-closed.

Example: 3. 36 Let $X = \{a, b, c, d\}, \tau_1 = \{\Phi, X, \{a\}\}, \tau_2 = \{\Phi, X, \{b\}, \{a, b\}\}$. Then the sets $\{c\}$ and $\{d\}$ are $(1, 2)^*$ -a-closed set and $(1, 2)^*$ -ga-closed, but not $(1, 2)^*$ -M_{$\delta\pi$}-closed set in X.

Remark: 3. 37 The following diagram shows the relationships of $(1, 2)^*$ - $M_{\delta\pi}$ -closed sets with other known existing sets. A \longrightarrow B represents A implies B, but not conversely.

 $(1, 2)^*$ - δg -closed set.

- 1. (1, 2)*- $M_{\delta\pi}$ -closed set
- 2. $(1, 2)^*$ - δ -closed set 3. $(1, 2)^*$ - δ g-closed set.
- 4. $(1, 2)^*$ π g-closed
- 5. $(1, 2)^*$ $\pi g\alpha$ -closed set
- 6. $(1, 2)^*$ strongly- $\pi g\alpha$ -closed set
- 7. (1, 2)*- g-closed set
- 8. (1, 2)*- αg-closed set
- 9. (1, 2)*-α-closed
- 10. $(1, 2)^*-\delta g$ -closed set

11. $(1, 2)^*$ - ga-closed set.

4. CHARACTERISATION

Theorem: 4.1 The union of $(1, 2)^*$ -M_{$\delta\pi$} -closed sets is $(1, 2)^*$ -M_{$\delta\pi$} -closed.

Proof: Let $\{A_i / i=1, 2, ..., n\}$ be a finite class of $(1, 2)^*$ - $M_{\delta \pi}$ -closed subsets of a space X. Then for each $(1, 2)^*$ - πg -open set, $\mathbf{U}_i A_i \subseteq \mathbf{U}_i U_i = V$. Since arbitrary union of $(1, 2)^*$ - πg -open sets in X is also $(1, 2)^*$ - πg -open set in X, V is $(1, 2)^*$ - πg -open set in X. Also $\mathbf{U}_i (1, 2)^*$ - $\delta cl (A_i) = (1, 2)^*$ - $\delta cl (\mathbf{U}_i A_i) \subseteq V$. Therefore, $\mathbf{U}_i A_i$ is $(1, 2)^*$ - $M_{\delta \pi}$ -closed set in X.

Remark: 4. 2 Intersection of any $(1, 2)^*$ - $M_{\delta\pi}$ -closed sets in X need not be $(1, 2)^*$ - $M_{\delta\pi}$ -closed. Let $X = \{a, b, c, d\}, \tau_1 = \{\Phi, X, \{a\}, \{a, b, d\}\}, \tau_2 = \{\Phi, X, \{c\}, \{b, c, d\}\}$. Then the sets $\{b, d\}$ and $\{a, b, c\}$ are $(1, 2)^*$ - $M_{\delta\pi}$ -closed sets, but the intersection $\{b\}$ is not $(1, 2)^*$ - $M_{\delta\pi}$ -closed.

Proposition: 4. 3 Let A be a $(1, 2)^*$ -M_{$\delta\pi$}-closed set of X. Then $(1, 2)^*$ - δcl (A)-A does not contain non-empty $(1, 2)^*$ - π g-closed set.

Proof: Suppose that A is $(1, 2)^*$ -M_{$\delta\pi$}-closed, let F be a $(1, 2)^*$ - π g-closed set contained in $(1, 2)^*$ - δcl (A)-A. Now F^C is $(1, 2)^*$ - π g-open set of X such that A \subseteq F^C. Since A is $(1, 2)^*$ -M_{$\delta\pi$}-closed set of X, then $(1, 2)^*$ - δcl (A) \subseteq F^C.

Thus $F \subseteq [(1, 2)^*-\delta cl (A)]^C$. Also $F \subseteq (1, 2)^*-\delta cl (A)-A$. Therefore, $F \subseteq [(1, 2)^*-\delta cl (A)]^C \cap [(1, 2)^*-\delta cl (A)] = \Phi$. Hence $F=\Phi$.

K. Mohana^{*} & I. Arockiarani^{**/} (1, 2)^{*}- $M_{\delta\pi}$ -Closed Sets in Bitopological Spaces/ IJMA- 3(5), May-2012, 2083-2088

Proposition: 4. 4 If A is $(1, 2)^*$ - π g-open and $(1, 2)^*$ - $M_{\delta\pi}$ -closed subset of X, then A is an $(1, 2)^*$ - δ -closed subset of X.

Proof: Since A is $(1, 2)^*$ - π g-open and $(1, 2)^*$ - $M_{\delta\pi}$ -closed, $(1, 2)^*$ - δ cl $(A) \subseteq A$. Hence A is $(1, 2)^*$ - δ -closed.

Theorem: 4. 5 The intersection of a $(1, 2)^*$ -M_{$\delta\pi$}-closed set and $(1, 2)^*$ - δ -closed set is always $(1, 2)^*$ - M_{$\delta\pi$}-closed.

Proof: Let A be $(1, 2)^*$ - $M_{\delta\pi}$ -closed and F be $(1, 2)^*$ - δ -closed. If U is an $(1, 2)^*$ - πg -open set with $A \cap F \subseteq U$, then $A \subseteq U \cup F^C$ and so $(1, 2)^*$ - $\delta cl (A) \subseteq U \cup F^C$. Now $(1, 2)^*$ - $\delta cl (A \cap F) \subseteq (1, 2)^*$ - $\delta cl (A) \cap F \subseteq U$.

Hence $A \cap F$ is $(1, 2)^*$ - $M_{\delta \pi}$ -closed.

Proposition: 4. 6 If A is a $(1, 2)^*$ -M_{$\delta\pi$}-closed set in a space X and A \subseteq B \subseteq $(1, 2)^*$ - δ cl (A), then B is also $(1, 2)^*$ -M_{$\delta\pi$}-closed set.

Proof: Let U be $(1, 2)^*$ - π g-open set of X such that B \subseteq U. Then A \subseteq U. Since A is $(1, 2)^*$ - $M_{\delta\pi}$ -closed set, $(1, 2)^*$ - δ cl (A) \subseteq U. Also, since, B \subseteq $(1, 2)^*$ - δ cl (A), $(1, 2)^*$ - δ cl(B) \subseteq $(1, 2)^*$ - δ cl(A)) = $(1, 2)^*$ - δ cl(A). Hence $(1, 2)^*$ - δ cl (B) \subseteq U. Therefore, B is also a $(1, 2)^*$ - $M_{\delta\pi}$ -closed set.

Proposition: 4. 7 Let A be a $(1, 2)^*$ -M_{$\delta\pi$}-closed set of X. Then A is $(1, 2)^*$ - δ -closed iff $(1, 2)^*$ - δ cl (A)-A is $(1, 2)^*$ - π g-closed set.

Proof: Necessity. Let A be $(1, 2)^*-\delta$ -closed subset of X. Then, $(1, 2)^*-\delta$ cl (A) = A and so $(1, 2)^*-\delta$ cl (A) $-A = \Phi$, which is $(1, 2)^*-\pi$ g-closed set.

Sufficiency. Since A is $(1, 2)^*$ -M_{$\delta\pi$}-closed, by proposition 4. 3, $(1, 2)^*$ - δcl (A) –A does not contain a non-empty $(1, 2)^*$ - πg -closed set. But $(1, 2)^*$ - δcl (A) –A= Φ . That is, $(1, 2)^*$ - δcl (A) =A. Hence A is $(1, 2)^*$ - δ -closed.

5. APPLICATIONS

Definition: 5. 1 A space X is called $(1, 2)^*$ -T_{$\delta\pi g$}-space if every $(1, 2)^*$ -M_{$\delta\pi$}-closed set in it is an $(1, 2)^*$ - δ -closed.

Definition: 5. 2 A space X is called a $(1, 2)^*$ -T_{δg}-space if every $(1, 2)^*$ - δg -closed set in it is $(1, 2)^*$ - δ -closed.

Theorem: 5. 3 For a bitopological space X, the following conditions are equivalent.

(1) X is a $(1, 2)^*$ -T_{$\delta\pi g$}-space.

(2) Every singleton $\{x\}$ is either $(1, 2)^*$ - π g-closed or $(1, 2)^*$ - δ -open.

Proof:

(1) => (2): Let $x \in X$. Suppose $\{x\}$ is not a $(1, 2)^*$ - π g-closed set of X. Then X- $\{x\}$ is not a $(1, 2)^*$ - π g-open set. Thus X- $\{x\}$ is an $(1, 2)^*$ - $M_{\delta\pi}$ -closed set of X. Since X is $(1, 2)^*$ - $T_{\delta\pi g}$ -space, X- $\{x\}$ is an $(1, 2)^*$ - δ -closed set of X, i. e., $\{x\}$ is $(1, 2)^*$ - δ -open set of X.

(3) => (1): Let A be an $(1, 2)^*$ -M_{$\delta\pi$}-closed set of X. Let $x \in (1, 2)^*$ - δcl (A). By (2), {x} is either $(1, 2)^*$ - πg -closed or $(1, 2)^*$ - δ -open.

Case (i): Let $\{x\}$ be $(1, 2)^*$ - π g-closed set. If we assume that $x \notin A$ then we would have $x \in (1, 2)^*$ - $\delta cl (A)$ -A, which cannot happen according to proposition 4. 3. Hence $x \in X$.

Case (ii): Let $\{x\}$ be $(1, 2)^*$ - δ -open set. Since $x \in (1, 2)^*$ - δ cl (A), then $\{x\} \cap A \neq \Phi$. This shows that $x \in X$. So in both cases we have $(1, 2)^*$ - δ cl (A) \subseteq A. Trivially A $\subseteq (1, 2)^*$ - δ cl (A). Therefore, A= $(1, 2)^*$ - δ cl (A) or equivalently A is $(1, 2)^*$ - δ -closed. Hence X is a $(1, 2)^*$ -T_{$\delta\pi\sigma$}-space.

Theorem: 5. 4 Every $(1, 2)^*$ -T_{δg}-space is a $(1, 2)^*$ -T_{$\delta \pi g$}-space.

Proof: The proof is straight forward, since every $(1, 2)^*-M_{\delta\pi}$ -closed set is $(1, 2)^*-\delta g$ -closed set.

Remark: 5. 5 The converse of the above theorem is not true as it can be seen from the following example.

Example: 5. 6 Let $X = \{a, b, c, d\}, \tau_1 = \{\Phi, X, \{a\}, \{a, b, d\}\}, \tau_2 = \{\Phi, X, \{c\}, \{b, c, d\}\}$. Then X is a $(1, 2)^*$ -T_{$\delta\pi$ g}-space, but not $(1, 2)^*$ -T_{δg}-space.

Definition: 5. 7 A space X is called a $(1, 2)^*$ -T_{δg} -space if every $(1, 2)^*$ - δg -closed set in it is $(1, 2)^*$ - δ -closed.

Theorem: 5. 8 Every $(1, 2)^*$ -T_{δ} *g* -space is a $(1, 2)^*$ -T_{$\delta\pi g$}-space.

Proof: The proof is straight forward, since every $(1, 2)^*$ -M_{$\delta\pi$}-closed set is $(1, 2)^*$ - δg -closed set.

Remark: 5. 9 The converse of the above theorem is not true as it can be seen from the example.

Let X = {a, b, c, d}, $\tau_1 = {\Phi, X, {a}}, \tau_2 = {\Phi, X, {a, b, d}}, X \text{ is } (1, 2)^* - T_{\delta \pi g}$ -space, but not $(1, 2)^* - T_{\delta g}$ -space.

Remark: 5. 10 (1, 2)*- $T_{\delta\pi g}$ -space and (1, 2)*- $T_{1/2}$ -space are independent of one another as the Following examples show.

Example: 5. 11 Let $X = \{a, b, c, d\}, \tau_1 = \{\Phi, X, \{a\}\}, \tau_2 = \{\Phi, X, \{b\}\}, X \text{ is } (1, 2)^* - T_{\delta \pi g} \text{-space, but not } (1, 2)^* - T_{1/2} \text{-space.}$

Example: 5. 12 Let $X = \{a, b, c\}, \tau_1 = \{\Phi, X, \{a\}\}, \tau_2 = \{\Phi, X, \{a, b, d\}\}$. Then X is a $(1, 2)^*$ -T_{1/2}-space, but not $(1, 2)^*$ -T_{$\delta\pi g$}-space.

Remark: 5. 13 The following diagram shows the relationships $(1, 2)^*-T_{\delta\pi g}$ -space with other known existing spaces. A B represents A implies B, but not conversely.

1. $(1, 2)^* - T_{\delta \pi g}$ -space **2.** $(1, 2)^* - T_{\delta g}$ -space **3.** $(1, 2)^* - T_{\delta} g$ -space **4.** $(1, 2)^* - T_{1/2}$ -space

REFERENCES

[1] M. E. Abd El-Monsef, S. Rose Mary and M. Lellis Thivager, On αg -closed sets in topological spaces, Assiut University Journal of Mathematics and Computer science, Vol. 36(1), P-P. 43-51(2007).

[2] I. Arockiarani and K. Mohana, $(1, 2)^*$ - π g α -closed sets and $(1, 2)^*$ -Quasi- α -normal Spaces in Bitopological settings, Antarctica J. Math., 7(3) (2010), 345-355.

[3] J. Dontchev and M. Ganster, On δ -generalised closed set and $T_{3/4}$ -spaces, Mem. Fac. Sci. Kochi Univ. Ser. A, Math., 17(1996), 15-31.

[4] S. Jafari, M. Lellis Thivagar and Nirmala Mariappan, On $(1, 2)^*-\alpha g$ -closed sets, J. Adv. Math. Studies, 2(2)(2009), 25-34.

[5] M. Lellis Thivagar, O. Ravi, On stronger forms of (1, 2)*-quotient mappings in bitopological spaces. Internat. J. Math. Game theory and Algebra. Vol. 14. No. 6 (2004), 481-492.

[6] N. Levine, Generalised closed sets in topology, Rend. Circ. Mat. Palermo, 19(1970), 89-96.

[7] K. Mohan, I. Arockiarani, (1, 2)*-πg-homeomorphims in Bitopological spaces, CiiT Inter. J. Automation and Autonomous System, April 2011.

[8] K. Mohana, I. Arockiarani, $(1, 2)^*$ -strongly $-\pi g\alpha$ -closed sets, Journal of Advanced studies in Topology, Vol.2, No. 2, 2011, 31-36.

[9] O. Njastad, On some classes of nearly open sets, Pacific J Math., 15(1965), 961-970.

[10] N. V. Velicko, H-closed topological spaces, Amer. Math. Soc. Transl., 78(1968), 103-118.