International Journal of Mathematical Archive-3(6), 2012, 2340-2345

DECOMPOSITION OF * - CONTINUITY IN IDEAL TOPOLOGICAL SPACES

S. Jafari*, K. Viswanathan and J. Jayasudha

*College of Vestsjaelland South, Herrestrade 11, 4200 Slagelse, Denmark Post Graduate & Research Department of Mathematics, N G M College, Pollachi - 642 001, TN, India

(Received on: 02-06-12; Accepted on: 20-06-12)

ABSTRACT

In this paper, we introduce and investigate the notions of $I\omega$ -continuous maps and $I\omega$ -irresolute maps in ideal topological spaces. Also we introduce the notions of slc*-I -sets, $\land s$ -sets, λs - I -closed sets, slc* - I -continuous maps and λs - I -continuous maps. Finally, we obtain the decompositions of \ast -continuity.

2000 Mathematics subject classification: Primary 54A05, Secondary 54D15, 54D30.

Keywords: $I\omega$ -closed set, slc^* - I - set, $\land s$ -set, $\land s$ - I -closed set, slc^* - I - continuous and $\land s$ -I -continuous.

1 INTRODUCTION AND PRELIMINARIES

The concept of ideals in topological spaces is treated in the classic text by Kuratowski [10] and Vaidyanathaswamy [16]. The notion of I -open sets in topological spaces was introduced by Jankovic and Hamlett [8]. Dontchev et al. [4] introduced and studied the notion of Ig -closed sets. Recently, Navaneethakrishnan and Paulraj Joseph [13] have studied further the properties of Ig -closed sets and Ig -open sets. An ideal I on a topological space (X, τ) is a non-empty collection of subsets of X satisfying the following properties: (1) $A \in I$ and $B \subset A$ imply $B \in I$ (heredity), (2) $A \in I$ and $B \in I$ imply $A \cup B \in I$ (finite additivity). A topological space (X, τ) with an ideal I on X is called an ideal topological space and is denoted by (X, τ, I) . For a subset $A \subset X$, $A^*(I) = \{x \in X : U \cap A \notin I$ for every $U \in \tau(x)\}$ is called the local function [10] of A with respect to I and τ . We simply write A^* in case there is no chance for confusion. A Kuratowski closure operator cl*(.) for a topology $\tau^*(I)$ called the *-topology finer than τ is defined by cl*(A) = $A \cup A^*$ [16]. Let (X, τ) denote a topological space on which no separation axioms are assumed unless explicitly stated. In a topological space (X, τ) , the closure and the interior of any subset A of X will be denoted by cl(A) and int(A), respectively. A subset A of a space is said to be semi-open [12] if $A \subset$ cl(int(A)). A subset A of a topological space (X, τ) is locally closed [5] (briefly LC) if $A = U \cap V$, where U is open and V is closed.

A subset A of a topological space (X, τ) is semi-locally closed [6] (briefly slc) if $A = U \cap V$ where U is semi-open and V is semi-closed. A subset A of a topological space (X, τ) is called slc* -set if $A = U \cap V$ where U is semi-open and V is closed. A function $f : (X, \tau) \rightarrow (Y, \sigma)$ is g-continuous [11] (resp. ω –continuous [15]) if $f^{-1}(V)$ is g-closed (resp. ω -closed) in (X, τ) for every closed set V of (Y, σ) .

A subset A of an ideal space (X, τ, I) is *-closed [8] if A^{*} \subset A. A subset A of an ideal space (X, τ, I) is Ig -closed [4] (resp. I ω -closed [14]) if A^{*} \subset U whenever A \subset U and U is open (resp. semi-open). An ideal space (X, τ, I) is called a TI -space [4] (resp. TI ω -space [14]) if every Ig -closed (resp. I ω -closed) subset of X is * -closed.

Lemma 1.1: [8] Let (X, τ, I) be a space with an ideal I on X, and A is a subset of X. Then,

- 1. Every * -closed set is I ω -closed,
- 2. Every I₍₀₎ -closed set is Ig -closed.

We denote the family of all I ω -closed (resp. I ω - open) subsets of an ideal space (X, τ , I) by I ω (X) (resp. I ω O(X)).

Definition 1.2: A subset A of an ideal space (X, τ, I) is called

1. strongly- I -locally closed [7] (briefly, strongly- I -LC) if $A = U \cap V$ where U is regular open and V is *- closed. *Corresponding author: K. Viswanathan

Post Graduate & Research Department of Mathematics, N G M College, Pollachi - 642 001, TN, INDIA

2. weakly- I -locally closed [9] (briefly, weakly- I -LC) if $A = U \cap V$, where U is open and V is *-closed.

3. mildly- I -locally closed [2] (briefly, mildly- I -LC) if $A = U \cap V$, where U is π -open and V is *-closed.

Definition 1.3: A function f: $(X, \tau, I) \rightarrow (Y, \sigma)$ is said to be

*-continuous [7] if f⁻¹(A) is *-closed in X for every closed set A in Y.
Ig -continuous [7] if f⁻¹(A) is Ig -closed in X for every closed set A in Y.

3. strongly- I -LC-continuous [7] if $f^{-1}(A)$ is a strongly- I -LC-set in X for every closed set A in Y.

4. weakly- I -LC-continuous [9] if f⁻¹(A) is a weakly- I -LC-set in X for every closed set A in Y.

5. mildly- I -LC-continuous [2] if $f^{-1}(A)$ is a mildly- I -LC-set in X for every closed set A in Y.

Lemma 1.4: [7] Let (X, τ, I) be an ideal space and A be a subset of X. If A is * -closed then A is strongly-I-LC-set but not conversely.

2. I ω -continuity and I ω –irresoluteness

Definition 2.1: A function $f: (X, \tau, I) \to (Y, \sigma)$ is said to be I ω -continuous if $f^{-1}(A)$ is I ω -closed in X for every closed set A in Y.

Remark 2.2: If I = { ϕ } in the above definition, then the notion of I ω -continuity coincides with the notion of ω continuity.

Definition 2.3: A function $f: (X, \tau, I) \rightarrow (Y, \sigma, J)$ is said to be I ω -irresolute if $f^{-1}(A)$ is I ω -closed in (X, τ, I) for every I ω -closed set A in (Y, σ , J).

Theorem 2.4: For a function f: $(X, \tau, I) \rightarrow (Y, \sigma)$, the following hold:

1. Every continuous function is Iω-continuous,

2. Every *-continuous function is Iω-continuous,

3. Every ω -continuous function is I ω -continuous,

4. Every Iω-continuous function is Ig -continuous.

Proof:

(1) Let f be a continuous function and V be a closed set in (Y, σ) . Then f⁻¹(V) is closed in (X, τ, I) . Since every closed set is *-closed and hence I ω -closed, f⁻¹(V) is I ω -closed in (X, τ , I). Therefore, f is I ω -continuous.

(2) Let V be a closed set in (Y, σ) . Then f⁻¹(V) is *-closed in (X, τ, I) because f is *-continuous in X. Since every *closed set is I ω -closed, f⁻¹(V) is I ω -closed in (X, τ , I). Therefore, f is I ω -continuous.

(3) Let f be an ω -continuous function. Then f⁻¹(V) is ω -closed in (X, τ , I) for every closed set V in (Y, σ). Since every ω -closed set is I ω -closed [14], f⁻¹(V) is I ω -closed in (X, τ , I). Therefore, f is I ω -continuous.

(4) Let V be a closed set in (Y, σ) and f be an I ω -continuous function. Then f⁻¹(V) is I ω -closed in (X, τ, I) . Since every I ω -closed set is Ig -closed, $f^{1}(V)$ is Ig -closed in (X, τ , I). Therefore, f is Ig -continuous.

Remark 2.5: The relationships defined above, are shown in the following diagram:

Continuity $\rightarrow \omega$ -continuity $\rightarrow g$ -continuity Ţ Ţ *-continuity \rightarrow I ω -continuity \rightarrow Ig -continuity

None of these implications is reversible as shown by the following examples.

Example 2.6: Let $X = \{a, b, c\}, \tau = \{\phi, \{a\}, \{b, c\}, X\}, I = \{\phi, \{c\}\} \text{ and } \sigma = \{\phi, \{a\}, X\}.$ Define f: $(X, \tau, I) \rightarrow (Y, \sigma)$ as f(a) = b, f(b) = a, f(c) = c. Then f is I ω -continuous but not continuous.

Example 2.7: Let $X = \{a, b, c\}, \tau = \{\phi, \{a\}, \{b, c\}, X\}, I = \{\phi, \{c\}\} \text{ and } \sigma = \{\phi, \{a, c\}, X\}$. The identity map f: (X, τ, τ) I) \rightarrow (Y, σ) is I ω -continuous but not *-continuous.

Example 2.8: Let $X = \{a, b, c, d\}, \tau = \{\phi, \{b\}, \{b, c, d\}, X\}, I = \{\phi, \{a\}\} \text{ and } \sigma = \{\phi, \{c, d\}, X\}$. Then the identity map $f: (X, \tau, I) \rightarrow (Y, \sigma)$ is Ig - continuous but not I ω -continuous.

Theorem 2.9: A function f: $(X, \tau, I) \rightarrow (Y, \sigma)$ is I ω -continuous if and only if f⁻¹(V) is I ω -open in (X, τ, I) for every open set V in (Y, σ) .

Proof: Let V be an open set in (Y, σ) and $f: (X, \tau, I) \to (Y, \sigma)$ be I ω -continuous. Then V^c is closed in (Y, σ) and $f^{-1}(V^c)$ is I ω -closed in (X, τ, I) . But $f^{-1}(V^c) = (f^{-1}(V))^c$ and so $f^{-1}(V)$ is I ω -open in (X, τ, I) .

Conversely, Suppose that $f^{-1}(V)$ is I ω -open in (X, τ , I) for each open set V in (Y, σ). Let F be a closed set in (Y, σ). Then F^c is open in (Y, σ) and by hypothesis $f^{-1}(F^c)$ is I ω -open in (X, τ , I). Since $f^{-1}(F^c) = (f^{-1}(F))^c$, we have $f^{-1}(F)$ is I ω -closed in (X, τ , I) and so f is I ω -continuous.

Definition 2.10: For a function $f : (X, \tau, I) \rightarrow (Y, \sigma)$, the subset $\{(x, f(x)) : x \in X\} \subset XxY$ is called the graph of f and is denoted by G(f).

Lemma 2.11: The following properties are equivalent for a graph G(f) of a function f :

- 1. G(f) is I ω -continuous,
- 2. For each $(x, f(x)) \in XxY \setminus G(f)$, there exists an I ω -open set U ω of X containing x and an open set V containing f(x) such that $g(U\omega) \cap V \neq \phi$.

Theorem 2.12: Let f: $(X, \tau, I) \rightarrow (Y, \sigma)$ be a function and g: $X \rightarrow XxY$ be the graph function of f. If g is I ω -continuous, then f is I ω -continuous.

Proof: Suppose that g is I ω -continuous. Let $x \in X$ and V be any open set of Y containing f(x). Then XxV is open in XxY and by I ω -continuity of g, there exists $U \in I\omega O(X, \tau)$ containing x such that $g(U) \subset XxV$. Therefore we obtain $f(U) \subset V$. This shows that f is I ω -continuous.

Theorem 2.13: Let (X, τ, I) be an ideal topological space. If $A \in I\omega(X)$ and $A \subset X_0 \subset I\omega(X)$ then $A \in I\omega(X_0)$.

Proof: Let $A \in I\omega(X)$ and $A \subset X0 \subset I\omega(X)$ then $cl^*(A) \cap X0 \subset U$ whenever $A \subset U$ and U is semi-open.

Also $cl^*X_0(A) = cl^*(A) \cap X_0$ (Lemma 3.2 [1]). Hence $A \in I\omega(X_0)$.

Theorem 2.14: If $f : (X, \tau, I) \rightarrow (Y, \sigma)$ is an I ω -continuous function and $X0 \in I\omega O(X)$. Then the restriction f / X_0 : $(X_0, \tau / X_0, I / X_0) \rightarrow (Y, \sigma)$ is I ω -continuous.

Proof: Let V be any open set of (Y, σ) . Since f is I ω -continuous, $f^{-1}(V)$ is I ω -open in (X, τ, I) and $f^{-1}(V) \cap X_0 = (f/X_0)^{-1}(V) \in I\omega O(X)$. Moreover by Theorem 2.13 we have $(f/X_0)^{-1}(V) \in I\omega O(X_0)$. This shows that f/X_0 is I ω -continuous.

Remark 2.15: The composition of two I ω -continuous maps need not be I ω -continuous as seen from the following example:

Example 2.16: Let $X = Y = Z = \{a, b, c, d\}, \tau = \{\phi, \{a\}, \{a, b, c\}, X\}$ and $\sigma = \{\phi, \{c\}, Y\}, \eta = \{\phi, \{b, d\}, Z\},$ $I = \{\phi, \{a\}, \{b\}, \{a, b\}\}, J = \{\phi, \{c\}\}$. Let f: $(X, \tau, I) \rightarrow (Y, \sigma, J)$ and g: $(Y, \sigma, J) \rightarrow (Z, \eta)$ be identity maps. Then the maps f and g are I ω -continuous but gof is not I ω -continuous.

Theorem 2.17: Let f: $(X, \tau, I) \rightarrow (Y, \sigma, J)$ be I ω -continuous and g : $(Y, \sigma, J) \rightarrow (Z, \eta)$ be continuous. Then g o f: $(X, \tau, I) \rightarrow (Z, \eta)$ is I ω -continuous.

Theorem 2.18: A function f: $(X, \tau, I) \rightarrow (Y, \sigma, J)$ is I ω -irresolute if and only if the inverse image of every I ω -open set in (Y, σ, J) is I ω -open in (X, τ, I) .

Theorem 2.19: Let f: $(X, \tau, I) \rightarrow (Y, \sigma, J)$ and g : $(Y, \sigma, J) \rightarrow (Z, \eta, K)$ be I ω -irresolute. Then (g o f): $(X, \tau, I) \rightarrow (Z, \eta, K)$ is I ω -irresolute.

Proof: Let g be an I ω -irresolute function and V be any K ω -open set in (Z, η , K). Then g⁻¹(V) is J ω -open in (Y, σ , J). Since f is I ω -irresolute, f⁻¹(g⁻¹(V)) = (g \circ f)⁻¹(V) is I ω -open in (X, τ , I). Hence g o f is I ω -irresolute.

Theorem 2.20: If f: $(X, \tau, I) \rightarrow (Y, \sigma, J)$ is I ω -irresolute and g: $(Y, \sigma, J) \rightarrow (Z, \eta)$ is *-continuous then g o f : $(X, \tau, I) \rightarrow (Z, \eta)$ is I ω -continuous.

Proof: Let V be any closed set of (Z, η) . Then g⁻¹(V) is *-closed in (Y, σ, J) . Therefore, f⁻¹(g⁻¹(V)) = (g o f)⁻¹(V) is I ω -closed in (X, τ, I) , since every *-closed set is I ω -closed. Hence g o f is I ω -continuous. © 2012, IJMA. All Rights Reserved 2342

Theorem 2.21: Let (X, τ, I) be an ideal topological space, (Y, σ, J) be a TI ω –space and (Z, η) be a topological space. If f: $(X, \tau, I) \rightarrow (Y, \sigma, J)$ is I ω -irresolute and g: $(Y, \sigma, J) \rightarrow (Z, \eta)$ is I ω -continuous then g o f is I ω -continuous.

Theorem 2.22: Let (X, τ, I) be an ideal topological space, (Y, σ, J) be a TI –space and (Z, η) be a topological space. If f: $(X, \tau, I) \rightarrow (Y, \sigma, J)$ is I ω -irresolute and g: $(Y, \sigma, J) \rightarrow (Z, \eta)$ is Ig -continuous then g o f is I ω -continuous.

3 slc*- I -sets

In this section, we introduce the notions of slc* - I -sets in ideal topological spaces and study some of its properties.

Definition 3.1: A subset A of an ideal topological space (X, τ , I) is called slc* - I -set if A = U \cap F where U is semiopen and F is *-closed.

Proposition 3.2: Let (X, τ, I) be an ideal space and A be a subset of X. Then the following holds.

- 1. If A is semi-open then A is slc* I -set.
- 2. If A is *-closed then A is slc*- I -set.
- 3. If A is weakly- I -LC-set then A is slc* I -set.

Example 3.3: Let $X = \{a, b, c, d\}$, $\tau = \{\phi, \{a\}, \{a, b, c\}, X\}$ and $I = \{\phi, \{a\}, \{b\}, \{a, b\}\}$. Then the set $A = \{c\}$ is an slc* - I -set but not a *-closed set.

Example 3.4: Let $X = \{a, b, c, d\}$, $\tau = \{\phi, \{a, b\}, X\}$ and $I = \{\phi, \{a\}\}$. Then the set $A = \{a, c\}$ is an slc* - I -set but not a weakly-I -LC-set.

Remark 3.5: The notions of I_w-closed sets and slc* - I -sets are independent.

Example 3.6: Let $X = \{a, b, c\}, \tau = \{\phi, \{a\}, \{b, c\}, X\}$ and $I = \{\phi, \{c\}\}$. Then the set $A = \{b\}$ is I ω -closed but not an slc* - I -set.

Example 3.7: Let $X = \{a, b, c, d\}$, $\tau = \{\phi, \{a\}, \{a, b, c\}, X\}$ and $I = \{\phi, \{a\}, \{b\}, \{a, b\}\}$. Then the set $A = \{c\}$ is slc^{*} - I -set but not an I ω -closed set.

Theorem 3.8: A subset of an ideal topological space (X, τ , I) is *-closed if and only if it is both I ω -closed and an slc* - I -set.

Proof: Necessity is trivial. To prove the sufficiency, assume that A is both I ω -closed and an slc^{*} - I -set. Then A = U \cap F where U is semi-open and F is *-closed. Therefore A \subset U and A \subset F and so by hypothesis, A* \subset U and A* \subset F. Thus A* \subset U \cap F = A. Hence A is *-closed.

Remark 3.9: From [2] and Proposition 3.2, We have the following implications:

strongly- I -LC-set \rightarrow mildly- I -LC-set \rightarrow weakly- I -LC-set \rightarrow slc* - I -set.

Theorem 3.10: For a subset A of an ideal topological space (X, τ, I) , the following are equivalent.

- 1. A is a *-closed set.
- 2. A is a strongly- I -LC-set and an I ω -closed set.
- 3. A is a mildly- I -LC-set and an I ω -closed set.
- 4. A is a weakly- I -LC-set and an I ω -closed set.
- 5. A is an slc* I -set and an I ω -closed set.

Corollary 3.11: For a subset A of an ideal topological space (X, τ , I), the following are equivalent.

1. A is a *-closed set.

2. A is a weakly- I -LC-set and an I ω -closed set.

3. A is a weakly- I -LC-set and an Ig -closed set. [7]

4 A new subset of an ideal topological space

Definition 4.1: [3] Let A be a subset of a topological space (X, τ) . Then the s - kernel of the set A, denoted by s - ker(A) is the intersection of all semi-open supersets of A.

Definition 4.2: [3] A subset A of a topological space (X, τ) is called \land s -set if A = s - ker(A).

Definition 4.3: A subset A of an ideal space (X, τ, I) is called $\lambda s - I$ -closed if $A = U \cap V$ where U is a $\wedge s$ -set and V is *-closed.

Proposition 4.4: In an ideal space (X, τ , I), every *-closed set is λ s - I -closed but not conversely.

Example 4.5: Let $X = \{a, b, c\}, \tau = \{\phi, \{a\}, \{c\}, \{a, c\}, X\}$ and $I = \{\phi, \{a\}\}$. Then the set $A = \{b\}$ is $\lambda s - I$ -closed but not *-closed.

Lemma 4.6: For a subset A of an ideal space (X, τ, I) , the following are equivalent.

1. A is λs - I -closed.

2. A = U \cap cl*(A) where U is a \wedge s -set.

3. $A = s - ker(A) \cap cl^*(A)$.

Lemma 4.7: A subset A of an ideal space (X, τ, I) is I ω -closed if and only if $cl^*(A) \subset s$ - ker(A).

Remark 4.8: The notions of I ω -closed sets and λ s - I -closed sets are independent.

Example 4.9: Let $X = \{a, b, c\}$, $\tau = \{\phi, \{a\}, \{c\}, \{a, c\}, X\}$ and $I = \{\phi, \{a\}\}$. Then the set $A = \{c\}$ is $\lambda s - I$ -closed but not I ω -closed.

Example 4.10: Let $X = \{a, b, c\}, \tau = \{\phi, \{a\}, \{b, c\}, X\}$ and $I = \{\phi, \{c\}\}$. Then the set $A = \{b\}$ is I ω -closed but not λ s - I -closed.

Theorem 4.11: A subset of an ideal topological space (X, τ , I) is *-closed if and only if it is both I ω -closed and λ s - I - closed.

5. Decompositions of *-continuity

In this section, we obtain decompositions of *-continuity in ideal topological spaces. In order to obtain the decompositions of *-continuity we introduce the notion of slc^* - I -continuity and λs - I -continuity in ideal topological spaces.

Definition 5.1: A function f: $(X, \tau, I) \rightarrow (Y, \sigma)$ is said to be slc^{*} - I -continuous (resp. λ s - I -continuous) if f⁻¹(V) is an slc^{*}- I -set (resp. λ s - I -closed set) in (X, τ, I) for every closed set V in (Y, σ) .

Example 5.2: Let $X = \{a, b, c, d\}$, $\tau = \{\phi, \{a\}, \{a, b, c\}, X\}$, $I = \{\phi, \{a\}, \{b\}, \{a, b\}\}$ and $\sigma = \{\phi, \{c\}, X\}$. Then the identity map f: $(X, \tau, I) \rightarrow (Y, \sigma)$ is an slc* - I - continuous map.

Remark 5.3: Every *-continuous map is slc*- I -continuous, but the converse is not true.

Example 5.4: Let $X = \{a, b, c, d\}$, $\tau = \{\phi, \{a\}, \{a, b, c\}, X\}$, $I = \{\phi, \{a\}, \{b\}, \{a, b\}\}$ and $\sigma = \{\phi, \{a, b, d\}, X\}$. Let f: $(X, \tau, I) \rightarrow (Y, \sigma)$ be the identity map. Then f is slc*- I -continuous but not *-continuous.

Remark 5.5: The concepts of I ω -continuity and slc* - I -continuity are independent as seen from the following examples.

Example 5.6: Let X, τ , σ and I be defined as in Example 5.4. Then the map f: $(X, \tau, I) \rightarrow (Y, \sigma)$ is slc* - I -continuous but not I ω -continuous.

Example 5.7: Let $X = \{a, b, c\}, \tau = \{\phi, \{a\}, \{b, c\}, X\}, I = \{\phi, \{c\}\} \text{ and } \sigma = \{\phi, \{a, c\}, X\}$. Let the map f: $(X, \tau, I) \rightarrow (Y, \sigma)$ be the identity map. Then f is I ω -continuous but not slc*- I -continuous.

Theorem 5.8: For a function f: $(X, \tau, I) \rightarrow (Y, \sigma)$, the following are equivalent.

- 2. f is strongly- I -LC-continuous and $\,\mathrm{I}\omega$ -continuous.
- 3. f is mildly- I -LC-continuous and $I\omega$ -continuous.

^{1.} f is *-continuous.

^{4.} f is weakly- I -LC-continuous and $I\omega$ -continuous.

^{5.} f is slc*- I -continuous and I ω -continuous.

Corollary 5.9: For a function f: $(X, \tau, I) \rightarrow (Y, \sigma)$, the following are equivalent.

1. f is *-continuous.

2. f is weakly- I -LC-continuous and Iω-continuous.

3. f is weakly- I -LC-continuous and Ig -continuous. [7]

Theorem 5.10: A function $f : (X, \tau, I) \rightarrow (Y, \sigma)$ is *-continuous if and only if it is both I ω -continuous and $\lambda s - I$ - continuous.

REFERENCES

[1] A. Acikgoz, T. Noiri and S. Yuksel, On α - I -continuous and α - I -open functions, Acta Math. Hungar., 105(1-2)(2004), 27-37.

[2] J. Antony Rex Rodrigo, O. Ravi and M. Sangeetha, Mildly- I -locally closed sets and decompositions of *- continuity, International Journal of Advances in Pure and Applied Mathematics, 1(2) (2011), 67-80.

[3] M. Caldas and J. Dontchev, Gs and AGs sets, Mem. Fac. Sci. Kochi. Univ (Math.), 21(2000), 21-30.

[4] J. Dontchev, M. Ganster and T. Noiri, Unified operation approach of generalized closed sets via topological ideals, Math. Japan, 49(1999), 395-401.

[5] M. Ganster and I. L. Reilly, Locally closed sets and LC continuous functions, Internat. J. Math. Math. Sci., 3(1989), 417-424.

[6] Y. Gnanambal and K. Balachandran, β -locally closed sets and β -LC-continuous functions, Mem. Fac. Sci., Kochi Univ. (Math.), 19(1998), 35-44.

[7] V. Inthumathi, S. Krishnaprakash and M. Rajamani, Strongly-I-locally closed sets and decomposition of *- continuity, Acta Math. Hungar., 130(4)(2010), 358-362.

[8] D. Jankovic and T. R. Hamlett, New topologies from old via ideals, Amer. Math. Monthly, 97(1990), 295-310.

[9] A. Keskin, S. Yuksel and T. Noiri, Decompositions of I-continuity and continuity, Commun. Fac. Sci. Univ. Ank. Series A, 53(2004), 67-75.

[10] K. Kuratowski, Topology, Vol. I, Academic press, New York, 1966.

[11] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70(1963), 36-41.

[12] N. Levine, Generalized closed sets in topology, Rend. Circ. Mat. Palermo (2), 19(1970), 89-96.

[13] M. Navaneethakrishnan and J. Paulraj Joseph, g-closed sets in ideal topological spaces, Acta Math. Hungar., 119(2008), 365-371.

[14] T. Noiri, K. Viswanathan, M. Rajamani and S. Krishnaprakash, On ω-closed sets in ideal topological spaces (submitted)

[15] M. Sheik John, A study on generalized closed sets and continuous maps in topological and bitopological spaces, Ph.D. Thesis, Bharathiar University, Coimbatore(2002).

[16] R. Vaidyanathaswamy, Set topology, Chelsea Publishing Company, New York, 1960.

Source of support: Nil, Conflict of interest: None Declared