A UNIQUENESS RESULT RELATED TO CERTAIN NON-LINEAR DIFFERENTIAL POLYNOMIALS

HARINA P. WAGHAMORE* & A. TANUJA

Department of Mathematics, Central College Campus, Bangalore University, Bangalore-560 001, INDIA
Department of Mathematics, Central College Campus, Bangalore University, Bangalore-560 001, INDIA

(Received on: 02-04-12; Accepted on: 19-04-12)

ABSTRACT

In this paper, we deal with some uniqueness question of meromorphic functions whose certain non-linear differential polynomials have a nonzero finite value, and obtain some results, which improve and generalize the related results due to I. Lahiri and R. Pal[4], X. M. Li and H. X. Yi[6] and A. Banerjee and P. Bhattacharjee[1].

1. INTRODUCTION

In this paper, by meromorphic function we will always mean meromorphic function in complex plane. We adopt the standard notations of Nevanlinna theory of meromorphic function as explained in [2], [7] and [8]. It will be convenient to let E denote any set of positive real numbers of finite linear measure, not necessarily the same at each occurrence. For a nonconstant meromorphic function h, we denote by T(r, h) the Nevanlinna characteristic of h and by S(r, h) any quantity satisfying S(r, h)=o{T(r, h)}, as r→∞ and r∈E.

Let f and g be two nonconstant meromorphic functions, and let a be a value in the extended plane. We say that f and g share a CM, provided that f and g have the same a-points with the same multiplicities. We say that f and g share the value a IM, provided that f and g have the same a-points ignoring multiplicities (see [8]). We say that a is a small function of f, if a is a meromorphic function satisfying T(r, a) = S(r, f) (see [8]). Let l be a positive integer or ∞. Next we denote by E₁₁(a; f) the set of those a-points of f in the complex plane, where each point is of multiplicity ≤ l and counted according to its multiplicity. By E₂₂(a; f) we denote the reduced form of E₁₁(a; f). If E₂₂(a; f) = E₂₂(a; g), we say that a is a l-order pseudo common value of f and g (see[3]).

Obviously, if E₃₃(a; f) = E₃₃(a; g) (E₄₄(a; f) = E₄₄(a; g)), resp. then f and g share a CM (IM, resp.).

Theorem A: Let f and g be two non-constant meromorphic functions, and let n ≥ 14 be positive integer.

If E₃₃(1; fₙ(f³ − 1) f) = E₃₃(1; gₙ(g³ − 1) g), then f ≡ g.

Theorem B: Let f and g be two transcendental meromorphic functions, and let n, k be two positive integers satisfying n>3k+11 and max {χ₁, χ₂} < 0, where

χ₁ = \[\frac{2}{n - 2k + 1} + \frac{2}{n + 2k + 1} + \frac{2k + 1}{n + k + 1} + 1 - \theta₁(1, f) - \theta₁(1, g) \]

and

χ₂ = \[\frac{2}{n - 2k + 1} + \frac{2}{n + 2k + 1} + \frac{2k + 1}{n + k + 1} + 1 - \theta₁(1, g) - \theta₁(1, g) \]

If 0 > 2/n and if \(fₙ(f - 1) \)\(^{(k)}\) = P and \(gₙ(g - 1) \)\(^{(k)}\) = P share 0CM, where P is nonzero polynomial, then f ≡ g.

Theorem C: Let f and g be two transcendental meromorphic functions, and let n, k be two positive integers satisfying n>9k+20 and where max {χ₁, χ₂} < 0, where χ₁, χ₂ are defined as in Theorem B.

If 0 > 2/n and if \(fₙ(f - 1) \)\(^{(k)}\) = P and \(gₙ(g - 1) \)\(^{(k)}\) = P share 0 IM, where P is nonzero polynomial, then f ≡ g.
In 2011, A. Banerjee and P. Bhattacharjee [1] proved the following theorem.

Theorem D: Let \(f \) and \(g \) be two transcendental meromorphic functions, and let \(n, k \geq 1 \) and \(m \geq 2 \) be three positive integers. Suppose for two nonzero constants \(a \) and \(b \), \(E_{ij}(1;\{f^n(a f^m + b)\}^{(k)}) = E_{ij}(1;\{g^n(a g^m + b)\}^{(k)}) \). Then \(f \equiv g \) or \(f \equiv -g \) or \(\{f^n(a f^m + b)\}^{(k)} \{g^n(a g^m + b)\}^{(k)} \equiv 1 \) provided one of the following holds:

(i) when \(l \geq 3 \) and \(n > 3k+m+8 \);
(ii) when \(l = 2 \) and \(n > 4k+\frac{3m}{2}+9 \);
(iii) when \(l = 1 \) and \(n > 7k+3m+12 \).

When \(k=1 \) the possibility \(\{f^n(a f^m + b)\}^{(k)} \{g^n(a g^m + b)\}^{(k)} \equiv 1 \) does not occur. Also the possibility \(f \equiv -g \) arises only if \(n \) and \(m \) are both even.

Question: What can be said about the relationship between two meromorphic functions \(f \) and \(g \), if the condition \(E_{ij}(1;\{f^n(a f^m + b)\}^{(k)}) = E_{ij}(1;\{g^n(a g^m + b)\}^{(k)}) \) in Theorem B is replaced with the condition \(E_{ij}(1;\{f^n(a f^m + b)\}^{(k)}) = E_{ij}(1;\{g^n(a g^m + b)\}^{(k)}) \), where \(l \geq 3 \) is an integer, then either \(f \equiv g \) or \(f \equiv -g \) or \(\{f^n(a f^m + b)\}^{(k)} \{g^n(a g^m + b)\}^{(k)} \equiv 1 \).

The possibility \(\{f^n(a f^m + b)\}^{(k)} \{g^n(a g^m + b)\}^{(k)} \equiv 1 \) does not arise for \(k=1 \) and the possibility \(f \equiv -g \) does not arise if \(n \) and \(m \) are both odd or if \(n \) is even and \(m \) is odd or if \(n \) is odd and \(m \) is even.

Theorem 1.2: Let \(f \) and \(g \) be two transcendental meromorphic functions, and let \(n, k \geq 1 \) and \(m \geq 2 \) be three positive integers with \(n > \frac{2k+m+6}{3} \) and \(a \) and \(b \) be nonzero constants. If \(E_1(1;\{f^n(a f^m + b)\}^{(k)}) = E_1(1;\{g^n(a g^m + b)\}^{(k)}) \) and \(E_2(1;\{f^n(a f^m + b)\}^{(k)}) = E_2(1;\{g^n(a g^m + b)\}^{(k)}) \), where \(l \geq 4 \) is an integer, then the conclusions of Theorem 1.1 still holds.

Remark 1: Theorem 1.2 is an improvement of Theorem A and Theorem D.

Remark 2: Theorem 1.2 is an improvement of Theorem C for \(m = 1 \), \(a = 1 \) and \(b = -1 \).

2. LEMMAS

In this section, we present some lemmas which are needed in the sequel.

Lemma 2.1: ([7]) Let \(f \) be a nonconstant meromorphic function and

\[P(f) = a_0 + a_1 f + \cdots + a_n f^n, \]

where \(a_0, a_1, \ldots, a_n \) are constants and \(a_n \neq 0 \). Then

\[T(r, P(f)) = nT(r, f) + S(r, f). \]

Lemma 2.2: ([5]) Let \(E_1(1;\{F^*\}^{(k)}) = E_{ij}(1;\{G^*\}^{(k)}) \), \(E_1(1;\{F^*\}^{(k)}) = E_1(1;\{G^*\}^{(k)}) \) and \(H^* \neq 0 \), where \(l \geq 3 \).

Then

\[T(r, F^*) \leq \frac{k + 2k}{3} N(r, \infty; F^*) + \frac{5}{3} N(r, 0; F^*) + \frac{2}{3} N_h(r, \infty; G^*) + N_{k+1}(r, \infty; F^*) \]

\[+ (k + 2)N(r, 0; F^*) + N(r, 0; G^*) + N_{k+1}(r, 0; G^*) + S(r, F^*) + S(r, G^*) \]

Where

\[H^* := \left[\frac{(F^*)^{(k+2)}}{(F^*)^{(k+1)}} - \frac{2(F^*)^{(k+1)}}{(F^*)^{(k)}} \right] - \left[\frac{(G^*)^{(k+2)}}{(G^*)^{(k+1)}} - \frac{2(G^*)^{(k+1)}}{(G^*)^{(k)}} \right]. \]
Lemma 2.3: \((5\)\) Let \(E_{ij}(1; [F*]^{(k)}) = E_{ij}(1; [G*]^{(k)})\) and \(E_{ij}(1; [F*]^{(k)}) = E_{ij}(1; [G*]^{(k)})\), where \(l \geq 3\).

If \(\Delta_{ij} = \left(\frac{8}{3} + \frac{2}{3}k\right)\theta(\infty, F*) + (k + 2)\theta(\infty, G*) + \frac{5}{3}\theta(0, F*) + \theta(0, G*) + \delta_{k+1}(0, F*) + \delta_{k+1}(0, G*) + \frac{2}{3}\delta_{k}(0, F*)\)

\(\Delta_{ij} > \frac{5}{3}k + 9\), then either \([F*]^{(k)}[G*]^{(k)} \equiv 1\) or \(F* = G*\).

Lemma 2.4: \((5\)\) Let \(E_{ij}(1; [F*]^{(k)}) = E_{ij}(1; [G*]^{(k)})\), \(E_{2j}(1; [F*]^{(k)}) = E_{2j}(1; [G*]^{(k)})\) and \(H* \neq 0\), where \(l \geq 4\).

Then

\[T(r, F*) + T(r, G*) \leq (k + 4)N(r, \infty; F*) + 2N(r, 0; F*) + 2N_{k+1}(r, \alpha; F*) + \frac{2}{3}\delta_{k}(0, F*) \]

Where \(H*\) is defined as Lemma 2.2.

Lemma 2.5: \((5\)\) Let \(E_{ij}(1; [F*]^{(k)}) = E_{ij}(1; [G*]^{(k)})\) and \(E_{2j}(1; [F*]^{(k)}) = E_{2j}(1; [G*]^{(k)})\), where \(l \geq 4\).

If \(\Delta_{2i} = \left(2 + \frac{1}{2}k\right)\theta(\infty, F*) + \left(\frac{k}{2} + 2\right)\theta(\infty, G*) + \theta(0, F*) + \theta(0, G*) + \delta_{k+1}(0, F*) + \delta_{k+1}(0, G*)\)

\(\Delta_{2i} > k + 5\), then either \([F*]^{(k)}[G*]^{(k)} \equiv 1\) or \(F* = G*\).

Lemma 2.6: \((1\)\) Let \(f\) and \(g\) be two nonconstant meromorphic functions and \(a\) and \(b\) be nonzero constants. Then \([f^n(af^m + b)]^1[g^n(ag^m + b)]^1 \neq 1\), where \(n, m \geq 2\) be two positive integers and \(n \geq (m+3)\).

3. PROOF OF THE THEOREM

Proof of Theorem 1.1: Let \(F* = f^n(af^m + b)\), \(G* = g^n(ag^m + b)\).

By Lemma 2.1, we get

\[(1.1) \quad \theta(0, F*) = 1 - \lim_{r \to \infty} \sup \frac{N(r, 0; F*)}{T(r, F*)} \geq \frac{n-1}{n+m}\]

Similarly

\[(1.2) \quad \theta(0, G*) \geq \frac{n-1}{n+m}\]

\[(1.3) \quad \theta(\infty, F*) = 1 - \lim_{r \to \infty} \sup \frac{N(r, \infty; F*)}{T(r, F*)} \geq \frac{n+m-1}{n+m}\]

Similarly

\[(1.4) \quad \theta(\infty, G*) \geq \frac{n+m-1}{n+m}\]

\[(1.5) \quad \delta_{k+1}(0, F*) = 1 - \lim_{r \to \infty} \sup \frac{N_{k+1}(r, 0; F*)}{T(r, F*)} \geq \frac{n-k-1}{n+m}\]

Similarly

\[(1.6) \quad \delta_{k+1}(0, G*) \geq \frac{n-k-1}{n+m}, \quad \delta_{k}(0, F*) \geq \frac{n-k}{n+m}, \text{ and } \delta_{k}(0, G*) \geq \frac{n-k}{n+m}\]

From the condition of Theorem 1.1, we have

\[E_{ij}(1; [f^n(af^m + b)]^{(k)}) = E_{ij}(1; [g^n(ag^m + b)]^{(k)}) \quad \text{and} \quad E_{ij}(1; [f^n(af^m + b)]^{(k)}) = E_{ij}(1; [g^n(ag^m + b)]^{(k)}),\]

where \(l \geq 3\).
From (3.1) - (3.6) and Lemma 2.3, we have
\[\Delta_{1l} = \left(\frac{14}{3} + \frac{5}{3}k \right) \frac{n + m - 1}{n + m} + \frac{8n - 1}{3n + m} + 2 \frac{n - k - 1}{n + m} + \frac{2n - k}{3n + m} \]

It is easily verified that if \(n > \frac{13k + 13m + 28}{3} \), then \(\Delta_{1l} > \frac{5}{3}k + 9 \). So by Lemma 2.3, we have \([F^*]^{(k)}[G^*]^{(k)} \equiv 1 \) or \(F^* \equiv G^* \). Also by Lemma 2.6 the case \([F^*]^{(k)}[G^*]^{(k)} \equiv 1 \) does not arise for \(k = 1 \) and \(m \geq 2 \).

Let \(F^* \equiv G^* \), i.e.,
\[f^n(a^m + b) \equiv g^n(a^m + b) \]

Clearly if \(n \) and \(m \) are both odd or if \(n \) is even and \(m \) is odd or if \(n \) is odd and \(m \) is even, then \(f \equiv -g \) contradicts \(F^* \equiv G^* \). Let neither \(f \equiv g \) nor \(f \equiv -g \). We put \(h = \frac{g}{f} \). Then \(h \neq 1 \) and \(h \neq -1 \). Also \(F^* \equiv G^* \) implies
\[f^{m - 1} = \frac{b}{a} \frac{h^{n-1}}{h^{n+m-1}}. \]

Since \(f \) is non-constant it follows that \(h \) is non-constant. Again since \(f^{m} \) has no simple pole \(-u_r \) has no simple zero, where \(u_r = \exp \left(\frac{2\pi ir}{n+m} \right) \) and \(r = 1, 2...n+m-1 \). Therefore either \(f \equiv g \) or \(f \equiv -g \). This proves the theorem.

Proof of Theorem 1.2: From the condition of Theorem 1.2,
we have \(E_{1l}(1; [f^n(a^m + b)]^{(k)}) = E_{1l}(1; [g^n(a^m + b)]^{(k)}) \)
and \(E_{2l}(1; [f^n(a^m + b)]^{(k)}) = E_{2l}(1; [g^n(a^m + b)]^{(k)}) \)
where \(l \geq 4 \).

From (3.1)-(3.6) and Lemma 2.5, we have
\[\Delta_{2l} = (k + 4) \frac{n + m - 1}{n + m} + 2 \frac{n - 1}{n + m} + 2 \frac{n - k - 1}{n + m} \]

It is easily verified that if \(n > \frac{3k + m + 8}{3} \), then \(\Delta_{2l} > k + 5 \). So by Lemma 2.5, we have \([F^*]^{(k)}[G^*]^{(k)} \equiv 1 \) or \(F^* \equiv G^* \).

Proceeding as in the proof of Theorem 1.1, we can get the conclusion of Theorem 1.2. Thus, we complete the proof of Theorem 1.2.

REFERENCES

Source of support: Nil, Conflict of interest: None Declared