ON CERTAIN SUMMATION FORMULAE BASED ON HALF ARGUMENT ASSOCIATED TO HYPERGEOMETRIC FUNCTION

SALAH UDDIN

P.D.M College of Engineering, Bahadurgarh, Haryana, India
E-mails: sludn@yahoo.com; vsludn@gmail.com

(Received on: 11-01-11; Accepted on: 30-01-11)

ABSTRACT

The main objective of this paper is to establish certain summation formulae based on half argument involving Gauss second summation theorem. The results derived in this paper are of general character.

A. M. S. Subject Classification (2000): 33C45, 33C60, 33C70

Key words and phrases: Contiguous relation, Recurrence relation, Gauss second summation theorem.

A. INTRODUCTION:

The Pochhammer’s symbol is defined by

\[
(a, k) = (a)_k = \frac{\Gamma(a + k)}{\Gamma(a)} = \begin{cases}
1 & \text{if } k = 0 \\
\frac{a(a+1)(a+2)\ldots(a+k-1)}{k!} & \text{if } k = 1, 2, 3, \ldots
\end{cases}
\]

(1)

Generalized Gaussian Hypergeometric function of one variable is defined by

\[
{\alpha}F{\beta}(a_1, a_2, \ldots, a_\alpha; b_1, b_2, \ldots, b_\beta; z) = \sum_{k=0}^{\infty} \frac{(a_1)(a_2)\ldots(a_\alpha)k^z}{(b_1)(b_2)\ldots(b_\beta)k!}
\]

or

\[
{\alpha}F{\beta}((a_1); (b_1); z) = \sum_{k=0}^{\infty} \frac{(a_1)_k z^k}{(b_1)_k k!}
\]

(2)

where the parameters \(b_1, b_2, \ldots, b_\beta \) are neither zero nor negative integers and \(\alpha, \beta \) are non-negative integers.

Contiguous Relation is defined by

[Andrews’s p.363 (9.16), E.D. p.51 (10), H.T.F.I. p.103 (32)]

\[(a-b)_{2F1}(a, b; c; z) = a_{2F1}(a+1, b; c; z) - b_{2F1}(a, b+1; c; z)\]

(3)

Legendre’s duplication formula:

\[\sqrt{\pi}\Gamma(2z) = 2^{2z-1} \Gamma(z) \Gamma(z+\frac{1}{2})\]

(4)

\[\frac{\Gamma(\frac{1}{2})}{\sqrt{\pi}} = 2^{b-1} \Gamma(\frac{b}{2}) \Gamma(\frac{b+1}{2}) / \Gamma(b)\]

(5)

Recurrence relation is defined by

\[\Gamma(z+1) = z \Gamma(z)\]

(7)
Gauss second summation theorem is defined by [Prud. 491(7.3, 7.4)]

\[
\int_{a}^{b} \left(\frac{a+b+1}{2} \right) \frac{1}{(a-b)} = 2^\binom{b-1}{2} \Gamma(\frac{a+1}{2}) \Gamma(\frac{b+1}{2}) / \Gamma(b) \Gamma(\frac{a+1}{2})
\]

(8)

(9)

In a monograph of Prudnikov et al., a summation theorem is given in the form [Prud. p.491(7.3,7.5)]

\[
\int_{a}^{b} \left(\frac{a+b+1}{2} \right) \frac{1}{(a-b)} = \sqrt{a} \Gamma(\frac{a+1}{2}) \Gamma(\frac{b+1}{2}) / \Gamma(b) \Gamma(\frac{a+1}{2}) + 2 \Gamma(\frac{a+b+1}{2}) / \Gamma(a) \Gamma(b)
\]

(10)

Now using Legendre’s duplication formula and Recurrence relation for Gamma function, the above theorem can be written in the form

\[
\int_{a}^{b} \left(\frac{a+b+1}{2} \right) \frac{1}{(a-b)} = 2^\binom{b-1}{2} \Gamma(\frac{a+1}{2}) \Gamma(\frac{b+1}{2}) / \Gamma(b) \Gamma(\frac{a+1}{2}) + 2 \Gamma(\frac{a+b+1}{2}) / \Gamma(a) \Gamma\left(\frac{b+2}{2}\right)
\]

(11)

B MAIN RESULTS OF SUMMATION FORMULAE:

\[
\int_{a}^{b} \left(\frac{a+b+1}{2} \right) \frac{1}{(a-b)} = 2^b \Gamma\left(\frac{a+b+9}{2}\right) / \Gamma(b) \Gamma\left(\frac{b+1}{2}\right)
\]

(12)

\[
\int_{a}^{b} \left(\frac{a+b+10}{2} \right) \frac{1}{(a-b)} = 2^b \Gamma\left(\frac{a+b+9}{2}\right) / \Gamma(b) \Gamma\left(\frac{b+1}{2}\right)
\]

(13)

\[
\int_{a}^{b} \left(\frac{a+b+11}{2} \right) \frac{1}{(a-b)} = 2^b \Gamma(\frac{a+b+11}{2}) \Gamma(\frac{b}{2}) \Gamma(\frac{a+1}{2}) \cdot
\]

(14)

C DERIVATIONS OF SUMMATION FORMULAE (12) TO (14):

Derivation of (12): Substituting \(c = \frac{a+b+9}{2} \) and \(z = \frac{1}{2} \) in equation (2), we get

\[
(a-b) \int_{a}^{b} \left(\frac{a+b+9}{2} \right) \frac{1}{(a-b)} = a \int_{a}^{b+1} \left(\frac{1}{2} \right) - b \int_{a}^{b+1} \left(\frac{1}{2} \right)
\]

Now with the help of Gauss second summation theorem, we get

\[
\text{L.H.S} = 2^b \Gamma(\frac{a+b+9}{2}) / \Gamma(b) \Gamma(\frac{a+1}{2})
\]

(16)

\[
\int_{a}^{b} \left(\frac{a+b+11}{2} \right) \frac{1}{(a-b)} = 2^b \Gamma(\frac{a+b+11}{2}) \Gamma(\frac{b}{2}) \Gamma(\frac{a+1}{2})
\]

(17)

\[
\int_{a}^{b} \left(\frac{a+b+12}{2} \right) \frac{1}{(a-b)} = 2^b \Gamma(\frac{a+b+12}{2}) \Gamma(\frac{b}{2}) \Gamma(\frac{a+1}{2})
\]

(18)

© 2011, IJMA. All Rights Reserved 256
On simplification, we get
\[_3\text{F}_1(a, b; \frac{a+b+q}{2}; \frac{1}{2}) = 2^b \Gamma(b) \left\{ \frac{16(15+23a+9a^2+a^3+49b+14ab+21a^2b-7b^2+35ab^2+7b^4)}{(a-b-7)(a-b-3)(a-b+1)(a-b+3)(a-b+5)} \right\} \]

Thus, we prove the result (12).

Similarly, we can prove the other results.

REFERENCES:
[6] Rainville, E. D.; The contiguous function relations for \(_p\text{F}_q \) with applications to Bateman’s \(J_n^{\alpha,\nu} \) and Rice’s \(H_n (\zeta, \rho, \nu) \), *Bull. Amer. Math. Soc.*, 51(1945), 714-723.