ON LEFT DERIVATIONS OF d–ALGEBRAS

1N. Kandaraj * & 2M. Chandramouleeswaran**

1Department of Mathematics, Saiva Bhanu Kshatriya College, Aruppukottai-626101, India
2Department of Mathematics, Saiva Bhanu Kshatriya College, Aruppukottai-626101, India

(Received on: 14-05-12; Accepted on: 31-05-12)

ABSTRACT

In this paper we investigate some properties of left derivations of d–algebras.

Keywords: d–algebra, left derivation.

Subject Classification AMS (2000): 06F35, 03G25, 06D99, 03B47.

1. INTRODUCTION

Y. Imai ([1], [2], [3]) and K.Isaki introduced two classes of abstract algebras: BCK algebras and BCI algebras. Q.P.Hu and X.Li introduced a broad class of abstract algebras: BCH algebras. ([4], [5]) J.Neggers and H.S.Kim introduced the notion of d–algebras. [6].

Y.B. Jun and X.L.X in [7] applied the notion of derivation in ring and near ring theory to BCI algebras and they also introduced a new concept called a regular derivation in BCI algebras. They investigated some of its properties, defined a d–invariant ideal and gave conditions for an ideal to be d–invariant. In non-commutative rings, the notion of derivations is extended to d–derivations, left derivations and central derivations.

In [9] H.A. Abujabal and Nora O.Alshehri introduced the notion of left derivations of BCI algebras and investigated regular left derivations in BCI algebras. Recently, we have [10] introduced the notion of derivations on a d–algebra. In this paper we introduced the notion of left derivations on d–algebras and they investigated regular left derivations.

2. PRELIMINARIES

Definition 2.1: A d–algebra is a non-empty set X with a constant 0 and a binary operation $*$ satisfying the following axioms:
1. $x * x = 0$
2. $0 * x = 0$
3. $x * y = 0$ and $y * x = 0$ \(\Rightarrow\) $x = y$.

Definition 2.2: Let S be a non empty subset of a d–algebra X then, S is called d–sub algebra of X if $x * y \in S$ for all $x, y \in S$.

Definition 2.3: Let X be a d–algebra and I be a subset of X then I is called d–ideal of X if it satisfies the following conditions:
1. $0 \in I$
2. $x * y \in I$ and $y \in I$ \(\Rightarrow\) $x \in I$
3. $x \in I$ and $y \in X$ \(\Rightarrow\) $x * y \in I$.

Corresponding author: M. Chandramouleeswaran**

2Department of Mathematics, Saiva Bhanu Kshatriya College, Aruppukottai-626101, India

International Journal of Mathematical Archive- 3 (6), June – 2012
Definition 2.4: Let X be a d-algebra. A map $\theta : X \to X$ is a left-right derivation (briefly (l, r)-derivation) of X if it satisfies the identity $\theta(x * y) = (\theta(x) * y) \land (x * \theta(y))$ for all $x, y \in X$. If θ satisfies the identity $\theta(x * y) = (x * \theta(y)) \land (\theta(x) * y)$ for all $x, y \in X$, then θ is a right-left derivation (briefly (r, l)-derivation) of X. Moreover, if θ is both a (l, r)- and (r, l)-derivation, then θ is a derivation of X.

Definition 2.5: Let θ be a derivation of a d-algebra X. An ideal I of X is said to be θ-invariant if $\theta(I) \subseteq I$ where $\theta(I) = \{ \theta(x) \mid x \in I \}$.

Definition 2.6: A self map θ of a d-algebra X is said to be regular if $\theta(0) = 0$.

Definition 2.7: Let $(X, *, 0)$ be a d-algebra and $x \in X$. Define $x * X = \{ x * a \mid a \in X \}$. X is said to be edge d-algebra if for any $x \in X$, $x * X = \{ x, 0 \}$.

Lemma 2.8: Let $(X, *, 0)$ be an edge d-algebra, then $x * 0 = x$ for any $x \in X$.

Lemma 2.9: If $(X, *, 0)$ is an d-algebra, then the condition $(x * (x * y)) * y = 0$ for all $x, y \in X$ holds.

Lemma 2.10: If $(X, *, 0)$ is an d-algebra, then $(x * y) * z = (x * z) * y$ for all $x, y, z \in X$.

Lemma 2.11: Let $(X, *, 0)$ be an d-algebra then $y * (y * x) = x \ \forall \ x, y \in X$.

3. LEFT DERIVATIONS

In this section we define the left derivations.

Definition 3.1: Let X be a d-algebra. By a left derivation of X we mean a self map θ of X satisfying

$$\theta(x * y) = (\theta(x) * y) \land (\theta(y) * x) \ \forall \ x, y \in X.$$

Example 3.2: Let $X = \{ 0, 1, 2, 3 \}$ be a d-algebra with Cayley table defined by

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Define a map $\theta : X \to X$ by $\theta(x) = \begin{cases} 0 & \text{if } x = 0, 1, 3 \\ 3 & \text{if } x = 2 \end{cases}$

Then it is easily checked that θ is a left derivation of X.

Lemma 3.3: In any d-algebra X, the following properties hold for all $x, y, z \in X$.

1. $x * (x * (x * y)) = x * y$.
2. $x * 0 = 0 \Rightarrow x = 0$.
3. $((x * z) * (y * z)) * (x * y) = 0$.
4. $x \leq y \Rightarrow x * z \leq y * z$ and $z * y \leq z * x$.
5. $((x * y) * (x * z)) * (z * y) = 0$.
6. $(x * z) * (y * z) = x * y$.
7. $(x * 0) * 0 = x$.
8. $x * a = x * b \Rightarrow a = b$.
9. $a * x = b * x \Rightarrow a = b$.
10. $x * y = 0 \Rightarrow x = y$.

Definition 3.4: A left derivation θ of a d-algebra X is said to be regular if $\theta(0) = 0$.
Lemma 3.5: Every left derivation of a d-algebra with $x \ast 0 = x$ is regular.

Proof: Now

\[
\begin{align*}
\theta(0) &= \theta(0 \ast x) \\
&= (\theta(0) \ast x) \land (\theta(x) \ast 0) \\
&= (\theta(0) \ast x) \land \theta(x) \quad (\therefore x \ast 0 = x) \\
&= \theta(x) \ast (\theta(x) \ast (\theta(0) \ast x)) \\
\theta(0) &= \theta(0) \ast x.
\end{align*}
\]

If $\theta(0) = 0$, then nothing to prove. If $\theta(0) \neq 0$, then $\theta(0) \ast \theta(0) \neq 0 \ast \theta(0) \neq 0$.

This is contradiction to the condition, $x \ast x = 0$.

Hence $\theta(0) = 0$. Therefore, every left derivation of a d-algebra with $x \ast 0 = x$ is regular.

Lemma 3.6: Let θ be a left derivation of a d-algebra X. Then for all $x, y \in X$ we have

1. $\theta(x) \ast x = \theta(y) \ast y$.
2. $\theta(x \ast y) = \theta(x) \ast y$.

Proof:

1. Let $x, y \in X$.

\[
\begin{align*}
\theta(0) &= \theta(x \ast x) \\
&= (\theta(x) \ast x) \land (\theta(x) \ast x) \\
&= (\theta(x) \ast x) \ast ((\theta(x) \ast x) \ast (\theta(x) \ast x)) \\
&= (\theta(x) \ast x) \ast 0 \\
&= \theta(x) \ast x \quad \cdots \cdots (1).
\end{align*}
\]

Similarly, $\theta(0) = \theta(y) \ast y \quad \cdots \cdots (2)$.

From (1) and (2), $\theta(x) \ast x = \theta(y) \ast y$.

2. Let $x, y \in X$. Since θ be a left derivation of X.

\[
\begin{align*}
\theta(x \ast y) &= (\theta(x) \ast y) \land (\theta(y) \ast x) \\
&= (\theta(y \ast x) \ast ((\theta(y) \ast x) \ast (\theta(x) \ast y)) \\
&= \theta(x) \ast y
\end{align*}
\]

Lemma 3.7: Let θ be a left derivation of a d-algebra X such that $x \ast 0 = x$. Then $\theta(x) = x$ if and only if θ is regular.

Proof: Let θ be a regular.

That is $\theta(0) = 0$.

Now

\[
\begin{align*}
\theta(0) &= \theta(x \ast x) \\
&= (\theta(x) \ast x) \land (\theta(x) \ast x) \\
&= (\theta(x) \ast x) \ast ((\theta(x) \ast x) \ast (\theta(x) \ast x)) \\
&= (\theta(x) \ast x) \ast 0 \\
&= \theta(x) \ast x \\
&= 0
\end{align*}
\]

which implies $\theta(x) = x$.
Conversely, assume $\theta(x) = x$. Then it is clear that $\theta(0) = 0$, thus proving that θ is regular.

Theorem 3.8: Let θ be a left derivation of a σ-algebra X. Then θ is regular if and only if every ideal of X is θ-invariant.

Proof: Let θ be a regular left derivation of a σ-algebra X.

Then by lemma 3.7, $\theta(x) = x$ for all $x \in X$.

Let $y \in \theta(A)$, where A is an ideal of X.

Then $y = \theta(x)$ for some $x \in A$.

Thus $y \ast x = \theta(x) \ast x = x \ast x = 0 \in A$.

Then $y \in A$ and $\theta(A) \subset A$.

Therefore A is θ-invariant.

Conversely, let every ideal of X be θ-invariant.

That is $\theta(A) \subset A$. Then $\theta(\{0\}) \subset \{0\}$. Hence $\theta(0) = 0$. Therefore θ is regular.

Theorem 3.9: Let X be a σ-algebra. A self map θ of X is left derivation if and only if it is derivation.

Proof: Assume that θ is a left derivation of a σ-algebra X.

$$\theta(x \ast y) = \theta(x) \ast y = (x \ast \theta(y)) \ast ((x \ast \theta(y)) \ast (\theta(x) \ast y)).$$

$$\theta(x \ast y) = (\theta(x) \ast y) \wedge (x \ast \theta(y)) \quad \cdots \quad (1).$$

$$\theta(x \ast y) = \theta(x) \ast y = (x \ast \theta(y))$$

$$= (\theta(x) \ast y) \ast ((\theta(x) \ast y) \ast (x \ast \theta(y)))$$

$$= (x \ast \theta(y)) \wedge (\theta(x) \ast y) \quad \cdots \quad (2).$$

From (1) and (2), θ is a derivation of X.

Conversely, let θ be a derivation of X. So it is a (I, r)-derivation of X.

Now: $\theta(x \ast y) = (\theta(x) \ast y) \wedge (x \ast \theta(y))$.

$$= (x \ast \theta(y)) \ast ((x \ast \theta(y)) \ast (\theta(x) \ast y))$$

$$= \theta(x) \ast y$$

$$= (\theta(y) \ast x) \ast ((\theta(y) \ast x) \ast (\theta(x) \ast y))$$

$$= (\theta(x) \ast y) \wedge (\theta(y) \ast x).$$

Hence θ is a left derivation of X.

Definition 3.10: Let X be a σ-algebra and θ_1, θ_2 be two self maps of X. We have $\theta_1 \circ \theta_2 : X \to X$ as $(\theta_1 \circ \theta_2)(x) = \theta_1(\theta_2(x)) \forall x \in X$.

Lemma 3.11: Let $(X, \ast, 0)$ be a σ-algebra. Let θ_1 and θ_2 be two left derivations of X, then $\theta_1 \circ \theta_2$ is also a left derivation of X.
Proof:

\[(\theta_1 \circ \theta_2)(x * y) = \theta_1(\theta_2(x * y)) = \theta_1((\theta_2(x) * y) \land (\theta_2(y) * x)) = \theta_1((\theta_2(y) * x) * [(\theta_2(y) * x) * \theta_2(x) * y]) = (\theta_1(\theta_2(x)) * y) \land \theta_1(\theta_2(y)) * x = ((\theta_1 \circ \theta_2)(x) * y) \land ((\theta_1 \circ \theta_2)(y) * x)\]

Hence \(\theta_1 \circ \theta_2\) is a left derivation of \(X\).

It can be easily proved that

Theorem 3.12: Let \(\{X, \ast, 0\}\) be a \(d\)-algebra and \(\theta_1, \theta_2\) are left derivations of \(X\). Then \(\theta_1 \circ \theta_2 = \theta_2 \circ \theta_1\).

Definition 3.13: Let \(X\) be a \(d\)-algebra and \(\theta_1, \theta_2\) be two self maps of \(X\). We define \(\theta_1 \cdot \theta_2 : X \to X\) as \((\theta_1 \cdot \theta_2)(x) = \theta_1(x) \cdot \theta_2(x) \quad \forall \ x \in X\).

Theorem 3.14: Let \(\{X, \ast, 0\}\) be a \(d\)-algebra and \(\theta_1, \theta_2\) are left derivations of \(X\). Then \(\theta_1 \cdot \theta_2 = \theta_2 \cdot \theta_1\).

Proof: Let \(X\) be a \(d\)-algebra and \(\theta_1, \theta_2\) are left derivations of \(X\).

\[
\text{Now } (\theta_1 \cdot \theta_2)(x \ast y) = \theta_1(x \ast y) \cdot \theta_2(x \ast y) = [(\theta_1(x) \ast y) \land (\theta_1(y) \ast x)] \cdot \theta_2(x \ast y) = 0 \quad \text{on simplification} \quad \cdots \cdots (1).
\]

Similarly \((\theta_2 \cdot \theta_1)(x \ast y) = \theta_2(x \ast y) \cdot \theta_1(x \ast y) = 0 \quad \cdots \cdots (2)\).

From (1) and (2), \((\theta_1 \cdot \theta_2)(x \ast y) = (\theta_2 \cdot \theta_1)(x \ast y)\).

Putting \(y = 0\) we get for all \(x \in X\),

\((\theta_1 \cdot \theta_2)(x) = (\theta_2 \cdot \theta_1)(x)\). Hence \(\theta_1 \cdot \theta_2 = \theta_2 \cdot \theta_1\)

Notation: Der\(\{X\}\) denote the set of all left derivations on \(X\).

Definition 3.15: Let \(\theta_1, \theta_2 \in\) Der\(\{X\}\). Define the binary operation \(\land\) as

\[(\theta_1 \land \theta_2)(x) = \theta_1(x) \land \theta_2(x)\]

It is easy to prove that

Lemma 3.16: Let \(X\) be a \(d\)-algebra and \(\theta_1, \theta_2\) are left derivations of \(X\). Then \(\theta_1 \land \theta_2\) is also a left derivation of \(X\).

Lemma 3.17: Let \(X\) be a \(d\)-algebra. If \(\theta_1, \theta_2, \theta_3 \in\) Der\(\{X\}\). Then

\[\theta_1 \land (\theta_2 \land \theta_3) = (\theta_1 \land \theta_2) \land \theta_3\]

Proof: Let \(X\) be a \(d\)-algebra and \(\theta_1, \theta_2, \theta_3\) are left derivations of \(X\).

\[
\text{Now } ((\theta_1 \land \theta_2) \land \theta_3)(x \ast y) = (\theta_1 \land \theta_2)(x \ast y) \land \theta_3(x \ast y) = \theta_3(x \ast y) \ast (\theta_3(x \ast y) \ast (\theta_1 \land \theta_2)(x \ast y)) = (\theta_1 \land \theta_2)(x \ast y) = (\theta_2(x) \ast y) \ast ((\theta_2(x) \ast y) \ast (\theta_1(x) \ast y)) = \theta_1(x) \ast y \quad \cdots \cdots (1).\]
Also consider the following
\[
\theta_1 \land (\theta_2 \land \theta_3)(x \ast y) = \theta_1(x \ast y) \land (\theta_2 \land \theta_3)(x \ast y)
\]
\[
= \theta_1(x \ast y) \land [\theta_2(x \ast y) \land \theta_3(x \ast y)]
\]
\[
= \theta_1(x \ast y) \land [\theta_3(x \ast y) \ast ((\theta_3(x \ast y)) \ast (\theta_2(x \ast y)))]
\]
\[
= \theta_1(x \ast y) \quad \cdots \quad (2).
\]

This implies that \((\theta_1 \land (\theta_2 \land \theta_3))(x \ast y) = ((\theta_1 \land \theta_2) \land \theta_3)(x \ast y)\).

Put \(y = 0\), we have
\[
(\theta_1 \land (\theta_2 \land \theta_3))(x) = ((\theta_1 \land \theta_2) \land \theta_3)(x).
\]
\[
\Rightarrow \theta_1 \land (\theta_2 \land \theta_3) = (\theta_1 \land \theta_2) \land \theta_3.
\]

From the above two lemmas we obtain the following.

Theorem 3.18 \((\text{Der} \,(X, \land)\) is a semi group.

REFERENCES

Source of support: Nil, Conflict of interest: None Declared