International Journal of Mathematical Archive-3(6), 2012, 2325-2326 MA Available online through <u>www.ijma.info</u> ISSN 2229 - 5046

The Near ring (G, +, *) on a Finite Cyclic Group (G, +) with a function on G

L. Sreenivasulu Reddy*, V. Vasu and T. Mahesh Kumar Department of Mathematics; S. V. University; Tirupati-517502; A.P; India

(Received on: 19-03-12; Accepted on: 21-06-12)

ABSTRACT

Let (G, +, *) be a left near ring on a finite cyclic group (G, +). Let Π be a function defined on G : p * 1 = p for every $p \in G$. This paper describes some theorems: (i) If the left distribution of * over + is also a right distributive over + in (G, +, *), the function Π on (G, +) is a homomorphism and vice versa. (ii) If the operation * is commutative on (G, +, *), $\Pi(p).q = p.\Pi(q)$ for all $p,q \in G$ and vice versa. (iii) If the near ring (G, +, *) is a non-identity integral domain, the function Π is a homomorphism on (G, +, *) such that $\Pi(p.\Pi(q)) = \Pi(p).\Pi(q) \neq 0$ whenever $p.q \neq 0$ and vice versa.

Key words: Left near ring, Right near ring.

INTRODUCTION

The triple (G, +, *) is said to be a left(right) near ring if (G, +) is a group (not necessarily abelian), (G, *) is a semigroup, and * is left(right) distributive over +. Throughout this paper, the term near ring will mean left near ring, the set $G = Z_n = \{0, 1, ..., n - 1\}$. Also, + and . will denote addition and multiplication modulo n, respectively, on our set G, and Π will denote a function on Z_n such that $p * q = \Pi(p)$. q. All of these assumptions are taken like Clay [1].

OUR CONTRIBUTION

Theorem 1: The left distribution of * over + is also a right distributive in $(Z_n, +, *)$ iff the function Π on $(Z_n, +)$ is a homomorphism.

Proof: Assume that the left distribution of * over + is also a right distributive in $(Z_n, +, *)$. Thus, for all $p, q, r \in Zn$: $(p + q) * r = p * r + q * r \Rightarrow \Pi(p + q) \cdot r = \Pi(p) \cdot r + \Pi(q) \cdot r$ Hence, when r = 1.

we have $\Pi(p + q) = \Pi(p) + \Pi(q)$.

Conversely, Assume that the function Π is a homomorphism on $(Z_n, +)$. For all, $q \in Z_n$,

 $\Pi(p + q) = \Pi(p) + \Pi(q)$. Then

 $\begin{aligned} \Pi(p+q) &= \Pi(p) + \Pi(q) \Rightarrow \Pi(p+q).r = \big(\Pi(p) + \Pi(q)\big).r \Rightarrow \Pi(p+q).r = \Pi(p).r + \Pi(q).r \Rightarrow \\ (p+q)*r &= p*r + q*r \end{aligned}$

Corollary 1: The near ring $(Z_n, +, *)$ is a ring iff the function Π on $(Z_n, +)$ is homomorphism such that $\Pi(p, \Pi(q)) = \Pi(p)$. $\Pi(q)$.

Proof: Clay [1] proved that a necessary and sufficient condition for a function Π to define an associative left distributive operation is that $\Pi(p, \Pi(q)) = \Pi(p) \cdot \Pi(q)$.

Theorem 2: The binary operation * on $(Z_n, +, *)$ is commutative iff $\Pi(p) \cdot q = p \cdot \Pi(q)$ for all $p, q \in Z_n$.

Proof: Assume that the operation * is commutative. But we have $\Pi(p)$. q = p * q and $p.\Pi(q) = \Pi(q)$. p = q * p.

Since the operation * is commutative, $\Pi(p) \cdot q = p \cdot \Pi(q)$ for all $p, q \in Z_n$.

L. Sreenivasulu Reddy*, V. Vasu and T. Mahesh Kumar/ The Near ring (G, +, *) on a Finite Cyclic Group (G, +) with a .../ IJMA-3(6), June-2012, Page: 2325-2326

Conversely, assume that $\Pi(p).q = p.\Pi(q)$ for all $p,q \in Z_n$. From above two expressions; we have p * q = q * p for all $p; q \in Z_n$.

Corollary 2: The operation * is commutative and associative operation in Z_n iff the function Π such that $\Pi(p,\Pi(q)) = \Pi(p).\Pi(q)$ and $p.\Pi(q) = \Pi(p).q$ for all, $q \in Z_n$.

Proof: Clay [1] proved that * on Z_n is an associative left distributive operation iff $\Pi(p, \Pi(q)) = \Pi(p), \Pi(q)$.

Thus, Theorem 2 shows that the operation * is commutative and associative operation in Z_n iff the function Π such that $\Pi(p,\Pi(q)) = \Pi(p).\Pi(q)$ and $p.\Pi(q) = \Pi(p).q$ for all $p; q \in Z_n$.

Thus, a necessary and sufficient conditions that the operation * is commutative and associative operation in Z_n iff the function Π such that $\Pi(p, \Pi(q)) = \Pi(p) \cdot \Pi(q)$ and $p \cdot \Pi(q) = \Pi(p) \cdot q$ for all, $q \in Z_n$.

Theorem 3: If the function Π is a one-one such that $\Pi(p, \Pi(q)) = \Pi(p), \Pi(q)$ for all $p, q \in Z_n$, then the operation * satisfies the associative and commutative laws in Z_n .

Proof: Associative property was proved by clay [1] We know that $\Pi(p, \Pi(q) = \Pi(p), \Pi(q))$ and $(q, \Pi(p)) = \Pi(q), \Pi(p)$. Thus $\Pi(p, \Pi(q)) = \Pi(q, \Pi(p))$. Since Π is one-one function, so $p, \Pi(q) = q, \Pi(p)$ for all $p, q \in Z_n$. Thus p * q = q * p for all $q \in Z_n$.

Corollary 3: If the function Π is a one-one homomorphism on $(Z_n, +)$ such that $\Pi(p, \Pi(q) = \Pi(p), \Pi(q))$ for all $p, q \in Z_n$, then the near ring $(Z_n, +, *)$ becomes a commutative ring.

Proof: Theorem 1 shows that a necessary and sufficient condition that the left distribution of * over + is also a right distributive over + in $(Z_n, +, *)$ iff the function Π on $(Z_n, +)$ is a homomorphism.

Theorem 3 shows that If the function Π is a one-one such that $\Pi(p,\Pi(q)) = \Pi(p), \Pi(q)$ for all $p, q \in Z_n$, then the operation * satisfies the associative and commutative laws in Z_n .

Thus, If the function Π is a one-one homomorphism on $(Z_n, +)$ such that $\Pi(p, \Pi(q) = \Pi(p), \Pi(q)$ for all $p, q \in Z_n$, then the near ring $(Z_n, +, *)$ becomes a commutative ring.

Theorem 4: The near ring $(Z_n, +, *)$ is a non-identity integral domain iff the function Π is a homomorphism on $(Z_n, +)$ such that $\Pi(p, \Pi(q) = \Pi(p), \Pi(q) \neq 0$ whenever $p, q \neq 0$.

Proof: The proof of the theorem follows from the above theorem 1, the theorem II in [1] proved by clay except the near ring $(Z_n, +, *)$ is without zero divisors iff $\Pi(p, \Pi(q) = \Pi(p), \Pi(q) \neq 0$ whenever $p, q \neq 0$. Since $(Z_n, +, *)$ is a non-identity integral domain, $p * q \neq 0$ whenever $p, q \neq 0$. Then $\Pi(p) \cdot q \neq 0 \Rightarrow \Pi(p) \neq 0$ Similarly, if we interchange $p, q \neq 0$; we get $\Pi(q) \neq 0$. Conversely, suppose that $\Pi(p, \Pi(q) = \Pi(p), \Pi(q) \neq 0$ whenever $p, q \neq 0$. Then it follows that $\Pi(p) \neq 0$ whenever $p \neq 0$

Therefore, $\Pi(p, \Pi(q)) \neq 0$ whenever, $q \neq 0$. It implies that $p, \Pi(q) \neq 0$ whenever $p, q \neq 0$. Then $q * p \neq 0$ whenever $p, q \neq 0$.

Theorem 5: The set Z_n has an identity element with respect to binary operation * iff there exist an element n such that $\Pi(p) = np$ for all $p \in Z_n$.

Proof: Assume that the identity element of Z_n with respect to binary operation * is e(say). Therefore p * e = e * p = p for all $p \in Z_n$. It implies that $\Pi(p) \cdot e = \Pi(e) \cdot p = p \Rightarrow \Pi(p) = p$ for all $p \in Z_n$.

Conversely, assume that $p \in Zn \Rightarrow 1.\Pi(p) = p, \Pi(1).p = p$

REFERENCE

[1] James R. Clay, *The near rings on a finite cyclic group*, the mathematical monthly, vol. 71, no1 (jan., 1964), pp 47-50.

Source of support: Nil, Conflict of interest: None Declared