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ABSTRACT 

This manuscript commences with new perception of 1-quasi total colouring and diverse bounds of the 1-quasi total 
colourings. The upper bound for 1-quasi total chromatic number is observed as 2+ )(Glχ′ using list edge chromatics 
numbers. Also it has been identified that at most∆+8log8∆  colours are required to properly coloured 1-quasi total 
graphs and to provide a polynomial time algorithm. Also it has been widened the Colin J.H, Mc.Diarmid and Abdon 

sanchez upper bound to1-quasi total graphs as 



 +∆ 3
5
7

. 

 
Key words: 1-quasi total colouring, list colouring, upper bounds, stable set. 
 
AMS Subject Classification: 05C15, 05C30, 05C99.    
 
 
0. INTRODUCTION 
 
Behzad (1965) was pioneered the concept of Total Colouring for which Harry (1972) made an orifice on the concept of 
total graphs.  In the year 1976 Bondy and Murthy studied the applications of total graphs. Later on S.Even (1975) made 
his contribution on algorithms in general graphs. Further Hind (1990) put his effort for improving the bounds for total 
chromatic graphs. In a while Chetwynd (1990) investigated on total colourings. In addition to that Beck (1994) gave an 
algorithmic approach to lovasz local lemma.  Again Hind (1994) found some recent developments in total colourings. 
Then after Jesen (1995) conversed total colouring problems. Hind (1996) and others continued their contribution to 
total colouring yet again. After a while West DB (2002) developed the concept various applications of vertex edge 
colourings. Recently RVNSrinivas and JVRao (2012) made their efforts on 1- quasi total graphs. 
 
Here all the graphs are finite and without loops .Let G=(V, E) be a graph ,when we discuss colouring of a subset of 
V∪ E, we  always assume that it is proper ,means ,no two adjacent or incident elements assigned the same colour. A 
vertex colouring, edge colouring ,quasi total colouring is proper colouring of V,E, V∪ E respectively .The chromatic 
number )(Gχ ,edge chromatic number )(Gχ′  quasi total colouring )(GQχ ′′  is the least no. of  colours in a vertex 

,edge ,quasi –total colouring of G, respectively. Here we restrict our proofs to simple graphs .Let )(G∆  be the 
maximum degree of a vertex in G. Here we follow the notations of West, D.B., 1996[11], any undefined notation 
follows that [11]. 
 
1. PRELIMINARIES 
 
Definition 1.1: Let G be a graph with vertex set V(G) and edge set E(G). The 1–quasitotal graph,   (denoted by Q1(G)) 
of G is defined as follows: The vertex set of Q1(G), that is  V(Q1(G)) = V(G) ∪ E(G). Two vertices x, y in V(Q1(G)) are 
adjacent if they  satisfy one of the  following  conditions:  (i).  x, y are in V(G) and xy  ∈ G.   (ii). x, y are in E(G) and 
x, y are incident in G. 
 
Note 1.2:  (i) G is a sub graph of Q1(G); and (ii)Q1(G) is a sub graph of T (G). 
 
Example 1.3: Consider the graph G given in Fig. 1.3A.   
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The 1-quasitotal graph Q1 (G) is given by the Fig. 1.2 
 
Now we define the of 1-quai total chromatic number. 
 
1.4 Definition: A 1-Quasi total colouring of a graph G is an assignment of colours to the vertices and edges of G such 
that distinct colours are assigned to (i) Every two adjacent vertices (ii) Every two adjacent edges.  
A 1-quasi k-total coloring of a graph G is a quasi -total coloring of G from a set of k-colors of G. The 1-quasi total 
chromatic number of a graph G is the minimum positive integer k for which G is k-quasi total colorable denoted 
by )(

1
GQχ ′′ or ))(( 1 GQχ  

 
1.5: Example: From the fig 1.2, the 1-quasi total chromatic number of G is 2  

 
1.6 Definition List colouring [2] is a generalization of vertex colouring in which the set of colours available at each 
vertex is restricted. A graph is k-choosable if it has a proper list coloring no matter how one assigns a list of k colors to 
each vertex. The choosability (or list chromatic number) )(Glχ of a graph G is the least number k such that G is k-
choosable. 
 
1.7 Note: Choosability )(Glχ  satisfies the following properties for a graph G with n vertices, chromatic number χ(G), 
and maximum degree Δ(G): 
1. )(Glχ ) ≥ χ(G). A k-list-colorable graph must in particular have a list coloring when every vertex is assigned the 
same list of k colors, which corresponds to a usual k-coloring. 
 
2. )(Glχ ≤ Δ(G) + 1. 
 
First we have to discuss about lower bounds for 1-quasi total graphs 
 
1.8 Definition: A graph is said to be contain even hole [3] if it contains an induced cycle with an even no of vertices. 
 
1.9 Definition: A family F of graphs is called a color bounded   family if for some function f(x) and any G from the 
family one has ≥)(Gχ f(col(G)). 
 
1.10. Theorem [Marksman, Gaspar an, and Reed (1996)]: Let G is a graph without any even-hole. Then  
 

)(
1

GQχ ′′  ≥ 



 −

2
1)(Gcol

. 

 
1.11. Theorem [Manouchehr zakeer, 2008]: Let the maximum even-hole of a graph G be k. Then  
 

)(
1

GQχ ′′ ≥
1)(

+
k
Gd

. 
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2. UPPER BOUNDS USING LIST EDGE CHROMATIC NUMBERS 
 
If c is a total coloring of a graph G and v is a vertex of G with degv= )(G∆ , then c must assign distinct   colors to the 

)(G∆ edges incident with v as well as to v itself. This implies that )(Gχ ′′ ≥ 1+ )(G∆  for every graph G. But this 
lower bound does not satisfy the 1-quasi total chromatic numbers .It can be justified with the following example. 
 
2.1: Example: From the fig. 1.3A )(G∆ =2 and also satisfied )(Gχ ′′ ≥ 1+ )(G∆ , but fig 1.3B is the 1-quasi total 

graph of 1.3A and 1-quasi total chromatic number )(
1

GQχ ′′ =2, hence )(
1

GQχ ′′ ≥≠1+ )(G∆ . 
 
However ,in 1960s Mehdi Behzad and vizing independently conjectured ,similar to the upper bound for the chromatic 
index established by Vizing, that the total chromatic number cannot exceed this lower bound by more than 1.This 
conjecture has became known as the total coloring conjecture .  
 
Here we may extend the bound to 1-quasi total graphs as , for any graph G, )(

1
GQχ ′′ ≤ 2+ )(G∆ .Even though it is not 

known if 2+ )(G∆ is an upper bound for the 1-quasi total chromatic number of every graph, the number 2+ )(Glχ′ . 
 
Theorem.2.2:   Every graph G, )(

1
GQχ ′′ ≤ 2+ )(Glχ′ . 

 
Proof: Suppose that the list chromatic index )(Glχ′ =k.  
 
We know that ≤)(Gχ 1+ )(G∆ ≤ 1+ )(Gχ ′ ≤ 1+ )(Glχ′ <2+ )(Glχ′ =2+k. 
 
Thus G is (k+2)-colorable .let a (k+2)-coloring c of G   be given. For each edge e=uv of G, let L (e) be a list of k+2 
colors and let )(eL′ =L (e)-{c (u), c (v)}. 
 
Since keL ≥′ )(  for each edge e of G and )(Glχ′ =k, it follows that there is a proper edge coloring c of G such that 

)()( eLec ′∈′ and so { })(),()( vcucec ∉′ .Hence the 1-quasi total coloring 
1Qc ′′ of G defined by  

 

1Qc ′′  (x)= 








∈′
∈

)(),(
)(),(

GEifxGc
GVifxxc

 
  is a (k+2)1-quasi total coloring of G and so )(

1
GQχ ′′ ≤ 2+k≤ 2+ )(Glχ′ , as desired. 

 
The list colouring conjecture states that )(Gχ′ = )(Glχ′  for every nonempty graph G if this conjecture is true then 

)(Glχ′ ≤ 1+ )(G∆  by Vizing’s theorem and by the theorem 2.2 , so )(
1

GQχ ′′ ≤ 3+ )(G∆ . 
 
3. COLOURING WITH ∆ +POLY (LOG∆ ) COLOURS 
 
In this section providing a polynomial time algorithm, finds a quasi total colouring of any graph with ∆ sufficiently 
large, using at most ∆ +8log8∆  colours 
 
As the concept of total coloring was introduced independently by Behzad [1965]and Vizing was each conjectured that 
any graph with maximum degree ∆  has a ∆ +2 total coloring .Note that if true, this conjecture is tight as every such 
graph requires at least ∆ +1 colour. The first ∆ +o(∆ ) bound on the quasi total chromatic number of such a graph was 
∆ +2√∆ ,due to Hind[1990]. In this chapter we tightened the bound∆ +18 )3log(3/1 ∆∆  of Haggkvit and Chetwynd 
[1995], for of 1-quasi total graphs as ∆ +8log8∆ . 
 
3.1Theorem: If G has maximum degree ∆ then ∆+∆≤′′ 8log8)(

1
GQχ . 

 
Remarks: Our proof is probabilistic and make use of the Lovasz Local lemma .the proof can be made  constructive 
,providing an O(n3logo(1)n) randomized algorithm ,and a polytime deterministic algorithm to find such a total colouring. 
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The total chromatic number conjecture is reminder  of Vizings’s theorem which states  that if G has maximum 

degree∆  then the edge chromatic number of G, )(Gχ′ is either ∆ or ∆ +1.It is also reminiscent of list colouring 
conjecture .in Fact ,a slightly weaker form of the total colouring conjecture follows from the list colouring conjecture. 
 
The list edge chromatic number of a graph G,  )(Glχ′  , is the minimum number r with the following property: For any 
mapping f: E(G)→S where S is a collection of sets of colours each size of r, G has a proper edge –colouring where for 
each edge e, the colour of e lies in f(e).The list colouring conjecture is that )(Glχ′ = )(Gχ′ . 

Recall that for any graph G, )(Gχ ≤ ∆ +1.Now consider any∆ +1 colouring c:V(G) →{1,2,…., ∆ +1}.For each edge 
e=(u,v) define f(e)  to be the set {1,…., ∆ +3}-{c(u),c(v)}.Now the size of f(e) is ∆ +1 for each e ,and so if the list 
colouring conjecture holds we can use such coloring to provide a ∆ +3 quasi total colouring of G. Therefore, the list 
colouring conjecture implies )(

1
GQχ ′′ ≤ ∆ +3.  

 
Inspired by the this implication, we say that a proper vertex coloring is extendable to a t- qusi total coloring if there is a 
quasi total  colouring of size t whose restriction to V(G) is that vertex coloring. Thus ,we have seen that the list coloring 
conjecture implies every ∆ +1  vertex coloring of G is extendible to a ∆ +3 quasi total coloring  of G .According to 
Hind [1994] has shown that there exist graphs having ∆ +1 vertex coloring which is not extendible to  a ∆ +2 qusi 
total coloring. 
 
In[6] Hind and others define a proper vertex coloring to be aβ -frugal if  no vertex has more than β  members of any 
color class in its neighborhood  To prove our main theorem we use the following Theorem 
 

3.2 Theorem: Every graph G with maximum degree∆
710

0 e=∆≥  has a )1(log5 +∆−∆ frugal  vertex coloring. 
 

Here we show that every )1(log5 +∆−∆ frugal  vertex coloring is extendable to an ∆+∆ 8log8  quasi total 
coloring thus proving our the theorem3.1. 
 

Here we assume that 
710e≥∆ for each vertex v, N (v) denotes neighborhood of v. 

 
To prove our theorem 3.1 we use the following lemma 
 
3.3 Lemma: suppose G is a graph with maximum degree at most D≥ ∆8log8 .Suppose further that  

we are given )(,......,,
2

321 GVSSSS D ⊆  such that for all )(GVv∈ ,1≤ i≤D/2, iSvN ∩)( ≤ ∆5log . Then 

there exists a sequence of edge-disjoint matchings in G, 
2

321 ,......,, DMMMM  such that  

1. Mi  misses Si; 

2. i

D

i MGG 2
1=∪−=′  has maximum degree at most  ∆+ 7log2

2
D

. 

 
Repeated iterations of lemma 3.3 will prove our theorem3.1. 
 
Proof of theorem3.1: Take 1321 ,......,, +∆SSSS  to be the colour classes of any )1(log5 +∆−∆ frugal  colouring 

of G, as guaranteed by theorem A. Set G0=G, 0∆=∆ , and repeatedly apply lemma 1 until ∆<∆ 8log8j ,setting 

GG j ′=+1 , ∆+
∆

≤∆+∆=∆ +
77

2/1 log4
2

log2 jjj ,and choosing 2/1
)( ,.........

j
SS j
∆  from previously unused 

members of { 121 ,........., +∆SSS },all the while forming colour classes from the pairs Si∪Mi. As there are at most 

log∆  Iterations, 1)log4(loglog42/ 78 +∆<∆∆+∆−∆≤∆∑ i , and so we will have produced fewer than 

∆ +1 colour classes. Therefore, an 8log8∆  edge-colouring of the final G′  will provide our ∆ +8log8∆  1-quasi total 
colouring. 
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3.4. Algorithmic considerations: 
 
We desaibe that our proof can make algorithmic using the techniques by Beck [7], at the price of increasing our lower 
bound on ∆ .Set n= )(GV .In [6] Provides an O (n3logo(1)n) randomized algorithm and  a polytime  deterministic  

algorithm  to find a log5∆ -frugal (∆ +1) –c0louring of G. After doing this we must find the set Xi  and the matching 
Mi ,we need find the 8log8∆  edge colouring used in the proof of the thorem3.1.The latter step can be done in O(n4) 
steps ,or we can find a 16 log 8∆  edge –colouring in O(n2) steps. Each Mi can be found in O(n2.5) steps ,as in [9] 
O(n2logo(1)n) steps using an algorithm particularly  the same as that discussed in [7]. the only  amendment  needed s to 

allow for sampling with probability pi  here rather than with probability 
2
1

 as in [7] .Also we have a O(n2.5logo(1)n) time 

randomized algorithm and a polytime deterministic algorithmic for finding a ∆ +16 log 8∆  total colouring of G. 
 
4. EXTENSION OF VERTEX COLOUIRNG TO QUASI TOTAL COLOURING  
 
In this section we give an upper bound on the no. of colours required to extend a given vertex colouring of a graph to a 
quasi total colouring. Colin J.H, Mc.Diarmid and abdon Sanchez proved the total colouring for any simple graph is at 

most 3
5
7

+∆ .Here we extend the concept to 1-quasi total graphs and proved that for any simple graph there is 1-quasi 

total colouring using at most 



 +∆ 3
5
7

colours, where ∆  is maximum degree. 

 
Trivially )(Gχ′ ∆≥  and )(Gχ ′′ ∆≥ +1.It is also well known that )(Gχ 1+∆≤  and )(Gχ′ 1+∆≤ .  Also from 
the total colouring conjecture )(Gχ ′′ 2+∆≤   [8]. 
 
We know that total coloring conjecture has been verified for several graphs. We may find for Complete graphs in 
[1].We aim here in upper bounds on the quasi total chromatic number )(GQχ ′′ .Of course clearly 

)(GQχ ′′ )()( GG χχ ′+≤ .It is also proved that )(Gχ ′′ ∆≤
2
3

 for multiple graph with 6≥∆ [1]. Hind[4] has 

reviled  that )(Gχ ′′ χχ 2)( +′≤ G ,it has also been expressed  that if k is an integer ,with k∠  at least number of 

vertices  then )(Gχ ′′ 1)( ++′≤ kGχ  and that most graphs satisfy )(Gχ ′′ = 1+∆ (see1,8).Now we describe  our 
main result. 
 
4.1. Theorem: For any graph G, any vertex colouring with p colours extends to a 1-quasi total 

colouring )(GQχ ′′ }
5
8),min(

5
2),{max( +′+′≤ χχ pp   

 
To prove the theorem first we have to use the following lemmas. 
 
Lemma4.2: [Colin J.H, Mc.Diarmid, 1991] Let G= (V, E) be a graph with 2)( ≤∆ G ,let VW ⊆ , and let 

}4,3,2,1{: →Wφ  be a partial vertex colouring of G. Then there is an edge colouring }4,3,2,1{: →Eψ  such that 

ψφ ∪ is a proper colouring of EW ∪ , and if 1)( =eψ then We ⊆ . 
 
Lemma 4.3:Let G=(V,E) be a graph ,let VW ⊆  and let }4,3,2,1{: →Wφ  be a partial vertex colouring .Suppose 
that there are k matchings in G such that the sub graph H is obtained  by deleting them has 2)( ≤∆ H (certainly ,this 
is true if 2)( −′= Gk χ ).Then there is an edge colouring }4,......,1{: +→ kEψ  such that ψφ ∪ is a proper 
colouring of EW ∪ ,and if 1)( =eψ then We ⊆ . 
 
Proof: If 2)( ≤∆ H , then the result follows immediately from lemma 4.1 .so, suppose that 

3)( ≥∆ H .Let 5E ,….., 4+kE  be k matchings such that the graph H obtained by deleting them has 2)( ≤∆ H .Now 
apply lemma 4.2 to H. 
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Now we define t(0),t(1),…,t(4) to be 1, 
5
8

,
5
6

,
5
4

,
5
2

, respectively, for any integer n let t(n)=t(i), where 

)5(modin ≡ , 40 ≤≤ i . 
 
Lemma 4.4:Let G=(V,E) be  a graph , let 1V ,…… pV  be disjoint stable sets of vertices, and let 

=W 1V ∪…..∪ pV .Then there is a colouring  φ  of EW ∪  using at most  

[ ),(min(),min(
5
2),max( χχχ ′+′+′ ptpp ] colours such that iv =)(φ for iVv∈ , for each i=1,…p. 

 
Proof:  we have to know the result for the cases χ′≤p and χ′>p . 
 
Let χ′>p . Apply the known result to 1V ,…. χ ′V  and then use χ′−p  new colours for pVV ,....,1+′χ .This uses at 

most  



 ′+′+ )(

5
2 χχ tp

  
colours i.e.

   
)()(

5
2 χχχχ ′−+



 ′+′+′ pt   Colours, as required. Hence it suffices to 

consider the case χ′≤p . 
 
Assume first that p=5k-1, where k≥2.Let },.......1{:0 χφ ′→E  be an edge colouring of G. For 1,…, k let Wj=V4j-

3.For j=1,….,k apply lemma 4.2 to the vertex sets V4j-3,….. V4j in the graph on V with edge set Ej. Thus ,we find a 
colouring }2,.......1{...: 11 kEW +′→∪∪ χφ  such that iv =)(1φ for iVv∈ ,i=1,……..,4k and each edge e 

coloured 4j satisfies jWe ⊆ ,for i=1,…..,k. We must next remove colour i from each edge e incident with Vi, for each 
i=4k+1,….,p. 
 
Suppose then that 1)(1 =eφ , where i=4k+j, 1≤j≤k-1, and e is incident with Vi,  
 

let












−∈

∈
=

),(4

),(4
)(2

ji

ji

WVVjife
WVkife

eφ , apart from these edges let  2φ  agree with 1φ .Now we may elaborate  2φ  to a 

colouring 3φ of EW ∪  by setting iv =)(3φ  for iVv∈ ,i=4k+1,…..,p. 
 
To see that the edges coloured 4k by 3φ  from a matching note that the sets of vertices Wk, (V4k+j∪Wj) j=1,…k-1 are 
pair wise disjoint. Also for each j=1,…k-1 the edges coloured 4j form a matching, since the sets of vertices Wj and 
(V4k+j∪V-Wj) are disjoint. Observe that 3φ  uses at most  k2+′χ  colours. 
 
Finally, we write p=5k-1+r, where k≥ 0 and 0≤r≤4. From th e abo v e case and lemma 1.2  it follo ws that there is a 

colouring, as desired, with number of colours at most )2,min(2 rk ++′χ ,this is equals to )(
5
2 ptp ++′χ for all 

p>1. 
 
4.5 Note: In this lemma we put W=V we obtain our theorem4.1. 
 
By Brooks theorem, ∆≤)(Gχ   for any connected graph G which is not complete or an odd cycle

 
hence, using also 

Vizing’s theorem we get the following corollary
   

4.6. Corollary: For any simple graph,
 

)(GQχ ′′ ≤ 



 +∆ 3
5
7

. 

 
Proof: In a simple graph there is at most one edge between every pair of vertices .Hence from theorem4.1, we get 

)(GQχ ′′ ≤ }
5
8),min(

5
2),{max( +′+′ χχ pp
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  ≤

5
8

5
2

++′ χχ  

             ≤
5
8

5
2)1( +∆++∆  

           =
5

13
5
7

+∆ ≤ 



 +∆ 3
5
7

. 

 
5. CONCLUSION 
 
This paper, presents a new concept of 1-quasi total colouring and this chromatic number accomplishes  new upper 

bounds as 2+ )(Glχ′  using list edge chromatic numbers∆ +8log8∆ ,and 



 +∆ 3
5
7

 to 1-quasi  total graphs. Also this 

manuscript contributes a polynomial time algorithm for the upper bound∆ +8log8 ∆  . 
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