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ABSTRACT 
Stochastic process model for approximating the underlying component fails when the total amount of damage exceeds 
a threshold level. Survival measures of this model are derived, using the theory of cumulative processes. However, 
most of the behaviour in this stochastic model for the expected time strongly depends on initial conditions. Numerical 
examples are given to illustrate various aspects of the model considered for the expected time to threshold. 
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INTRODUCTION 
 
The generalized Pareto (GP) distribution was introduced by Pickands (1975) and has since been applied to a number of 
areas including socio-economic phenomena, physical and biological processes (Saksena & Johnson, 1984), the GP 
distribution suitable for modelling flood magnitudes exceeding a fixed threshold. Generalized models being more 
flexible than ordinary single models are usually preferred in analysing most data sets. This has prompted several 
authors to embark upon investigating the properties and applications of generalized models. 
 
Sexual contacts are the only source of HIV infection and the threshold of any individual is a random variable. The 
inter-arrival times between successive contacts, the sequence of damage and the threshold are mutually independent. If 
the total damage crosses a threshold level Y which itself is a random variable, the seroconversion occurs and aperson is 
recognized as an infected. One can see for more detail about the expected time to cross the threshold level of 
seroconversion period in Esary et al. (1973), Sathiyamoorthi (1980), Pandiyan et al., (2010), Pandiyan and Bhuvana 
(2012). 
 
NOTATIONS  
 

 a continuous random variable denoting the amount of contribution to the threshold due to the HIV transmitted in 
the ith contact, in other words the damage caused to the immune system in the ith contact, with p.d.f  g (.) and c.d.f  G 
(.). 
 

 a continuous random variable denoting the threshold which follows three parameter generalized Pareto distribution. 
 a random variable denoting the inter-arrival times between contact with c.d.f. ,  

 
 The probability density functions of  ;  Laplace transform of g (.);  

The k- fold convolution of g (.) i.e., p.d.f. of  

 p.d.f. of random variable denoting between successive contacts with the corresponding c.d.f. F (.) 
 Probability of exactly k successive contact;  
 k-fold convolution of F (.) 
 Survival function, i.e.,  ;  
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MODEL DESCRIPTION  
 
Let Y be the random which can be expressed the cumulative density function defined as 
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Where c is a location parameter, b is a scale parameter, a is a shape parameter 
 
The probability density function (PDF) of the GP distribution is given by 
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The corresponding survival function is given by 
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Therefore 𝑆𝑆(𝑝𝑝) = 𝑃𝑃[𝑇𝑇 > 𝑝𝑝]is the survival function which gives the probability that the cumulative antigenic diversity 
will fail only after time 
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It is also known from renewal process that  
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𝐿𝐿(𝑝𝑝) = 1 − 𝑐𝑐(𝑝𝑝), taking laplace transformation of l(t), we get 
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RESULT 
 

𝐸𝐸(𝑇𝑇) =
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𝑉𝑉(𝑇𝑇) =  𝐸𝐸(𝑇𝑇2)−  [𝐸𝐸(𝑇𝑇)]2 
 

         = [𝑏𝑏+1−𝑑𝑑]2

𝑒𝑒2[2𝑏𝑏+1−𝑑𝑑]2 
 
CONCLUSION 
 
When b is kept fixed the inter-arrival time  which follows Mittag leffler distribution, is an increasing case by the 
process of renewal theory. Therefore, the value of the expected time   to cross the threshold is found to be 
decreasing, in all the cases of the parameter value. d = 0.5, 1, 1.5, 2. When the value of the parameter b increases, the 
expected time is found decreasing, this is observed in Figure 1a. The same case is found in Variance V (T) which is 
observed in Figure 1b.  
 
When d is kept fixed and the inter-arrival time  increases, the value of the expected time E (T) to cross the 
threshold is found to be decreasing, in all the cases of the parameter value. b = 0.5, 1, 1.5, 2. When the value of the 
parameter d increases, the expected time is found increasing; this is indicated in Figure 2a. The same case is observed 
in the threshold of Variance V (T) which is observed in Figure 2b.  
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