International Journal of Mathematical Archive-3(6), 2012, 2358-2373 MA Available online through www.ijma.info ISSN 2229 - 5046

On Goo-kernel in the digital plane

M. Vigneshwaran* & R. Devi

Department of Mathematics, Kongunadu Arts and Science College (Autonomous), Coimbatore-641 029

(Received on: 08-05-12; Revised & Accepted on: 31-05-12)

ABSTRACT

We introduce the concept of *ga-closed sets in a topological space and characterize it using its Gao-kernel. Moreover we investigate new seperation axioms and new functions in topological spaces. For the digital plane, we have explicite forms of Gao-kernel and α -kernel of a subset in the plane.

Key words: * $g\alpha$ -closed sets, ${}_{\alpha}T_{1/2}$ ** spaces, ${}_{\alpha}T_c$ ** spaces, ${}_{\alpha}T_c$ ** spaces, * ${}_{\alpha}T_{1/2}$ spaces, * $g\alpha$ -continuous, * $g\alpha$ -irresolute maps, * $g\alpha$ -homeomorphism, G α -kernel, α -kernel and digtal plane.

AMS Subject Classification: 54A05, 54C05, 54C10, 68U05, 68U10.

1. INTRODUCTION

Levine [14] and Njastad [19] introduced semi-open sets and α -sets respectively. The complement of a semi-open (resp. α -open) set is called a semi-closed [3] (resp. α -closed [19]) set. Levine [13] introduced g-closed sets and studied their most fundamental properties. S.P. Arya and T. Nour [1], H. Maki et.al. [16, 17] introduced gs-closed sets, α g-closed sets and g α -closed sets respectively. Dontchev [9] and Gnanambal [10] introduced gsp-closed sets and gpr-closed sets respectively.

In this paper, we introduce a new class of sets, namely ${}^*g\alpha$ -closed sets by generalizing $g\alpha$ -open sets. This new class is properly placed between the class of closed sets and the class of g-closed sets. Applying ${}^*g\alpha$ -closed sets, we introduce and study some new spaces, namely ${}_{\alpha}T_{1/2}^{**}$ spaces, ${}_{\alpha}T_{c}^{**}$ spaces and ${}^{**}{}_{\alpha}T_{1/2}$ spaces. In the fifth chapter we introduce and study ${}^*g\alpha$ -continuous, ${}^*g\alpha$ -irresolute maps and its group structure., In the sixth chapter we investigate ${}^*g\alpha$ -chomeomorphism and its properties. In the seventh chapter, we investigate the explicite form in the digital plane of ${}^*g\alpha$ -closed sets and ${}^*g\alpha$ -closed sets, respectively. The digital plane is a mathematical model of the computer screen (cf.[5],[11],[12]).

2. PRELIMINARIES

Throughout this paper (X, τ) , (Y, σ) and (Z, η) represent topological space on which no separation axioms are assumed unless otherwise mentioned. For a subset A of a space (X, τ) , cl(A), int(A) and C(A) denote the closure of A, the interior of A and the complement of A in X respectively.

Let us recall the following definitions, which are useful in the sequel.

Definition 2.1: A subset A of a space (X, τ) is called

- 1. a semi-open set [14] if $A \subseteq cl(int(A))$ and a semi-closed set if $int(cl(A)) \subseteq A$,
- 2. an α -open set [19] if $A \subseteq int(cl(int((A))))$ and an α -closed set if $cl(int(cl(A))) \subseteq A$ and

Definition 2.2: A subset A of a space (X, τ) is called

- 1. a generalized closed (briefly g-closed) set [13] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) . The complement of a g-closed set is called a g-open set,
- 2. a generalized semi-closed (briefly gs-closed) set [1] if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) ,
- 3. an α -generalized closed (briefly αg -closed) set [16] if $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) . The complement of an αg -closed set is called an αg -open set,
- 4. a generalized α -closed (briefly $g\alpha$ -closed) set [17] if α cl(A) \subseteq U whenever A \subseteq U and U is α -open in (X, τ),
- 5. a generalized preclosed (briefly gp-closed) set [18] if $pcl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) ,
- 6. a generalized semi-preclosed (briefly gsp-closed) set [9] if $spcl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) ,
- 7. a generalized preregular closed (briefly gpr-closed) set [10] if $pcl(A) \subseteq U$ whenever $A \subseteq U$ and is regular open in (X, τ) ,

Definition 2.3: A function f: $(X, \tau) \rightarrow (Y, \sigma)$ is called

- 1. semi-continuous [14] if $f^{-1}(V)$ is semi-open in (X, τ) for every closed set V of (Y, σ) ,
- 2. α -continuous [15] if $f^1(V)$ is α -closed in (X, τ) for every closed set V of (Y, σ) ,
- 3. g-continuous [2] if $f^{1}(V)$ is g-closed in (X, τ) for every closed set V of (Y, σ) ,
- 4. gs-continuous [7] if $f^1(V)$ is gs-closed in (X, τ) for every closed set V of (Y, σ) ,
- 5. αg -continuous [4] if $f^1(V)$ is αg -closed in (X, τ) for every closed set V of (Y, σ) ,
- 6. $g\alpha$ -continuous [17] if $f^1(V)$ is $g\alpha$ -closed in (X, τ) for every closed set V of (Y, σ) ,
- 7. gsp-continuous [9] if $f^{-1}(V)$ is gsp-closed in (X, τ) for every closed set V of (Y, σ) ,
- 8. gpr-continuous [10] if $f^{1}(V)$ is gpr-closed in (X, τ) for every closed set V of (Y, σ) ,
- 9. gc-irresolute [2] if $f^{-1}(V)$ is g-closed in (X, τ) for every g-closed set V of (Y, σ) ,
- 10. gs-irresolute [7] if $f^1(V)$ is gs-closed in (X, τ) for every gs-closed set V of (Y, σ) ,
- 11. αg -irresolute [4] if $f^1(V)$ is αg -closed in (X, τ) for every αg -closed set V of (Y, σ) and
- 12. $g\alpha$ -irresolute [17] if $f^1(V)$ is $g\alpha$ -closed in (X, τ) for every $g\alpha$ -closed set V of (Y, σ) .

Definition 2.4: A space (X, τ) is called

- 1. a $T_{1/2}$ space [13] if every g-closed set is closed,
- 2. a T_b space [6] if every gs-closed set is closed,
- 3. a T_d space [6] if every gs-closed set is g-closed.
- 4. an $_aT_b$ space [4] if every αg -closed set is closed,
- 5. an $_{\alpha}T_{d}$ space [4] if every αg -closed set is g-closed.

Notation 2.5: For a space (X, τ) , $C(X, \tau)$ (resp.SC (X, τ) , $\alpha C(X, \tau)$, $G\alpha C(X, \tau)$, $GC(X, \tau$

3. BASIC PROPERTIES OF * g α -CLOSED SETS

We introduce the following definition.

Definition 3.1: A subset A of (X, τ) is called a *g\alpha-closed set if $cl(A) \subset U$ whenever $A \subset U$ and U is g\alpha-open in (X, τ) .

The class of *ga-closed subsets of (X, τ) is denoted by *GaC(X, τ).

Theorem 3.2: Every closed set is a ${}^*g\alpha$ -closed set.

Proof: Let $A \subseteq U$, where U is $g\alpha$ -open set in X. Since A is closed, $cl(A) = A \subseteq U$. Therefore $cl(A) \subseteq U$.

Hence A is *gα-closed.

Following example shows that the above implication is not reversible.

Example 3.3: Let
$$X = \{a, b, c\}$$
 and $\tau = \{X, \phi, \{a, b\}\}$. ${}^*G\alpha C(X, \tau) = \{X, \phi, \{c\}, \{b, c\}, \{a, c\}\}$.

Here $\{b, c\}$ is a ${}^*g\alpha$ -closed set of (X, τ) but it is not a closed set of (X, τ) .

Theorem 3.4: Every $*g\alpha$ -closed set is g-closed set.

Proof: Let $A \subseteq U$, where U is an open set in X. Since every open set is $g\alpha$ -open, U is $g\alpha$ -open .Since A is $^*g\alpha$ -closed, $cl(A) \subset U$. Hence A is g-closed.

Following example shows that the above implication is not reversible.

Example 3.5: Let
$$X = \{a, b, c\}$$
 and $\tau = \{X, \phi, \{a\}, \{b, c\}\}$. $GC(X, \tau) = \{X, \phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}\}$. ${}^*G\alpha C(X, \tau) = \{X, \phi, \{a\}, \{b, c\}\}$.

Here {b} is a g-closed set of (X, τ) it is not a ${}^*g\alpha$ -closed set of (X, τ) .

Theorem 3.6: Every *g α -closed set is g α -closed set.

Proof: Let $A \subseteq U$, where U is an α -open set in X. Since every α -open set is $g\alpha$ -open, U is $g\alpha$ -open. Since A is ${}^*g\alpha$ -closed, $cl(A) \subseteq U$. But $\alpha cl(A) \subseteq cl(A) \subseteq U$. Therefore A is $g\alpha$ -closed.

Corresponding author: M. Vigneshwaran*

Department of Mathematics, Kongunadu Arts and Science College (Autonomous), Coimbatore-641 029

Following example shows that the above implication is not reversible.

Example 3.7: Let X and τ be as in the example 3.5. Let A = {a, c}. A is a ga-closed set of (X, τ). But A is not a *ga-closed set of (X, τ).

Theorem 3.8: Every *gα-closed set is gp-closed set.

Proof: Let $A \subseteq U$, where U is an open set in X. Since every open set is $g\alpha$ -open, U is $g\alpha$ -open. Since A is ${}^*g\alpha$ -closed, $cl(A) \subseteq U$. But $pcl(A) \subseteq cl(A) \subseteq U$. Therefore A is gp-closed set.

Following example shows that the above implication is not reversible.

Example 3.9: Let X and τ be as in the example 3.5. Let $B = \{a, b\}$. B is a gp-closed set of (X, τ) . But B is not a *ga-closed set of (X, τ) .

Thus the class of ${}^*g\alpha$ -closed sets are contained in the class of g-closed sets, $g\alpha$ -closed sets and $g\alpha$ -closed sets. The class of ${}^*g\alpha$ -closed sets contains the class of closed sets.

Remark 3.10: ${}^*g\alpha$ -closedness is independent of semi-closedness and α -closedness.

Proof: It can be seen by the following example.

Example 3.11: Let
$$X = \{a, b, c\}$$
 and $\tau = \{X, \phi, \{a\}\}$. $SC(X, \tau) = \{X, \phi, \{b\}, \{c\}, \{b, c\}\} = \alpha C(X, \tau)$ $^*G\alpha C(X, \tau) = \{X, \phi, \{b, c\}\}$.

Here $\{b\}$ is semi-closed set and α -closed set of (X, τ) . But it is not a ${}^*g\alpha$ -closed set of (X, τ) .

Example 3.12: Let X and τ be as in the example 3.3. Here $\{b, c\}$ is not a semi-closed and α -closed set of (X, τ) . But it is a ${}^*g\alpha$ -closed set of (X, τ) .

Theorem 3.13: The intersection of two ga-closed sets is again in ga-closed set.

Proof: Let A and B are $g\alpha$ -closed sets. Let $A \cap B \subseteq U$, U is α -open. Since A and B are $g\alpha$ -closed sets, $\alpha cl(A) \subseteq U$ and $\alpha cl(B) \subseteq U$. This implies that $\alpha cl(A \cap B) = \alpha cl(A) \cap \alpha cl(B) \subseteq U$ and $\alpha cl(A \cap B) \subseteq U$. Therefore $A \cap B$ is $\alpha cl(A \cap B) \subseteq U$.

Theorem 3.14: Let A be an open set and B be an $g\alpha$ -open set, then $A \cup B$ is $g\alpha$ -open set.

Proof: Suppose that A is an open set and B is an $g\alpha$ -open set. Since every open set is $g\alpha$ -open set, A is $g\alpha$ -open set. Then $A \cup B$ is $g\alpha$ -open set, since union of two $g\alpha$ -open set is again $g\alpha$ -open set.

Theorem 3.15:

- 1. Let A be a *g α -closed set of (X, τ) if and only if cl(A)-A does not contain any non empty g α -closed set.
- 2. If A is a ${}^*g\alpha$ -closed and $A \subseteq B \subseteq cl(A)$, then B is ${}^*g\alpha$ -closed.

Proof:

1. Necessity part- Suppose that A is ${}^*g\alpha$ -closed and let F be a non empty $g\alpha$ -closed set with $F \subseteq cl(A)$ -A. Then $A \subseteq X$ -F and so $cl(A) \subseteq X$ -F. Hence $F \subseteq X$ -cl(A), a contradiction.

Sufficient part - Suppose A is a subset of (X, τ) such that cl(A)-A does not contain any non-empty $g\alpha$ -closed set. Let U be a $g\alpha$ -open set of (X,τ) such that $A \subseteq U$. If $cl(A) \subseteq U$, then $cl(A) \cap C(U) \neq \phi$. Then $\phi \neq cl(A) \cap C(U)$ is a $g\alpha$ -closed set of (X,τ) , since the intersection of two $g\alpha$ -closed sets is again $g\alpha$ -closed set.

2. Let U be a g α open set of (X, τ) such that $B \subseteq U$. Then $A \subseteq U$. Since A is ${}^*g\alpha$ -closed, $cl(A) \subseteq U$. Now $cl(B) \subset cl(cl(A)) = cl(A) \subset U$. Therefore B is also a ${}^*g\alpha$ -closed set of (X, τ) .

Theorem 3.16: Let X be a topological space. A subset A of (X, τ) is ${}^*g\alpha$ -open if and only if $U\subseteq Int(A)$, whenever U is $g\alpha$ -closed set and $U\subseteq A$.

Proof: Let A be a *g\$\alpha\$-open set and U is g\$\alpha\$-closed set such that $U \subseteq A$ implies $X - U \supseteq X - A$ and X - A is *g\$\alpha\$-closed set. So $cl(X - A) \subseteq X - U$ implies $(X - cl(X - A)) \supseteq (X - (X - U)) = U$. But (X - cl(X - A)) = Int(A). Thus $U \subseteq Int(A)$.

Conversely, suppose A is subset such that $U \subseteq Int(A)$. Whenever U is $g\alpha$ -closed and $U \subseteq A$. We show that X-A is ${}^*g\alpha$ -closed set. Let X-A \subseteq U, where U is $g\alpha$ -open. Since X-A \subseteq U implies X-U \subseteq A. By assumption that we must have X-U $\subseteq Int(A)$ or X-Int(A) \subseteq U. Now X-Int(A) = cl(X-A) which implies that $cl(X-A) \subseteq U$ and X-A is ${}^*g\alpha$ -closed set.

Theorem 3.17: The union of two ${}^*g\alpha$ -closed sets is a ${}^*g\alpha$ -closed set.

Proof: Let A and B are ${}^*g\alpha$ -closed sets. Let $A \cup B \subseteq U$, U is $g\alpha$ -open. Since A and B are ${}^*g\alpha$ -closed sets, $cl(A) \subseteq U$ and $cl(B) \subseteq U$. This implies that $cl(A \cup B) = cl(A) \cup cl(B) \subseteq U \Rightarrow cl(A \cup B) \subseteq U$. Therefore $A \cup B$ is ${}^*g\alpha$ -closed.

Remark 3.18: The intersection of two ${}^*g\alpha$ -closed sets is again in ${}^*g\alpha$ -closed set.

- (i) The intersection of two *gα-closed sets is again in *gα-closed set.
- (ii) The intersection of an open and a *gα-open sets is a *gα-open set.
- (iii) The union of an open and a *g α -open sets is a *g α -open set.

We prepare the following notations:

```
For a subset A of (X, \tau), G\alpha O(X, \tau) = \{U/U \text{ is } g\alpha\text{-open in } (X, \tau)\}; \ker(A) = \bigcap \{U/U \in \tau \text{ and } A \subseteq U\}; \alpha\text{-ker}(A) = \bigcap \{U/U \text{ is } \alpha\text{-open set and } A \subseteq U\}; G\alpha O\text{-ker}(A) = \bigcap \{U/U \in G\alpha O(X, \tau) \text{ and } A \subseteq U\}. X_{g\alpha c} = \{x \in X \ / \ \{x\} \text{ is } g\alpha\text{-closed in } (X, \tau)\} \text{ and } X_{g\alpha o} = \{x \in X \ / \ \{x\} \text{ is } g\alpha\text{-open in } (X, \tau)\}.
```

Theorem 3.19: Any subset A is ga-closed set if and only if $\alpha cl(A) \subseteq \alpha - ker(A)$ holds.

Proof: Necessary: We know that $A \subseteq \alpha$ -ker(A). Since A is $g\alpha$ -closed, then $\alpha cl(A) \subseteq \alpha$ -ker(A).

Sufficiency: Let $A \subseteq U$ and U is α -open. Given that $\alpha cl(A) \subseteq \alpha$ -ker(A). If $U \subseteq \alpha cl(A)$, then α -ker(A) $\subseteq U \subseteq \alpha cl(A)$, which is a contradiction to the hypothesis. Therefore $\alpha cl(A) \subseteq U$. Hence A is $g\alpha$ -closed.

Lemma 3.20: For any space (X, τ) , $X = X_{gac} \cup X_{*gao}$ holds.

Proof: Let $x \in X$. Suppose that $\{x\}$ is not ${}^*g\alpha$ -closed set in (X, τ) . Then X is a unique $g\alpha$ -open set containing $X/\{x\}$. Thus $X/\{x\}$ is ${}^*g\alpha$ -closed in (X, τ) and so $\{x\}$ is ${}^*g\alpha$ -open. Therefore $x \in X_{g\alpha c} \cup X_{*g\alpha c}$.

Theorem 3.21: For a subset A of (X, τ) , the following conditions are equivalent:

- 1. A is ${}^*g\alpha$ -closed in (X, τ) .
- 2. $cl(A) \subseteq G\alpha O$ -ker(A) holds.
- $3. \quad (i) \ cl(A) \cap X_{g\alpha c} \subseteq A \ and \ (ii) \ cl(A) \cap X_{^*g\alpha o} \subseteq G\alpha O \text{-ker}(A) \ holds.$

Proof:

(1)⇒(2): Let $x \notin G\alpha O$ -ker(A). Then there exists a set $U \in G\alpha O(X, \tau)$ such that $x \notin U$ and $A \subseteq U$.

Since A is ${}^*g\alpha$ -closed, $cl(A) \subseteq U$ and $x \notin cl(A)$. This is a contradiction.

 $(2)\Rightarrow(3)$:

- (i): It follows from (2) that $cl(A) \cap X_{gac} \subseteq G\alpha O\text{-ker}(A) \cap X_{gac}$. We claim that $G\alpha O\text{-ker}(A) \cap X_{gac} \subseteq A$. Suppose $x \in G\alpha O\text{-ker}(A) \cap X_{gac}$ and assume that $x \notin A$. Since the set $X/\{x\} \in G\alpha O(X, \tau)$ and $A \subseteq X/\{x\}$. Then we have that $x \in X/\{x\}$ and so this is a contradiction. Thus we show that $cl(A) \cap X_{gac} \subseteq A$. by using (2) $cl(A) \cap X_{gac} \subseteq G\alpha O\text{-ker}(A) \cap X_{gac} \subseteq A$.
- (ii): It is obtained by (2).
- $(3) \Rightarrow (2)$: By Remark 3.8 and (3),

```
\begin{split} cl(A) &= cl(A) \cap X = cl(A) \cap (X_{gac} \cup X_{*gao}) \\ &= (cl(A) \cap X_{gac}) \ \cup (cl(A) \cap \ X_{*gao}) \\ &\subseteq A \cup G\alpha O\text{-ker}(A) \\ &= G\alpha O\text{-ker}(A). \end{split}
```

That is $cl(A) \subseteq G\alpha O$ -ker(A) holds.

(2) \Rightarrow (1): Let $U \in G\alpha O(X, \tau)$ such that $A \subseteq U$. Then we have that $G\alpha O$ -ker(A) $\subseteq U$ and so by (2) $cl(A) \subseteq U$. Therefore A is ${}^*g\alpha$ -closed.

Remark 3.22: The following diagram shows the relationships established between ${}^*g\alpha$ -closed sets and some other sets in theorem 3.2, 3.4, 3.6, 3.8, remark3.10 and reference [22], [21]. A \rightarrow B (A \leftrightarrow B) represents A implies B but not conversely(A and B are independent each other).

4. APPLICATIONS OF *gα-CLOSED SETS

We introduce the following definition.

Definition 4.1: A space (X, τ) is called an ${}_{\alpha}T_{1/2}^{**}$ space if every ${}^{*}g\alpha$ -closed set is closed.

The following theorem gives a characterization of ${}_{\alpha}T_{1/2}^{**}$ spaces.

Theorem 4.2: If (X, τ) is an ${}_{\alpha}T_{1/2}^{**}$ space, then every singleton of X is either $g\alpha$ -closed or open.

Proof: Let $x \in X$ and suppose that $\{x\}$ is not a $g\alpha$ -closed set of (X, τ) . Then $X/\{x\}$ is not $g\alpha$ -open. This implies that X is the only $g\alpha$ -open set containing $X/\{x\}$, so $X/\{x\}$ is a ${}^*g\alpha$ -closed set of (X, τ) . Since (X, τ) is an ${}_{\alpha}T_{1/2}$ ** space, $X/\{x\}$ is closed or equivalently $\{x\}$ is open in (X, τ) .

Theorem 4.3: Every $T_{1/2}$ space is an ${}_{\alpha}T_{1/2}^{**}$ space.

Proof: Let A be a *ga-closed set of (X, τ) . Since every *ga-closed set is g-closed, A is g-closed. Since (X, τ) is a $T_{1/2}$ space, A is closed. Therefore (X, τ) is an ${}_{\alpha}T_{1/2}$ *space.

The space in the following example is an ${}_{\alpha}T_{1/2}^{\ \ **}$ space but not a $T_{1/2}$ space.

Example 4.4: Let
$$X = \{a, b, c\}$$
 with $\tau = \{X, \phi, \{a\}, \{a, b\}\}$. ${}^*G\alpha C(X, \tau) = \{X, \phi, \{c\}, \{b, c\}\}$ $GC(X, \tau) = \{X, \phi, \{c\}, \{b, c\}, \{a, c\}\}$.

Here (X, τ) is an ${}_{\alpha}T_{1/2}^{**}$ space but not a $T_{1/2}$ space. Since $\{a, c\}$ is a g-closed set but not a closed set.

Theorem 4.5: Every T_b space is an ${}_{\alpha}T_{1/2}^{***}$ space.

Proof: Let A be a *ga-closed set of (X, τ) . Since every *ga-closed set is gs-closed, A is gs-closed. Since (X, τ) is a T_b space, A is closed. Therefore (X, τ) is an ${}_{\alpha}T_{1/2}^{**}$ space.

The space in the following example is an ${}_{\alpha}T_{1/2}^{**}$ space but not a T_b space.

```
Example 4.6: Let X = \{a, b, c\} with \tau = \{X, \phi, \{b\}, \{b, c\}\}. {}^*G\alpha C(X, \tau) = \{X, \phi, \{a\}, \{a, c\}\} GSC(X, \tau) = \{X, \phi, \{a\}, \{c\}, \{a, b\}, \{a, c\}\}.
```

Here (X, τ) is an ${}_{\alpha}T_{1/2}^{**}$ space but not a T_b space. Since $\{a, b\}$ is a gs-closed set but not a closed set.

Theorem 4.7: Every ${}_{\alpha}T_{b}$ space is an ${}_{\alpha}T_{1/2}^{**}$ space.

Proof: Let A be a *ga-closed set of (X, τ) . Since every *ga-closed set is ag-closed, A is ag-closed. Since (X, τ) is an ${}_{a}T_{b}$ space, A is closed. Therefore (X, τ) is an ${}_{a}T_{1/2}$ *space.

The space in the following example is an ${}_{a}T_{1,2}^{**}$ space but not an ${}_{a}T_{b}$ space.

Example 4.8: Let X and τ be as in example 4.6. Here (X, τ) is an $_{\alpha}T_{1/2}^{**}$ space but not an $_{\alpha}T_b$ space. Since $\{c\}$ is an α g-closed set but not a closed set.

Definition 4.9: A space (X, τ) is called a T_c^{**} if every gs-closed set is ${}^*g\alpha$ -closed.

The following theorem gives a characterization of T_c** spaces.

Theorem 4.10: If (X, τ) is a T_c^{**} space, then every singleton of X is either closed or ${}^*g\alpha$ -open.

Proof: Let $x \in X$ and suppose that $\{x\}$ is not a closed set of (X, τ) . Then $X/\{x\}$ is not open. This implies X is the only open set containing $X/\{x\}$. So $X/\{x\}$ is a gs-closed set of (X, τ) . Since (X, τ) is a T_c^{**} space, $X/\{x\}$ is a $g\alpha$ -closed set or equivalently $\{x\}$ is $g\alpha$ -open in (X, τ) .

The converse of the above theorem is not true as can be seen by the following example.

```
Example 4.11: Let X = \{a, b, c\} with \tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}\}. *gα-open sets of (X, \tau) are X, \phi, \{a\}, \{b\}, \{a, b\}. GSC(X, \tau) = \{X, \phi, \{a\}, \{b\}, \{c\}, \{b, c\}, \{a, c\}\}. *GαC(X, \tau) = \{X, \phi, \{c\}, \{b, c\}, \{a, c\}\}.
```

Here {a} and {b} are ${}^*g\alpha$ -open sets and {c} is a closed set but (X, τ) is not a T_c^{**} space. Since {b} is a gs-closed set but not a ${}^*g\alpha$ -closed set of (X, τ) .

Theorem 4.12: Every T_b space is a T_c^{**} space.

Proof: Let A be a gs-closed set of (X, τ) . Since (X, τ) is a T_b space, A is closed. Since every closed set is ${}^*g\alpha$ -closed, A is ${}^*g\alpha$ -closed set. Therefore (X, τ) is a T_c^{**} space.

The space in the following example is a T_c^{**} space but not a T_b space.

Example 4.13: Let X and τ be as in example 3.3. Here (X, τ) is a T_c^{**} space but not a T_b space. Since $\{a, c\}$ is a gs-closed set but not a closed set.

Theorem 4.14: Every T_c^{**} space is a T_d space.

Proof: Let A be a gs-closed set of (X, τ) . Since (X, τ) is a T_c^{**} space, A is $^*g\alpha$ - closed. Since every $^*g\alpha$ -closed set is g-closed, A is g-closed set. Therefore (X, τ) is a T_d space.

The space in the following example is a T_d space but not a T_c^{**} space.

Example 4.15: Let X and τ be as in example 3.5. Here (X, τ) is a T_d space but not a T_c^{**} space. Since $\{b\}$ is a gs-closed set but not ${}^*g\alpha$ -closed set.

Theorem 4.16: Every T_c^{**} space is an ${}_{\alpha}T_d$ space.

Proof: Let A be a αg -closed set of (X, τ) . Since every αg -closed set is gs-closed, A is gs-closed. Since (X, τ) is a T_c^{**} space, A is $g\alpha$ - closed. Since every $g\alpha$ -closed set is g-closed, A is g-closed set. Therefore (X, τ) is an $g\alpha$ -closed.

The space in the following example is an ${}_{a}T_{d}$ space but not a T_{c}^{**} space.

Example 4.17: Let X and τ be as in example 3.5. Here (X, τ) is an ${}_{\alpha}T_d$ space but not a T_c^{**} space. Since $\{a, c\}$ is a gs-closed set but not ${}^*g\alpha$ -closed set.

Theorem 4.18: The space (X, τ) is a T_b space if and only if it is a T_c^{**} space and an ${}_{\alpha}T_{1/2}^{**}$ space.

Proof: Necessity part: By theorem 4.12 and 4.5.

Sufficient part: Let A be a gs-closed sets of (X, τ) . Since (X, τ) is a T_c^{**} space, A is ${}^*g\alpha$ -closed set. Since (X, τ) is an ${}^*aT_{1/2}^{**}$ space, A is closed. Therefore (X, τ) is an T_b space.

Remark 4.19: T_c^{**} space and ${}_{\alpha}T_{1/2}^{**}$ space are independent of each other.

It can be seen by the following examples.

Example 4.20: Let X and τ be as in example 3.5. Here (X, τ) is an ${}_{\alpha}T_{1/2}^{**}$ space but not a T_c^{**} space. Since $\{b\}$ is gs-closed set but not ${}^*g\alpha$ -closed set.

Example 4.21: Let X and τ be as in example 3.3. Here (X, τ) is a T_c^{**} space but not an ${}_{\alpha}T_{1/2}^{**}$ space. Since $\{b, c\}$ is ${}^*g\alpha$ -closed set but not closed set.

Definition 4.22: A space (X, τ) is called an ${}_{\alpha}T_{c}^{**}$ space if every αg -closed set is ${}^{*}g\alpha$ -closed.

Theorem 4.23: Every T_b space is an ${}_{\alpha}T_c^{**}$ space.

Proof: Let A be a αg -closed set of (X, τ) . Since every αg -closed set is gs-closed, A is gs-closed. Since (X, τ) is a T_b space, A is closed. Since every closed set is ${}^*g\alpha$ -closed set. Therefore (X, τ) is a ${}_{\alpha}T_c$ **space.

The space in the following example is an ${}_{\alpha}T_{c}^{**}$ space but not a T_{b} space.

Example 4.24: Let X and τ be as in example 3.3. Here (X, τ) is an ${}_{\alpha}T_{c}^{**}$ space but not a T_{b} space. Since $\{b, c\}$ is a gs-closed set but not closed set.

Theorem 4.25: Every ${}_{\alpha}T_{b}$ space is an ${}_{\alpha}T_{c}^{**}$ space.

Proof: Let A be a αg -closed set of (X, τ) . Since (X, τ) is a ${}_{\alpha}T_b$ space, A is closed. Since every closed set is ${}^*g\alpha$ -closed, A is ${}^*g\alpha$ -closed set. Therefore (X, τ) is an ${}_{\alpha}T_c$ space.

The space in the following example is an ${}_{a}T_{c}^{**}$ space but not an ${}_{a}T_{b}$ space.

Example 4.26: Let X and τ be as in example 3.3. Here (X, τ) is an ${}_{\alpha}T_{c}^{**}$ space but not an ${}_{\alpha}T_{b}$ space. Since $\{a, c\}$ is a α g-closed set but not closed set.

Theorem 4.27: Every ${}_{\alpha}T_{c}^{**}$ space is an ${}_{\alpha}T_{d}$ space.

Proof: Let A be a αg -closed set of (X, τ) . Since (X, τ) is a $_{\alpha}T_{c}^{**}$ space, A is $^{*}g\alpha$ -closed. Since every $^{*}g\alpha$ -closed set is g-closed, A is g-closed set. Therefore (X, τ) is an $_{\alpha}T_{d}$ space.

The space in the following example is an ${}_{a}T_{d}$ space but not an ${}_{a}T_{c}^{**}$ space.

Example 4.28: Let X and τ be as in example 3.5. Here (X, τ) is an ${}_{\alpha}T_d$ space but not an ${}_{\alpha}T_c^{**}$ space. Since $\{c\}$ is a α g-closed set but not ${}^*g\alpha$ -closed set.

Theorem 4.29: Every T_c^{**} space is an ${}_{\alpha}T_c^{**}$ space.

Proof: Let A be a αg -closed set of (X, τ) . Since every αg -closed set is gs-closed, A is gs-closed. Since (X, τ) is a T_c^{**} space, A is ${}^*g\alpha$ -closed. Therefore (X, τ) is an ${}_{\alpha}T_c^{**}$ space.

The space in the following example is an ${}_{a}T_{c}^{**}$ space but not a T_{c}^{**} space.

Example 4.30: Let X and τ be as in example 4.11. Here (X, τ) is an ${}_{\alpha}T_{c}^{**}$ space but not a T_{c}^{**} space. Since $\{a\}$ is a gs-closed set but not ${}^{*}g\alpha$ -closed set.

Theorem 4.31: The space (X, τ) is an ${}_{\alpha}T_{b}$ space if and only if it is a ${}_{\alpha}T_{c}^{**}$ space and an ${}_{\alpha}T_{1/2}^{**}$ space.

Proof: Necessity part: By theorem 4.25 and 4.7.

Sufficient part: Let A be a αg -closed set of (X, τ) . Since (X, τ) is an ${}_{\alpha}T_{c}^{**}$ space, A is ${}^{*}g\alpha$ -closed. Since (X, τ) is an ${}_{\alpha}T_{1/2}^{**}$, A is closed set. Therefore (X, τ) is an ${}_{\alpha}T_{b}$ space.

Remark 4.32: ${}_{\alpha}T_{c}^{**}$ space and ${}_{\alpha}T_{1/2}^{**}$ space are independent of each other.

It can be seen by the following examples.

Example 4.33: Let X and τ be as in example 3.5. Here (X, τ) is an ${}_{\alpha}T_{1/2}^{**}$ space but not an ${}_{\alpha}T_{c}^{**}$ space. Since $\{b\}$ is αg -closed set but not ${}^{*}g\alpha$ -closed set.

Example 4.34: Let X and τ be as in example 3.3.Here (X, τ) is an ${}_{\alpha}T_{c}^{**}$ space. But not an ${}_{\alpha}T_{1/2}^{**}$ space. Since $\{b, c\}$ is ${}^{*}g\alpha$ -closed set but not closed set.

Definition 4.35: A space (X, τ) is called a $^{**}_{\alpha}T_{1/2}$ space if every g-closed set is $^*g\alpha$ -closed set.

Theorem 4.36: Every $T_{1/2}$ space is a ${}^{**}_{\alpha}T_{1/2}$ space.

Proof: Let A be a g-closed set of (X, τ) . Since (X, τ) is a $T_{1/2}$ space, A is closed. Since every closed set is ${}^*g\alpha$ -closed, A is ${}^*g\alpha$ -closed. Therefore (X, τ) is an ${}^{**}{}_{\alpha}T_{1/2}$ space.

The space in the following example is a ${}^{**}_{\alpha}T_{1/2}$ space but not a $T_{1/2}$ space.

Example 4.37: Let X and τ be as in example 3.3. Here (X, τ) is a $^{**}_{\alpha}T_{1/2}$ space but not a $T_{1/2}$ space. Since $\{b, c\}$ is a g-closed set but not closed set.

Theorem 4.38: Every T_b space is a ${}^{**}_{a}T_{1/2}$ space.

Proof: Let A be a g-closed set of (X, τ) . Since every g-closed set is gs-closed, A is gs-closed set. Since (X, τ) is an T_b space, A is closed. Since every closed set is ${}^*g\alpha$ -closed, A is ${}^*g\alpha$ -closed. Therefore (X, τ) is an ${}^{**}{}_{\alpha}T_{1/2}$ space.

The space in the following example is a $*^*_{\alpha}T_{1/2}$ space but not a T_b space.

Example 4.39: Let X and τ be as in example 3.3. Here (X, τ) is a $^{**}_{\alpha}T_{1/2}$ space but not a T_b space. Since a, c} is a gs-closed set but not closed set.

Theorem 4.40: Every ${}_{\alpha}T_{b}$ space is a ${}^{**}{}_{\alpha}T_{1/2}$ space.

Proof: Let A be a g-closed set of (X, τ) . Since every g-closed set is αg -closed, A is αg -closed set. Since (X, τ) is an ${}^{\alpha}T_b$ space, A is closed. Since every closed set is ${}^{*}g\alpha$ -closed, A is ${}^{*}g\alpha$ -closed. Therefore (X, τ) is an ${}^{**}{}_{\alpha}T_{1/2}$ space.

The space in the following example is a ${}^{**}_{\alpha}T_{1/2}$ space but not an ${}_{\alpha}T_{b}$ space.

Example 4.41: Let X and τ be as in example 3.3.Here (X,τ) is a $^{**}_{\alpha}T_{1/2}$ space but not an $_{\alpha}T_{b}$ space. Since $\{a,c\}$ is a αg -closed set but not closed set.

Theorem 4.42: Every T_c^{**} space is a ${}^{**}_{\alpha}T_{1/2}$ space.

Proof: Let A be a g-closed set of (X, τ) . Since every g-closed set is gs-closed, A is gs-closed set. Since (X, τ) is a T_c^{**} space, A is ${}^*g\alpha$ -closed. Therefore (X, τ) is an ${}^{**}_{\alpha}T_{1/2}$ space.

The space in the following example is a ${}^{**}_{\alpha}T_{1/2}$ space but not a T_c^{**} space.

Example 4.43: Let X and τ be as in example 4.11. Here (X, τ) is an $^{**}_{\alpha}T_{1/2}$ space but not a T_c^{**} space. Since $\{a\}$ is a gs-closed set but not a $^*g\alpha$ -closed set.

Theorem 4.44: The space (X, τ) is a $T_{1/2}$ space if and only if it is a ${}^{**}_{a}T_{1/2}$ space and an ${}_{a}T_{1/2}{}^{**}$ space.

Proof: Necessity part: By theorem 4.36 and 4.3.

Sufficient part: Let A be a g-closed set of (X, τ) . Since (X, τ) is a $^{**}_{\alpha}T_{1/2}$ space, A is $^*g\alpha$ -closed. Since (X, τ) is an $_{\alpha}T_{1/2}$ *space, A is closed. Therefore (X, τ) is an $T_{1/2}$ space.

Remark 4.45: ${}^{**}_{\alpha}T_{1/2}$ space and ${}_{\alpha}T_{1/2}$ space are independent of each other.

It can be seen by the following examples.

Example 4.46: Let X and τ be as in example 3.5. Here (X, τ) is an ${}_{\alpha}T_{1/2}^{**}$ space but not an ${}^{**}{}_{\alpha}T_{1/2}$ space. Since $\{b\}$ is g-closed set but not ${}^{*}g\alpha$ -closed set.

Example 4.47: Let X and τ be as in example 3.3. Here (X, τ) is an ${}^{**}_{\alpha}T_{1/2}$ space but not an ${}_{\alpha}T_{1/2}$ space. Since $\{b, c\}$ is ${}^*g\alpha$ -closed set but not closed set.

Remark 4.48: The following diagram shows them relationship among the separation axioms considered in this paper and reference [18], [19]. $A \rightarrow B$ ($A \leftrightarrow B$) represents A implies B but B need not imply A always (A and B are independent of each other).

5. *gα – CONTINUITY AND *gα – IRRESOLUTNESS:

We introduce the following definition

Definition 5.1: A function $f: (X, \tau) \to (Y, \sigma)$ is called ${}^*g\alpha$ – continuous if $f^1(V)$ is a ${}^*g\alpha$ – closed set of (X, τ) for every closed set V of (Y, σ) .

Theorem 5.2: Every continuous map is ${}^*g\alpha$ – continuous.

Proof: Let V be a closed set of (Y,σ) . Since f is continuous $f^1(V)$ is closed in (X,τ) . But every closed set is ${}^*g\alpha$ -closed set. Hence $f^1(V)$ is ${}^*g\alpha$ -closed set in (X,τ) . Thus f is ${}^*g\alpha$ -continuous.

The converse of the above theorem need not be true by the following example.

Example 5.3: Let $X = \{a, b, c\} = Y$ with $\tau = \{X, \phi, \{a, b\}\}$ and $\sigma = \{Y, \phi, \{a\}\}$.

Define f: $(X, \tau) \rightarrow (Y, \sigma)$ by f(a)=b, f(b)=a, f(c)=c. * $G\alpha C(X, \tau) = \{X, \phi, \{c\}, \{b, c\}, \{a, c\}\}.$ Here $f^{-1}(\{b,c\}) = \{a,c\}$ is not a closed set in (X,τ) . Therefore f is not continuous. However f is ${}^*g\alpha$ – continuous.

Theorem 5.4: Every ${}^*g\alpha$ – continuous map is g–continuous.

Proof: Let V be a closed set of (Y,σ) . Since f is ${}^*g\alpha$ – continuous, $f^1(V)$ is ${}^*g\alpha$ –closed in (X,τ) . But every ${}^*g\alpha$ –closed set is g-closed set. Hence $f^1(V)$ is g-closed set in (X,τ) . Thus f is g – continuous.

The converse of the above theorem need not be true by the following example.

```
Example 5.5: Let X = \{a, b, c\} = Y with \tau = \{X, \phi, \{a\}, \{a, c\}\} and \sigma = \{Y, \phi, \{a\}, \{a, b\}\}. Define f: (X, \tau) \rightarrow (Y, \sigma) by f(a) = b, f(b) = c, f(c) = a.

*G\alpha C(X, \tau) = \{X, \phi, \{b\}, \{b, c\}\}.

GC(X, \tau) = \{X, \phi, \{b\}, \{a, b\}, \{b, c\}\}.
```

Here $f^1(\{b,c\}) = \{a,b\}$ is not a ${}^*g\alpha$ -closed set in (X,τ) . Therefore f is not ${}^*g\alpha$ -continuous. However f is g-continuous.

Theorem 5.6: Every ${}^*g\alpha$ – continuous map is $g\alpha$ -continuous.

Proof: Let V be a closed set of (Y,σ) . Since f is ${}^*g\alpha$ – continuous $f^1(V)$ is ${}^*g\alpha$ –closed in (X,τ) . But every ${}^*g\alpha$ –closed set is $g\alpha$ -closed set in (X,τ) . Hence $f^1(V)$ is $g\alpha$ -closed set in (X,τ) . Thus f is $g\alpha$ -continuous.

The converse of the above theorem need not be true by the following example.

```
Example 5.7: Let X = \{a, b, c\} = Y with \tau = \{X, \phi, \{a\}, \{b, c\}\} and \sigma = \{Y, \phi, \{a\}, \{a, c\}\}. Define f: (X, \tau) \rightarrow (Y, \sigma) by f(a) = b, f(b) = c, f(c) = a. ^*G\alpha C(X, \tau) = \{X, \phi, \{a\}, \{b, c\}\}. G\alpha C(X, \tau) = \{X, \phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{a, c\}\}.
```

Here $f^1(\{b,c\}) = \{a,b\}$ is not a ${}^*g\alpha$ -closed set in (X,τ) . Therefore f is not ${}^*g\alpha$ -continuous. However f is $g\alpha$ -continuous.

Remark 5.8: Every *gα – continuous map is αg-continuous, gs-continuous, gsp-continuous and gpr-continuous.

Theorem 5.9: Every ${}^*g\alpha$ – continuous map is gp-continuous.

Proof: Let V be a closed set of (Y, σ) . Since f is ${}^*g\alpha$ – continuous $f^1(V)$ is ${}^*g\alpha$ –closed in (X, τ) . But every ${}^*g\alpha$ –closed set is gp-closed set in (X, τ) . Hence $f^1(V)$ is gp-closed set in (X, τ) . Thus f is gp-continuous.

The converse of the above theorem need not be true by the following example.

Example 5.10: Let (X, τ) and (Y, σ) be as in example 5.7. Here $f^1(\{b, c\}) = \{a, b\}$ is not a ${}^*g\alpha$ -closed set in (X, τ) . Therefore f is not ${}^*g\alpha$ -continuous. However f is gp-continuous.

Remark 5.11: ${}^*g\alpha$ –continuity is independent of semi-continuity and α -continuity.

The proof follows from the following example.

```
Example 5.12: Let X = \{a, b, c\} = Y with \tau = \{X, \phi, \{a\}\} and \sigma = \{Y, \phi, \{a\}, \{a, b\}\}. Define f: (X, \tau) \rightarrow (Y, \sigma) by f (a) = a, f(b) = b, f(c) = c. {}^*G\alpha C(X, \tau) = \{X, \phi, \{b, c\}\}. SC(X, \tau) = \{X, \phi, \{b\}, \{c\}, \{b, c\}\} = \alpha C(X, \tau)
```

Here $f^1(\{b\}) = \{b\}$ is not a *g\alpha -closed set in (X, τ) . Therefore f is not *g\alpha -continuous. However f is semi–continuous and \alpha-continuous.

```
Example 5.13: Let X = \{a, b, c\} = Y with \tau = \{X, \phi, \{a, b\}\} and \sigma = \{Y, \phi, \{b\}, \{b, c\}\}. Define f: (X, \tau) \rightarrow (Y, \sigma) by f(a) = c, f(b) = b, f(c) = a. {}^*G\alpha C(X, \tau) = \{X, \phi, \{c\}, \{b, c\}, \{a, c\}\}. SC(X, \tau) = \{X, \phi, \{c\}\} = \alpha C(X, \tau)
```

Here $f^1(\{a,c\}) = \{a,c\}$ is not a semi-closed set and α -closed set in (X,τ) . Therefore f is not semi-continuous and α -continuous. However f is ${}^*g\alpha$ -continuous.

Remark 5.14: The composition of two *gα –continuous map need not be a *gα –continuous.

The proof follows from the example.

```
Example 5.15: Let X = \{a, b, c\} = Y = Z \text{ with } \tau = \{X, \phi, \{a\}, \{a, b\}\} , \sigma = \{Y, \phi, \{a, b\}\} \text{ and } \eta = \{Z, \phi, \{b\}, \{b, c\}\}\} Define f: (X, \tau) \to (Y, \sigma) by f(a) = a, f(b) = b, f(c) = c. Define g: (Y, \sigma) \to (Z, \eta) by g(a) = c, g(b) = b, g(c) = a. {}^*G\alpha \ C(X, \tau) = \{X, \phi, \{c\}, \{b, c\}\}. {}^*G\alpha \ C(Y, \sigma) = \{Y, \phi, \{c\}, \{b, c\}, \{a, c\}\}.
```

Clearly f and g are *gα –continuous.

Here $\{a, c\}$ is a closed set in (Z, η) . But $(gof)^{-1}(\{a, c\}) = \{a, c\}$ is not a ${}^*g\alpha$ –closed set in (X, τ) .

Therefore gof is not $*g\alpha$ -continuous.

We introduce the following definition.

Definition 5.16: A function $f: (X, \tau) \to (Y, \sigma)$ is called ${}^*g\alpha$ –irresolute if $f^1(V)$ is a ${}^*g\alpha$ –closed set of (X, τ) for every ${}^*g\alpha$ –closed set of (Y, σ) .

Theorem 5.17: Every ${}^*g\alpha$ –irresolute function is ${}^*g\alpha$ -continuous.

Proof: Let V be a closed set of (Y,σ) . Since every closed set is ${}^*g\alpha$ -closed set. Therefore V is ${}^*g\alpha$ -closed set of (Y,σ) . Since f is ${}^*g\alpha$ - irresolute $f^1(V)$ is ${}^*g\alpha$ -closed in (X,τ) . Therefore f is ${}^*g\alpha$ -continuous.

The converse of the above theorem need not be true by the following example.

```
Example 5.18: Let X = \{a, b, c\} = Y with \tau = \{X, \phi, \{b\}, \{b, c\}\} and \sigma = \{Y, \phi, \{a, b\}\}. Define f: (X, \tau) \rightarrow (Y, \sigma) by f(a) = c, f(b) = a, f(c) = b. {}^*G\alpha \ C(X, \tau) = \{X, \phi, \{a\}, \{b, c\}\}. {}^*G\alpha \ C(Y, \sigma) = \{Y, \phi, \{c\}, \{b, c\}, \{b, c\}\}.
```

Here f is ${}^*g\alpha$ –continuous but f is not ${}^*g\alpha$ –irresolute. Since $\{a,c\}$ is ${}^*g\alpha$ –closed set in (Y,σ) but $f^1(\{a,c\})=\{a,b\}$ is not ${}^*g\alpha$ –closed set in (X,τ) .

```
Theorem 5.19: Let f: (X, \tau) \to (Y, \sigma) and g: (Y, \sigma) \to (Z, \eta) be any two functions. Then (i) gof: (X, \tau) \to (Z, \eta) is {}^*g\alpha –continuous if g is continuous and f is {}^*g\alpha –continuous. (ii) gof: (X, \tau) \to (Z, \eta) is {}^*g\alpha –irresolute if both g and f are {}^*g\alpha – irresolute. (iii) gof: (X, \tau) \to (Z, \eta) is {}^*g\alpha –continuous if g is {}^*g\alpha –continuous and f is {}^*g\alpha – irresolute.
```

Proof:

(i) Let V be a closed set in (Z, η) . Since g is continuous, $g^{-1}(V)$ is closed in (Y, σ) . Since f is ${}^*g\alpha$ –continuous, $f^{-1}(V) = (gof)^{-1}(V)$ is ${}^*g\alpha$ –closed in (X, τ) . Therefore gof is ${}^*g\alpha$ –continuous.

Similarly we can prove (ii) and (iii).

Theorem 5.20: Let $f:(X,\tau) \to (Y,\sigma)$ be a ${}^*g\alpha$ -continuous(resp.gs-continuous, αg -continuous, αg -continuous,

Proof: Let V be a closed set of (Y, σ) . Since f is ${}^*g\alpha$ –continuous (resp.gs-continuous, αg -continuous, αg -continuous).

Theorem 5.21: Let $f: (X, \tau) \to (Y, \sigma)$ be a surjective, $g\alpha$ -irresolute and a closed map. Then f(A) is ${}^*g\alpha$ –closed set of (Y, σ) for every ${}^*g\alpha$ –closed set A of (X, τ) .

Proof: Let A be a ${}^*g\alpha$ -closed set of (X, τ) . Let U be a $g\alpha$ -open set of (Y, σ) such that $f(A) \subseteq U$. Since f is surjective and $g\alpha$ -irresolute, $f^1(U)$ is a $g\alpha$ -open set of (X, τ) . Since $A \subseteq f^1(U)$ and A is ${}^*g\alpha$ -closed set of (X, τ) , $cl(A) \subseteq f^1(U)$.

Then $f(cl(A)) \subseteq f(f^1(U)) = U$. Since f is closed, f(cl(A)) = cl(f(cl(A))). This implies $cl(f(A)) \subseteq cl(f(cl(A))) = f(cl(A)) \subseteq U$. Therefore f(A) is a $^*g\alpha$ -closed set of (Y, σ) .

Theorem 5.22: Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be a surjective, ${}^*g\alpha$ -irresolute and a closed map. If (X, τ) is an ${}_{\alpha}T_{1/2}$ space, then (Y, σ) is also an ${}_{\alpha}T_{1/2}$ space.

Proof: Let A be a *g\$\alpha\$ -closed set of (Y,\sigma). Since f is *g\$\alpha\$-irresolute, \$f^1(A)\$ is a *g\$\alpha\$-closed set of (X, \tau)\$. Since (X, \tau) is an \$_aT_{1/2}\$** space, \$f^1(A)\$ is a closed set of (X, \tau)\$. Then \$f(f^1(A)) = A\$ is closed in (Y, \sigma)\$. Thus A is a closed set of (Y,\sigma)\$. Therefore (Y,\sigma)\$ is a \$_aT_{1/2}\$** space.

Definition 5.23: A function $f: (X, \tau) \to (Y, \sigma)$ is called pre- ${}^*g\alpha$ -closed if f(A) is a ${}^*g\alpha$ -closed set of (Y, σ) for every ${}^*g\alpha$ -closed set A of (X, τ) .

Theorem 5.24: Let $f: (X, \tau) \to (Y, \sigma)$ be a surjective, gs-irresolute and a pre- ${}^*g\alpha$ -closed map. If (X, τ) is an T_c^{**} space, then (Y, σ) is also an T_c^{**} space.

Proof: Let A be a gs –closed set of (Y,σ) . Since f is gs-irresolute, $f^1(A)$ is a gs-closed set in (X,τ) . Since (X,τ) is a T_c^{**} space, $f^1(A)$ is a ${}^*g\alpha$ -closed set in (X,τ) . Since f is pre- ${}^*g\alpha$ -closed map, $f(f^1(A))$ is ${}^*g\alpha$ -closed in (Y,σ) for every ${}^*g\alpha$ -closed set $f^1(A)$ of (X,τ) . Since f is surjection, $A=f(f^1(A))$. Thus A is a ${}^*g\alpha$ -closed set of (Y,σ) . Therefore (Y,σ) is a T_c^{**} space.

Theorem 5.25 Let $f: (X, \tau) \to (Y, \sigma)$ be a surjective, αg -irresolute and a pre- ${}^*g\alpha$ -closed map. If (X, τ) is an ${}_{\alpha}T_{c}^{**}$ space, then (Y, σ) is also an ${}_{\alpha}T_{c}^{**}$ space.

Proof: Let A be a αg -closed set of (Y, σ) . Since f is αg -irresolute, $f^1(A)$ is a αg -closed set in (X, τ) . Since (X, τ) is a ${}_{\alpha}T_{c}^{**}$ space, $f^1(A)$ is a ${}^{*}g\alpha$ -closed set in (X, τ) . Since f is pre- ${}^{*}g\alpha$ -closed map, $f(f^1(A))$ is ${}^{*}g\alpha$ -closed in (Y, σ) for every ${}^{*}g\alpha$ -closed set $f^1(A)$ of (X, τ) . Since f is surjection, $A=f(f^1(A))$. Thus A is a ${}^{*}g\alpha$ -closed set of (Y, σ) . Therefore (Y, σ) is a ${}_{\alpha}T_{c}^{**}$ space.

Theorem 5.26: Let $f:(X, \tau) \to (Y, \sigma)$ be a surjective, gc-irresolute and a pre- ${}^*g\alpha$ -closed map. If (X, τ) is an ${}^{**}{}_{\alpha}T_{1/2}$ space, then (Y, σ) is also an ${}^{**}{}_{\alpha}T_{1/2}$ space.

Proof: Let A be a g-closed set of (Y,σ) . Since f is gc-irresolute, $f^1(A)$ is a g-closed set in (X,τ) . Since (X,τ) is a $^{**}_{\alpha}T_{1/2}$ space, $f^1(A)$ is a $^*g\alpha$ -closed set in (X,τ) . Since f is pre- $^*g\alpha$ -closed map, $f(f^1(A))$ is $^*g\alpha$ -closed in (Y,σ) for every $^*g\alpha$ -closed set $f^1(A)$ of (X,τ) . Since f is surjection, $A=f(f^1(A))$. Thus A is a $^*g\alpha$ -closed set of (Y,σ) . Therefore (Y,σ) is a $^*_{\alpha}T_{1/2}$ space.

6. Generalized αc - homeomorphism and their group structure

Definition 6.1: A function $f: (X, \tau) \to (Y, \sigma)$ is said to be ${}^*g\alpha$ -open if the image f(U) is ${}^*g\alpha$ -open in (Y, σ) for every open set U of (X, τ) .

Definition 6.2: A function $f: (X, \tau) \to (Y, \sigma)$ is said to be ${}^*g\alpha$ -closed if the image f(U) is ${}^*g\alpha$ -closed in (Y, σ) for every closed set U of (X, τ) .

Definition 6.3: A function $f:(X,\tau)\to (Y,\sigma)$ is said to be ${}^*g\alpha -$ homeomorphism (resp. ${}^*g\alpha -$ homoeomorphism) if f is bijective and f and f are ${}^*g\alpha -$ irresolute (resp. ${}^*g\alpha -$ continuous).

Theorem 6.4:

- (i) Suppose that f is bijection. Then the following conditions are equivalent:
- (1) f is $g\alpha$ homoeomorphism.
- (2) f is ${}^*g\alpha$ -open and ${}^*g\alpha$ -continuous.
- (3) f is ${}^*g\alpha$ -closed and ${}^*g\alpha$ -continuous.
- (ii) If f is a homeomorphism, then f and f^{-1} are ${}^*g\alpha$ -irresolute.
- (iii) Every *gαc- homeomorphism is a *gα- homoeomorphism.

Proof:

(ii) First we prove that f^1 is ${}^*g\alpha$ -irresolute. Let A be a ${}^*g\alpha$ -closed set of (X, τ) . To show $(f^1)^{-1}(A) = f(A)$ is ${}^*g\alpha$ -closed in (Y, σ) . Let U be a $g\alpha$ -open set such that $f(A) \subseteq U$. Then $A = (f^1(f(A)) \subseteq f^1(U)$ is $g\alpha$ -open. Since A is ${}^*g\alpha$ -closed, $cl(A) \subseteq f^1(U)$. We have $cl(f(A)) \subseteq f(cl(A)) \subseteq f(f^1(U)) = U$ and so f(A) is ${}^*g\alpha$ -closed. Thus f^1 is ${}^*g\alpha$ -irresolute. Since f^1 is also a homeomorphism $(f^1)^{-1} = f$ is ${}^*g\alpha$ -irresolute.

(iii) Let f is bijective. Since f is *gαc- homeomorphism, f and f are *gα-irresolute. Since every *gα-irresolute map is $g\alpha$ -continuous, then f and f^1 are $g\alpha$ -continuous. Therefore f is $g\alpha$ -homoeomorphism.

Definition 6.5: For a topological space (X, τ) we define the following three collections of functions:

- (i) * gach $(X, \tau) = \{f/f: (X, \tau) \rightarrow (X, \tau) \text{ is a } ^*$ gac-homeomorphism}.
- (ii) ${}^*g\alpha h(X, \tau) = \{f/f: (X, \tau) \rightarrow (X, \tau) \text{ is a } {}^*g\alpha \text{homeomorphism}\}.$
- (iii) $h(X, \tau) = \{f/f: (X, \tau) \rightarrow (X, \tau) \text{ is a homeomorphism}\}.$

Corollary 6.6: For a space (X, τ) the following properties hold.

- (i) $h(X, \tau) \subseteq {}^*gach(X, \tau) \subseteq {}^*gah(X, \tau)$.
- (ii) The set ${}^*gach(X, \tau)$ forms a group under composition of functions.
- (iii) The group h (X, τ) is a subgroup of *gach (X, τ) .
- (iv) If f: $(X, \tau) \rightarrow (Y, \sigma)$ is a *gac- homeomorphism then it induces an isomorphism f_* : *gach $(X, \tau) \rightarrow$ *gach (Y, σ) .

Proof:

- (i) These implications are obtained by theorem 6.4(ii), (iii).
- (**ii**) By theorem 5.19.
- (iii) By (i).
- (iv) We define f_* : *gach $(X, \tau) \to *gach(Y, \sigma)$ by $f_*(h) = fohof^1$. Then using 5.19 we have that $f_*(h) \in *gach(X, \tau)$. It is shown that f* is the required group isomorphism.

Remark 6.7: The following example shown that the converse of the above theorem (iv) is not true.

```
Example 6.8: Let X = \{a, b, c\} = Y with with \tau = \{X, \phi, \{a\}, \{b, c\}\} and \sigma = \{Y, \phi, \{a, b\}\}.
Define f: (X, \tau) \rightarrow (Y, \sigma) by f(a)=c, f(b)=a, f(c)=b.
^*G\alpha C(X, \tau) = \{X, \phi, \{a\}, \{b, c\}\}.
 ^*G\alpha C(Y, \sigma) = \{Y, \phi, \{c\}, \{b, c\}, \{a, c\}\}.
Also define three functions h_a h_b h_c: (X, \tau) \rightarrow (X, \tau) by
h_a(a)=a, h_a(b)=c, h_a(c)=b
h_b(a)=a, h_b(b)=b, h_b(c)=c
h_c(a)=b, h_c(b)=a, h_c(c)=c
```

Then it is shown that *gach (X, τ) = {1_x, h_a}, *gach(Y, σ) = {1_y, h_c} and f_{*}: *gach (X, τ) \rightarrow *gach(Y, σ) is an isomorphism such that $f_*(h_a) = h_b$. However f is not *gac- homeomorphism.

7. EXAMPLES IN THE DIGITAL PLANE

In the digital plane, we investigate explicite forms of $G\alpha O$ -kernel α -kernel and of a subset. The digital line or the so called Khalimsky line is the set of the integers Z, equipped with the topology k having $\{\{2n+1,2n,2n-1\}/n\in\mathbb{Z}\}$ as a subbase. This is denoted by (Z, k). Thus, a subset U is open in (Z, k) if and only if whenever $x \in U$ is an even integer, then x-1,x+1 \in U. Let (Z^2,k^2) be the topological product of two digital lines (Z,k), where $Z^2 = Z \times Z$ and $k^2 = k \times k$. This space is called the digital plane in the present paper (cf. [5], [11], [12]). We note that for each point $x \in \mathbb{Z}^2$ there exists the smallest open set containing x, say U(x). For the case of x = (2n+1,2m+1), $U(x) = (2n+1) \times (2m+1)$; for the case of x = (2n+1,2m+1), $U(x) = (2n+1) \times (2m+1)$; (2n,2m), $U(x) = \{2n-1,2n,2n+1\} \times \{2m-1,2m,2m+1\}$; for the case of x = (2n,2m+1), $U(x) = \{2n-1,2n,2n+1\} \times \{2m+1\}$; for the case of x = (2n+1,2m), $U(x) = \{2n+1\} \times 2m-1,2m,2m+1\}$, where $n,m \in \mathbb{Z}$. For a subset E of (\mathbb{Z}^2,k^2) , we define the following three subsets as follows: $E_F = \{x \in E \mid x \text{ is closed in } (Z^2, k^2)\}; E_k^2 = \{x \in E \mid x \text{ is open in } (Z^2, k^2)\}; E_{mix}$ $E\setminus (E_F \cup E_{k2})$. Then it is shown that $E_F = \{(2n, 2m) \in E \mid n, m \in Z\}, E_k^2 = \{(2n+1, 2m+1) \in E \mid n, m \in Z\}$ and $E_{mix} = \{(2n, 2m) \in E \mid n, m \in Z\}, E_k^2 = \{(2n+1, 2m+1) \in E \mid n, m \in Z\}$ 2m+1) $\in E/n, m \in Z$ } $\cup \{(2n+1, 2m) \in E/n, m \in Z\}.$

```
Theorem 7.1: Let A and E be subsets of (z^2, k^2).
```

- (i) If E is non empty α -closed set, then $E_F \neq \phi[8]$.
- (ii) If E is α closed and $E \subseteq B_{\textit{mix}} \cup B_{\textit{k}}^2$ holds for some subset B of (z^2 , k^2) then $E = \phi[8]$. (iii) The set U $(A_F) \cup A_{\textit{mix}} \cup A_{\textit{k}}^2$ is a g α -open set containing A.

Proof:

(iii): We claim that $A_{\textit{mix}} \cup A_k^{\ 2}$ is a ga-open set . Let F be any non-empty $\alpha-$ closed set such that $F \subseteq A_{\textit{mix}} \cup A_k^{\ 2}$. Then by (ii), $F = \phi$. Thus, we have that $F \subseteq \alpha$ - Int $(A_{mix} \cup A_k^2)$ then $A_{mix} \cup A_k^2$ is $g\alpha$ - open. But we know that U (A_F) is a open set. Then $U(A_F) \cup A_{mix} \cup A_k^2$ is go-open by theorem 3.14. But $A = A_F \cup A_{mix} \cup A_k^2$. $A \subseteq U(A_F) \cup A_k^2 \cup A_k$ A $_{mix} \cup A_k^2$. This implies that g α -open set contains A.

Theorem 7.2: Let A be a subset of (Z^2, k^2) . The G α o- kernel of A and the α -kernel of A are obtained precisely as follows:

(i) Gao-ker (A) = U (A_F)
$$\cup$$
 A _{mix} \cup A_k², where U (A_F) = \cup { U(x) | x \in A_F}.

(ii)
$$\alpha$$
-ker (A) = U(A), where U (A) = \cup { U (x) | x \in A}[8].

Proof:

(i): Let
$$U_A = U(A_F) \cup A_{mix} \cup A_k^2$$
. By Lemma 7.1 (iii), $G\alpha \circ - \ker(A) \subseteq U_A$.

To prove $U_A \subseteq G\alpha$ o-ker (A), it is claimed that (*)if there exists a $g\alpha$ -open set V such that $A \subseteq V \subset U_A$ then $V = U_A$. Indeed, let x be any point of U_A . There are three cases for the point x.

Case (1): $x \in (U_A)_F$ we note that $(U_A)_F = (U(A_F))_F \cup (A_{mix} \cup A_k^2)_F = A_F$.

Then we have that $x \in A_F \subseteq A \subseteq V$.

Case (2): $X \in (U_A)_k^2$. We note that

$$(U_A)_k^2 = (U(A_F)_k^2) \cup (A_{mix})_k^2 \cup (A_k^2)_k^2 = (U(A_F))_k^2 \cup A_k^2$$
.

Firstly suppose that $x \in U(A_F)$ Then $x \in U(y)$ for some $y \in A_F$. Since $y \in A_F \subseteq A \subseteq V$ and V is $g\alpha$ -open, we have $\{y\} \subseteq \alpha$ -Int (V). Then $U(y) \subset \alpha$ -Int (V), because α -Int (V) is α -open. Thus we have that $x \in V$.

Secondly, suppose $x \in A_k^2$, then we have $x \in V$, because $x \in A_k^2 \subseteq A \subseteq V$.

Case (3): $x \in (U_A)_{mix}$. We note that

$$(\mathbf{U}_{\mathbf{A}})_{mix} = (\mathbf{U} \ (\mathbf{A}_{F}))_{mix} \cup (\mathbf{A}_{k}^{2})_{mix} \cup (\mathbf{A}_{mix})_{mix}$$
$$= (\mathbf{U} \ (\mathbf{A}_{F}))_{mix} \cup \mathbf{A}_{mix}$$

Firstly suppose that $x \in U$ (A_F). Then $x \in U$ (y) for some $y \in A_F$. Then y be a α -closed point since every closed point is α -closed point. Since $y \in A_F \subseteq A \subseteq V$, $\{y\}$ is α -closed and V is $g\alpha$ - open set, we have $\{y\} \subseteq \alpha$ - Int (V). Then U (Y) C C - Int (V) and so $X \in V$.

Secondly, suppose that $x \in A_{mix}$. Then $x \in A_{mix} \subseteq A \subseteq V$ implies $x \in V$.

For all cases we assume that $x \in U_A$ then we show that $x \in V$, then $U_A \subseteq V$. But we know that $V \subseteq U_A$. From the above cases we conclude that $V = U_A$. Thus we shown (*).

Let $G\alpha o(A)$ be the family of all $g\alpha$ -open sets containing A. Then, we have that $U_A \subseteq W$ for each $W \in G\alpha o(A)$, using (*) above and properties that $A \subseteq W \cap U_A \subseteq U_A$ and $W \cap U_A$ is $g\alpha$ -open set. Hence, we show that $U_A \subseteq \cap \{W \mid W \in G\alpha o(A)\} = G\alpha o$ -ker (A).

That is $U_A \subseteq G\alpha o$ -ker (A). Therefore $G\alpha o$ -ker (A) = U_A .

Theorem 7.3: Let E be a subset of (Z^2, k^2) .

- (i) If E is a non-empty g α -closed set, then $E_F \neq \phi$.
- (ii) If E is gα-closed set and $E \subseteq B_{mix} \cup B_k^2$ holds for some subset B of (Z^2, k^2) , then $E = \phi$.

Proof:

(i): We recall that a subset E is $g\alpha$ -closed if and only if $\alpha cl(E) \subseteq \alpha$ -ker (E). Let y be a point of E.

We consider the following three cases for the point y.

Case 1: $y \in E_k^2$. Let y = (2n+1, 2m+1) for some $n,m \in Z$. Then $\alpha cl(y) = \{2n, 2n+1, 2n+2\} \times \{2m, 2m+1, 2m+2\} \subseteq \alpha cl(E) \subseteq \alpha$ -ker (E). Thus there exists a point $(2n, 2m) \in \alpha$ -ker (E), say $y_1 = (2n, 2m)$. Using theorem 7.2(ii), we have that $y_1 \in U(z)$ for some $z \in E$.

If $z \in E_{mix}$, say z = (2s+1, 2t) for some $s,t \in \mathbb{Z}$, then $U(z) = \{2s+1\} \times \{2t-1,2t,2t+1\}$ and $y_1 \notin U(\mathbb{Z})$. This is a contradiction.

Next if $z \in E_k^2$, say z = (2s+1, 2t+1) for some $s,t \in \mathbb{Z}$, then $U(z) = \{(2s+1, 2t+1)\}$ and $y_1 \notin U(z)$. This is also a contradiction.

Thus we have that $z \in E_F$ and hence $E_F \neq \emptyset$ for case1.

Case 2: $y \in E_{mix}$ Let y = (2n+1, 2m) for some $n,m \in Z$. Then $\alpha cl(y) = \{2n, 2n+1, 2n+2\} \times \{2m\} \subseteq \alpha cl(E) \subseteq \alpha$ -ker (E). Thus there exists a point $(2n, 2m) \in \alpha$ -ker (E), say $y_1 = (2n, 2m)$. Using theorem 7.2(ii), we have that $y_1 \in U(z)$ for some $z \in E$.

If $z \in E_{mix}$, say z = (2s+1, 2t) for some $s,t \in \mathbb{Z}$, then $U(z) = \{2s+1\} \times \{2t-1,2t,2t+1\}$ and $y_1 \notin U(z)$. This is a contradiction.

Next if $z \in E_k^2$, say z = (2s+1, 2t+1) for some $s,t \in \mathbb{Z}$, then $U(z) = \{(2s+1, 2t+1)\}$ and $y_1 \notin U(z)$. This is also a contradiction.

Thus we have that $z \in E_F$ and hence $E_F \neq \emptyset$ for case 2.

Case 3: $y \in E_F$. Then $E_F \neq \phi$.

We shown that $E_F \neq \phi$ for all cases.

(ii): Suppose that $E \neq \phi$. By (i) we have that $E_F \neq \phi$. It follows from assumption and definition that $E_F \subseteq (B_{mix} \cup B_k^2)_F = \phi$. We have a contradiction.

Theorem 7.4: Let A be a subset in $(\mathbb{Z}^2, \mathbb{R}^2)$.

- (i) If $(Z^2)_F \subseteq A$ holds, then A is *g\alpha-closed.
- (ii) If $(Z^2)_F \subseteq A$ holds and there exists a point $x \in A_k^2$ such that $cl\{x\} \subseteq A$, then A is ${}^*g\alpha$ -closed set which is not α -closed.

Proof:

- (i) Using theorem 7.2, we have $G\alpha o$ -ker (A) = $U(A_F) = Z^2$. Then, A is *g\alpha-closed set by theorem 3.21.
- (ii) By(i), A is *ga-closed set. Since $\{x\} \subseteq A_k^2 \subseteq A$ and Int(cl($\{x\}$)) = $\{x\}$, we have that cl($\{x\}$) \subseteq cl(Int(cl(A))) and so cl($\{x\}$) \subseteq acl(A). Suppose that A is α -closed. Then, we have that cl($\{x\}$) \subseteq A. This is a contradiction.

Example 7.5: The converse of the theorem 7.3(i) is not true in general. A set $A=\{x, y, z\}$ where x=(3, 3), y=(3, 2) and z=(4, 2) is not $g\alpha$ -closed but $A_F \neq \emptyset$.

REFERENCES

- [1] S.P. Arya and T. Nour, Characterizations of s-normal spaces, Indian J. Pure. Appl. math., 21(8) (1990), 717-719.
- [2] K. Balachandran, P. Sundram and H. Maki, On generalized continuous maps in topological spaces, Mem. Fac. Sci. Kochi Univ. Ser A. Math, **12**(1991), 5-13.
- [3] N. Biswas, On charaterization of semi-continuous functions, Atti. Accad. Naz. Lincei. Rend. Cl. Sci. Fis. Mat. natur. **48**(8) (1970), 399-402.
- [4] R. Devi, K. Balachandran and H. Maki, Generalized α -closed maps and α -generalized closed maps, Indian J. Pure. Appl. Math, **29**(1) (1998), 37-49.
- [5] R. Devi, K. Bhuvaneshwari and H. Maki, Weak form on gp-closed sets, where $\rho \in \{\alpha, \alpha^*, \alpha^{**}\}$ and the digital plane, Mem. Fac. Sci. Kochi Univ. (Math.), Vol.25 (2004), 37-54.
- [6] R. Devi, H. Maki and K. Balachandran, Semi-generalized closed maps and generalized semi-closed maps, Mem. Fac. Sci. Kochi Univ. Ser. A, Math **14**(1993),41-54.
- [7] R.Devi, H.Maki and K.Balachandran, Semi-generalized homeomorphisms and generalized semi-homeomorphisms in topological spaces, Indian J.Pure. Appl.Math, **26**(3) (1995), 271-284.
- [8] R. Devi and K. Mohaneshwari, On μs-closed sets and digital plane, Bulletin of pure and Applied Sciences, Vol. 25E(No.2) 2006: P.1-7.

- [9] J. Dontchev, On generalizing semi-preopen sets, Mem. Fac. Sci. Kochi. Univ. Ser A. Math. 16(1995), 35-48.
- [10] Y.Ganambal, On generalized preregular closed sets in topological spaces, Indian J. Pure Appl. Math, **28**(3)(1997),351-360.
- [11] E.D. Khalimsky, R. Kopperman and P.R. Meyer, Computer graphics and connected topologies in finite ordered sets, Topology Appl.. **36**(1990), 1-17.
- [12] T.Y. Kong, R. Kopperman and P.R. Meyer, A topological approach to digital topology, Amer. Math. Monthly, **98**(1991), 901-907.
- [13] N.Levine. Generalized closed sets in topology, Rend. Circ. Math. Palermo, 19(2) (1970), 89-96.
- [14] N.Levine, Semi-open sets and semi-continuity in topological spaces, Amer.Math. Monthly, 70(1963), 36-41.
- [15] A.S. Mahhour, I.A. Hasanein and S.N. El-Deeb, α -continuous and α -open mappings, Acta Math. hung, **41**(3-4) (1983), 213-218.
- [16] H. Maki, R. Devi and K. Balachandran, Associated topologies of generalized α -closed sets and α -generalized closed sets, Mem. Fac. Sci. Kochi. Univ. Ser. A, Math, **15**(1994), 51-63.
- [17] H. Maki, R. Devi and K. Balachandran, Generalized α -closed sets in topology, Bull. Fukuoka Univ. Ed. Part III, 42(1993), 13-21.
- [18] H. Maki, J. Umehara and T. Noiri, Every topological space is pre-T1/2, Mem. Fac Sci. Kochi Univ. Ser. A, Math, **17**(1996), 33-42.
- [19] O.Njastad, On some classes of nearly open sets, Pacific J. Math, 15(1965),961-970.
- [20] P. Sundram, M. Sheik John, Weakly closed sets and weakly continuous maps in topological spaces, Proc.82nd Indian Sci. Cong., Calcutta, (1995)49.
- [21] M.K.R.S.Veerakumar, Between closed sets and g-closed sets, Mem. Fac. Sci. Kochi. Univ.Ser. A, Math., **21**(2000), 1-19.
- [22] M.K.R.S. Veerakumar, Between g* closed sets and g-closed sets, Antartica J. Math., 3(1)(2006), 43-65.

Source of support: Nil, Conflict of interest: None Declared