A COMMON FIXED POINT THEOREM FOR SELF MAPS ON A PROBABILISTIC METRIC SPACE UNDER DNR COMMUTATIVITY ONDITION

K. P. R. Sastry¹, G. A. Naidu², D. Narayana Rao^{3*} and S. S. A. Sastri⁴

¹8-28-8/1, Tamil Street, Chinna Waltair, Visakhapatnam- 530017, India

^{2, 3}Department of Mathematics, Andhra University, Visakhapatnam-530 003, India

⁴Department of Mathematics, GVP College of Engineering, Madhurawada, Visakhapatnam- 530048, India

(Received on: 28-04-12; Accepted on: 19-05-12)

ABSTRACT

The aim of present paper is to obtain a common fixed point theorem for two maps and hence for a sequence of mappings with respect to another two self maps on a probabilistic metric space through DNR-commutativity property, the property (E.A) and implicit relations.

These results generalize the result of Mukesh Sharma and Dimri [9].

AMS Mathematical subject classification (2000): 47H10, 54H25.

Key Words: probabilistic metric space, DNR-commuting mappings, implicit relation, property (E.A).

1. INTRODUCTION AND PRELIMINARIES

In 1942, K. Menger [7] introduced the notion of probabilistic metric space (briefly PM-space) as a generalization of metric space. The development of fixed point theory in PM-spaces was due to Schweizer and Sklar [11, 12]. Sehgal [13] initiated study of contraction mapping theorems in PM-spaces. Ciric and Milovanovic - Arandjelovic [2] introduced the notion of pointwise R-weakly commutativity to PM-spaces. Pant [10] introduced the notion of reciprocal continuity and obtained common fixed point theorems in metric spaces using R-weak commutativity and reciprocal continuity of mappings, Kumar and Chugh [4] established common fixed point theorems in metric spaces.

Mihet [8] established a fixed point theorem concerning probabilistic contractions satisfying an implicit relation. S. Kumar and B.D. Pant [5] established common fixed point theorems in PM- spaces using implicit relations. J.K. Kohli, S. Vasista and D. Kumar [3] extended the result of [5] to six mappings.

Recently Aamri and Moutanakil [1] and Liu, J. wu and Z. Li [6] defined the property (E.A) and the common property (E.A) respectively and established some results by using the properties in metric spaces.

Mukesh Sharma and Dimri [9] established a common fixed point theorem for a sequence of self mappings on a probabilistic metric space satisfying pointwise R-weakly commutativity and property (E.A) and using an implicit relation.

In this paper, we introduce the notion of DNR-commutativity in PM-spaces, which includes the notion of pointwise R-weak commutativity. Using this new notion and property (E.A), under certain implicit relation, we establish a common fixed point theorem for a pair of self maps with respect to another pair of self maps on a probabilistic metric space and extend it to a sequence of self maps which in turn includes the result of Mukesh Sharma and Dimri [9].

Throughout the paper, \mathbb{R} stands for the real line and \mathbb{R}^+ stands for the set of non negative real numbers. We begin with some definitions.

Definition 1.1: [12] A mapping $F: \mathbb{R} \to \mathbb{R}^+$ is called a distribution function if it is non-decreasing and left continuous with $\inf_{t \in \mathbb{R}} F(t) = 0$ and $\sup_{t \in \mathbb{R}} F(t) = 1$.

Corresponding author: D. Narayana Rao^{3*}

¹Department of Mathematics, Govt. Arts College (A), Karur – 639 005, (T.N.), India

We shall denote by \mathfrak{D} , the class of all distribution functions.

Definition 1.2: [12] A probabilistic metric space is a pair (X, F) where X is a non-empty set and F is a mapping from $X \times X \to \mathfrak{D}$. For $(u, v) \in X \times X$, the distribution function F(u, v) is denoted by $F_{u,v}$. The functions $F_{u,v}$ are assumed to satisfy the following conditions.

- (P₁) $F_{u,v}(x) = 1$ for all x > 0 if and only if u = v,
- $(P_2) F_{u,v}(0) = 0 \text{ for all } u, v \in X,$
- (P₃) $F_{u,v}(x) = F_{v,u}(x)$ for every $u, v \in X$,
- (P₄) If $F_{u,v}(x) = 1$ and $F_{v,w}(y) = 1$ then $F_{u,w}(x+y) = 1$ for all $u, v, w \in X$ and x, y > 0.

Definition 1.3: [12] A mapping Δ : $[0,1] \times [0,1] \to [0,1]$ is called a triangular norm (briefly t -norm) if the following conditions are satisfied.

- (i) $\Delta(a, 1) = a \quad \forall a \in [0, 1]$
- (ii) $\Delta(a, b) = \Delta(b, a) \quad \forall a, b \in [0,1]$
- (iii) If $c \ge a$ and $d \ge b$ then $\Delta(c, d) \ge \Delta(a, b) \ \forall \ a, b, c, d \in [0,1]$
- (iv) $\Delta(\Delta(a,b),c) = \Delta(a,\Delta(b,c)) \ \forall \ a,b,c \in [0,1]$

Example 1.4: (i) $\Delta(a, b) = min\{a, b\}$

(ii) $\Delta(a,b) = ab$ and (iii) $\Delta(a,b) = min\{a+b-1,0\}$ are some t-norms.

Definition 1.5: [12] A Manger PM-space is a triplet(X, F, Δ), where (X, F) is a PM-space and t is a t-norm with the following condition:

$$F_{u,v}(x+y) \geq \Delta\left(F_{u,w}(x), F_{w,v}(y)\right) \ \forall \ x,y \geq 0 \ and \ u,v,w \in X.$$

Definition 1.6: [2] Two self mappings A and S of a PM-space (X, F) are said to be pointwise R-weakly commuting if given $z \in X$, there exists $R_z > 0$ such that

$$F_{AS_Z,SA_Z}(t) \ge F_{Az,S_Z}\left(\frac{t}{R_z}\right)$$
 for $t > 0$.

Definition 1.7: [1] A pair (A, S) of self mappings of a PM space (X, F) is said to satisfy the property (E.A) if there exists a sequence $\{x_n\}$ in X such that

 $\lim_{n\to\infty} Ax_n = \lim_{n\to\infty} Sx_n = z$ for some $z \in X$.

Definition 1.8: [6] Two pairs (A, S) and (B, T) of self mappings of a PM-space (X, F) are said to satisfy the common property (E.A) if there exist two sequences $\{x_n\}, \{y_n\} \in X$ such that $\lim_{n\to\infty} Ax_n = \lim_{n\to\infty} Sx_n = \lim_{n\to\infty} Ty_n = \lim_{n\to\infty} By_n = z$ for some $z \in X$.

2. IMPLICIT RELATION

Definition 2.1: [9] Let Φ be the class of all real valued continuous functions $\varphi: (\mathbb{R}^+)^4 \to \mathbb{R}$, non deceasing in first argument and satisfying the following conditions:

for all
$$x, y \ge 0$$
, $\varphi(x, y, x, y) \ge 0$ (or) $\varphi(x, y, y, x) \ge 0 \Rightarrow x \ge y$ (2.1.1)

$$\varphi(x, x, 1, 1) \ge 0 \text{ for all } x \ge 1 \tag{2.1.2}$$

Members of Φ are called implicit relations.

Definition 2.2: Let X be a non empty set, Ψ denote the class of all functions $\psi: X \times \mathbb{R}^+ \to \mathbb{R}^+$ satisfying $\psi(x,t) > 0$ for all $x \in X$ and t > 0.

Members of Ψ are called DNR functions with respect to X.

Definition 2.3: Two self mappings A and S of a PM-space (X, F) are said to be DNR-commutating if there exists $\psi \in \Psi$ such that

 $F_{ASz,SAz}(t) \ge F_{Az,Sz}(\psi(z,t))$ for all $z \in X$ and t > 0.

K. P. R. Sastry¹, G. A. Naidu², D. Narayana Rao^{3*} and S. S. A. Sastri⁴/A common fixed point theorem for self maps on a Probabilistic metric space under DNR... / IJMA- 3(6), June-2012, Page: 2204-2210

We observe that if A and S are point wise R- weakly commuting self maps on a PM- space X, then A and S are DNR-commuting.

Mukesh Sharma and Dimri [9] proved the following lemma and theorem.

Lemma 2.4: [9] Let $\{A_i\}_{i\in\mathbb{N}}$ $\cup\{0\}$, S and T be self maps of a Menger space (X, F, Δ) satisfying the following conditions

$$A_i(X) \subseteq T(X), A_o(X) \subseteq S(X) \tag{2.4.1}$$

There exists $\varphi \in \Phi$ and $h \in (0,1)$ such that

$$\varphi(F_{A_{i}x,A_{0}y}(ht),F_{Sx,Ty}(t),F_{A_{i}x,Sx}(t),F_{A_{0}y,Ty}(ht)) \ge 0$$
(2.4.2)

for all $x, y \in X, t > 0$.

Suppose that (A_0, T) satisfies property (E.A). Then the pairs (A_i, S) and (A_0, T) have the common property (E.A).

Theorem 2.5: [9] Let $\{A_i\}_{i\in\mathbb{N}\cup\{0\}}$, S and T be self maps of a Menger space (X, F, Δ) satisfying the conditions (2.4.1) and (2.4.2) of Lemma 2.4, (A_0, T) satisfies the property (E.A) and the pairs (A_i, S) and (A_0, T) are point wise R-weakly commuting. If range of one of S and T is a closed subspace of X, then $\{A_i\}_{i\in\mathbb{N}\cup\{0\}}$, S and T have a unique common fixed point.

3. MAIN RESULTS

We prove our main theorem by using DNR commuting property instead of point wise R-weakly commuting property and our theorem is a generalization of Theorem 2.5. For this first we prove our theorem to four self maps and later extend to a sequence of self maps.

We also provide an example of a pair of maps which are DNR-commuting.

Theorem 3.1: Let A_0, A_1, S and T be self maps of a PM-space satisfying the conditions (2.4.1) and (2.4.2) of Lemma 2.4, (A_0, T) satisfies the property (E.A) and the pairs (A_1, S) and (A_0, T) are DNR- commuting. If one of S(X) and T(X) is a closed subspace of X, then A_0, A_1, S and T have a unique common fixed point.

Proof: In view of Lemma 2.4 the pairs (A_1, S) and (A_0, T) have the common property (E.A).

Hence there exist sequences $\{x_n\}$ and $\{y_n\}$ in X such that

$$\lim_{n\to\infty} A_0 x_n = \lim_{n\to\infty} T x_n = \lim_{n\to\infty} A_1 y_n = \lim_{n\to\infty} S y_n = z$$
 for some $z \in X$.

Suppose S(X) is a closed subspace of X. Then there exists $u \in X$ such that Su = z.

Now we claim that $A_1 u = z$.

Putting x = u and $y = x_n$ in (2.4.2), we get

$$\varphi(F_{A_1u,A_0x_n}(ht),F_{Su,Tx_n}(t),F_{A_1u,Su}(t),F_{A_0x_n,Tx_n}(ht)) \ge 0$$

On letting $n \to \infty$, we have

$$\varphi(F_{A_1u,z}(ht), F_{z,z}(t), F_{A_1u,z}(t), F_{z,z}(ht)) \ge 0$$

i.e.
$$\varphi(F_{A_1u,z}(ht), 1, F_{A_1u,z}(t), 1) \ge 0$$

Since φ is non decreasing, (2.1.1) gives $F_{A_1u,z}(ht) \ge 1$

Hence $A_1 u = z$.

Thus we have $z = Su = A_1u$.

Since $A_1(X) \subseteq T(X)$, there exists $v \in X$ such that $z = A_1 u = Tv$.

We claim that $A_0 v = z$.

Putting $x = y_n$ and y = v in (2.4.2), we get

$$(F_{A_1y_n,A_0v}(ht), F_{Sy_n,Tv}(t), F_{A_1y_n,Sy_n}(t), F_{A_0v,Tv}(ht)) \ge 0$$

On letting $n \to \infty$, we have

$$(F_{z,A_0v}(ht), F_{z,z}(t), F_{z,z}(t), F_{A_0v,z}(ht)) \ge 0$$

i.e.
$$(F_{z,A_0\nu}(ht), 1, 1, F_{A_0\nu,z}(ht)) \ge 0$$
.

Therefore (2.1.1) gives that $F_{A_0 v,z}(ht) \ge 1$.

Hence $A_o v = z$.

Thus we have $z = Su = A_1u = Tv = A_0v$.

Since A_1 , S are DNR-commuting, there exists $\psi \in \Psi$ such that

$$F_{A_1Su,SA_1u}(t) \ge F_{A_1u,Su}(\psi(u,t)) = 1$$

i.e. $A_1Su = SA_1u$ and hence $A_1Su = SA_1u = A_1A_1u = SSu$.

Also A_0 and T are DNR-commuting. Hence there exists $\psi \in \Psi$ such that

$$F_{A_0Tv,TA_0v}(t) \ge F_{A_0v,Tv}(\psi(v,t)) = 1$$

i.e. $A_0 T v = T A_0 v$ and $A_0 T v = T A_0 v = A_0 A_0 v = T T v$.

Now putting $x = A_1 u$ and y = v in (2.4.2), we get

$$\varphi\big(F_{A_1A_1u,A_0v}(ht),F_{SA_1u,Tv}(t),F_{A_1A_1u,SA_1u}(t),F_{A_ov,Tv}(ht)\big)\geq 0$$

i.e.
$$\varphi(F_{A_1A_1u,A_1u}(ht),F_{A_1A_1u,A_1u}(t),1,1) \ge 0.$$

Since φ is non decreasing (2.1.2) gives $F_{A_1A_1u,A_1u}(t) \ge 1$

i.e.
$$A_1A_1u = A_1u \Rightarrow A_1z = z$$
 and $A_1z = z = Sz$.

Now putting x = u and $y = A_0 v$ in (2.4.2), we get

$$\varphi(F_{A_1u,A_0A_0v}(ht),F_{Su,TA_0v}(t),F_{A_1u,Su}(t),F_{A_0A_0v,TA_0v}(ht)) \ge 0$$

i.e.
$$\varphi\left(F_{A_0v,A_0A_0v}(ht),F_{A_0v,A_0A_0v}(t),1,1\right)\geq 0$$

i.e. $A_0 v = A_0 A_0 v$ (using (2.1.2), since φ is non deceasing)

$$\therefore z = A_0 z \text{ and } z = A_0 z = Tz$$

which gives
$$z = A_1 z = Sz = A_0 z = Tz$$
.

Hence z is a common fixed point for A_0 , A_1 , S and T.

Let if possible p be another fixed point of A_0 , A_1 , S and T.

Then
$$A_0p = A_1p = Sp = Tp = p$$
.

K. P. R. Sastry¹, G. A. Naidu², D. Narayana Rao^{3*} and S. S. A. Sastri⁴/A common fixed point theorem for self maps on a Probabilistic metric space under DNR... / IJMA- 3(6), June-2012, Page: 2204-2210

Now putting x = z and y = p in (2.4.2), we get

$$\varphi(F_{A_1z,A_0p}(ht),F_{Sz,Tp}(t),F_{A_1z,Sz}(t),F_{A_0p,Tp}(ht)) \ge 0$$

i.e.
$$\varphi(F_{z,p}(ht), F_{z,p}(t), F_{z,z}(t), F_{p,p}(ht)) \ge 0$$

i.e.
$$\varphi(F_{z,n}(ht), F_{z,n}(t), 1, 1) \ge 0$$

i.e. $F_{z,p}(t) \ge 1$ (: by (2.1.2) and φ is non deceasing)

$$\therefore z = p$$

Hence z is the unique common fixed point of A_0 , A_1 , S and T.

Now, we prove a common fixed point theorem for a sequence of self maps which are DNR commuting in pairs.

Theorem 3.2: Let $\{A_i\}_{i\in\mathbb{N}\cup\{0\}}$, S and T be self maps of a PM space (X,F) satisfying the conditions (2.4.1) and (2.4.2) of Lemma 2.4, (A_0,T) satisfies the property (E.A) and the pairs (A_i,S) and (A_0,T) are DNR commuting. If range of one of S and T is a closed subspace of X, then $\{A_i\}_{i\in\mathbb{N}\cup\{0\}}$, S and T have a unique common fixed point.

Proof: Let z_i . i > 1 be the common fixed point of A_0 , A_i , S and T.

In (2.4.2), put $x = z_2$, $y = z_2$ and i = 1, we get

$$\varphi(F_{A_1z_2,A_0z_2}(ht),F_{Sz_2,Tz_2}(t),F_{A_1z_2,Sz_2}(t),F_{A_0z_2,Tz_2}(ht)) \ge 0$$

$$\Rightarrow \varphi(F_{A_1z_2,z_2}(ht),F_{z_2,z_2}(t),F_{A_1z_2,z_2}(t),F_{z_2,z_2}(ht)) \ge 0$$

$$\Rightarrow \varphi(F_{A_1z_2,z_2}(ht), 1, F_{A_1z_2,z_2}(t), 1) \ge 0$$

 $\Rightarrow A_1 z_2 = z_2$ (: φ is non decreasing, by (2.1.2))

 $\therefore z_2$ is fixed point of A_1 .

Thus z_2 is a fixed point of A_0 , A_1 , S and T, so that $z_1 = z_2$, by uniqueness of common fixed point.

In a similar manner, putting $x = z_i$, $y = z_i$ and $A_i = A_1$ in (2.4.2), we get $A_1 z_i = z_i$ and hence $z_i = z_1$ for all i > 1.

Thus z_1 is a common fixed point of $A_0, A_1, A_2, ..., A_i, ...$, S and T.

Note: Theorem 2.5 is a simple corollary of Theorem 3.2.

Now, we give an example to illustrate DNR commuting mappings.

Example 3.3: Let $X = \{2,3,4,...\}$ with the metric d(x,y) = |x-y| and define

$$F_{x,y}(t) = \begin{cases} 0 & \text{if } t \le x \\ 1 & \text{if } t > y \\ \frac{t-x}{y-x} & \text{if } x < t \le y \end{cases}$$

for x < y.

Clearly (X, F) is a PM-space.

Define
$$\psi(x,t) = \begin{cases} x & \text{if } t \le x \\ \frac{t-1}{x} & \text{if } t > x \end{cases}$$
 for $x \in [2, \infty)$

Then ψ is a DNR function.

Define $A, S: X \to X$ by $Ax = x + 1, Sx = x^2$.

© 2012, IJMA. All Rights Reserved

K. P. R. Sastry¹, G. A. Naidu², D. Narayana Rao^{3*} and S. S. A. Sastri⁴/A common fixed point theorem for self maps on a Probabilistic metric space under DNR... / IJMA- 3(6), June-2012, Page: 2204-2210

Then for $z \in X$, $ASz = z^2 + 1$ and $SAz = (z + 1)^2$.

Clearly $z^2 + 1 < (z + 1)^2$ for $z \in X$.

Claim
$$F_{z^2+1}(z+1)^2(t) \ge F_{z+1}(z^2)(\psi(z,t))$$
 for all $t > 0$ (3.3.1)

Case I: $t \le z^2 + 1$

Then L.H.S of (1) is 0 and

$$t \le z \Rightarrow \psi(z,t) = z \Rightarrow F_{z+1,z^2}(\psi(z,t)) = 0$$

$$t > z \Rightarrow \psi(z,t) = \frac{t-1}{z} \le z \Rightarrow F_{z+1,z^2}(\psi(z,t)) = 0$$

Case II: $t \ge (z + 1)^2$

Then L.H.S of (3.3.1) is $1 \ge F_{z+1,z^2}(\psi(z,t)) = 0$

Case III:
$$z^2 + 1 < t < (z+1)^2$$
 (3.3.2)

L.H.S of (3.3.1) =
$$\frac{t - (z^2 + 1)}{(z+1)^2 - (z^2 + 1)} = \frac{t - (z^2 + 1)}{2z}$$

From (3.3.2),
$$z < z^2 + 1 < t \Rightarrow \psi(z, t) = \frac{t-1}{z}$$
 and $z < \frac{t-1}{z} = \psi(z, t) < z + 2 \ (\because z^2 + 1 < t < (z+1)^2)$

If $z + 1 \ge \frac{t-1}{z} = \psi(z, t)$, then R.H.S of (3.3.1) is '0'.

Suppose $z + 1 < \frac{t-1}{z} < z + 2 \le z^2$

Then R.H.S of (3.3.1) =
$$\frac{\frac{t-1}{z} - (z+1)}{z^2 - (z+1)} = \frac{t - (z^2 + z + 1)}{z(z^2 - (z+1))}$$

Claim:
$$\frac{t - (z^2 + 1)}{2z} \ge \frac{t - (z^2 + z + 1)}{z(z^2 - (z + 1))}$$
 (3.3.3)

i.e.
$$\frac{t-(z^2+1)}{2} \ge \frac{t-(z^2+z+1)}{(z^2-(z+1))}$$

For z = 2, (3.3.3) holds since $t < (z + 1)^2 = 9$

Now for $z \ge 3$

We have $2 \le z^2 - (z+1)$ so that

$$\frac{t - (z^2 + 1)}{2} \ge \frac{t - (z^2 + 1)}{z^2 - (z + 1)} \ge \frac{t - (z^2 + z + 1)}{z^2 - (z + 1)}$$

Hence (3.3.3) holds

Thus $F_{ASz,SAz}(t) \ge F_{Az,Sz}(\psi(z,t))$.

Hence the pair (A, S) is DNR commuting.

Note: The maps *A* ans *S* of the above example do not have a common fixed point and do not have property (E.A). Thus Example 3.3 shows that in the absence of property (E.A), DNR commutativity alone may not guarantee the existence of a common fixed point.

REFERENCES

- [1] Aamri. M and EI Moutawaki. D: Some new common fixed point theorems under strict contractive conditions, J. Math. Anal. And Appl., 270, (2002), 181-188.
- [2] Ciric. Lj. B and Milovanovic-Arandjelovic. M.M: Common fixed point theorem for R-weak commuting mappings in Menger spaces, J. Indian Acad. Math., 22, (2000), 199-210.
- [3] Kohli. J.K, Vashistha. S and Kumar. D: A common fixed point theorem for six mappings in Probabilistic metric spaces satisfying contractive type implicit relation, Int. J. Math. Anal. 4(2), (2010), 63-74.
- [4] Kumar. S and Chugh. R: Common fixed point theorems using minimal commutativity and reciprocal continuity conditions in metric spaces, Sci. Math. Japon, 56, (2002), 269-275.
- [5] **Kumar. S and Pant. B.D:** A common fixed point theorem in probabilistic metric spaces using implicit relation, Filomat. 22, (2008), 43-52.
- [6] Liu. Y, Wu. J and Li. Z: Common fixed points of single-valued multi-valued maps, Int. J. Math. And Sci., 19, (2005), 3045-3055.
- [7] Menger. K: Statistical Metrics, Proc. Nat. Acad. Sci., U.S.A, 28, (1942), 535-537.
- [8] Mihet. D: A generalization of a contraction principle in Probabilistic Spaces, Part II, Int. J. Math. Sci., (2005), 729-736.
- [9] Mukesh Sharma and Dimri. R.C: A common fixed point theorem for a sequence of mappings in Probabilistic metric spaces using implicit relation and the property (E.A), Int. J. Math. Analysis, Vol. 6, (2012), no. 7, 333-340.
- [10] Pant. R.P: A common fixed point theorem under a new condition, Indian J. Pure Appl. Math. 30, (1999), 147-152.
- [11] Schweizer. B and Sklar. A: Statistical spaces, Pacific. J. Math., 10, (1960), 313-334.
- [12] Schweizer. B and Sklar. A: Statistical metric spaces, North Holland Amsterdam, (1983).
- [13] Sehgal. V.M: Some fixed point theorems in functional analysis and Probability, Ph.D. dissertation, Wayne State Univ. 1966.

Source of support: Nil, Conflict of interest: None Declared