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ABSTRACT

We introduce the concept of *ga-closed sets in a topological space and characterize it using its Goo-kernel. Moreover
we investigate new seperation axioms and new functions in topological spaces. For the digital plane, we have explicite
forms of Gao-kernel and a-kernel of a subset in the plane.
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1. INTRODUCTION

Levine [14] and Njastad [19] introduced semi-open sets and a-Sets respectively. The complement of a semi-open (resp.
a-open) set is called a semi-closed [3] (resp.a-closed [19]) set. Levine [13] introduced g-closed sets and studied their
most fundamental properties. S.P. Arya and T. Nour [1], H. Maki et.al. [16, 17] introduced gs-closed sets, ag-closed
sets and go-closed sets respectively. Dontchev [9] and Gnanambal [10] introduced gsp-closed sets and gpr-closed sets
respectively.

In this paper, we introduce a new class of sets, namely “go-closed sets by generalizing ga-open sets. This new class is
properly placed between the class of closed sets and the class of g-closed sets. Applying “ga-closed sets, we introduce
and study some new spaces, namely Ty, spaces, T, spaces, ,T.  spaces and ~ Ty spaces. In the fifth chapter we
introduce and study “ga-continuous, “go-irresolute maps and its group structure., In the sixth chapter we investigate
“gac- homeomorphism and its properties. In the seventh chapter, we investigate the explicite form in the digital plane of
Gao-kernel and a-kernel which are used for charaterization of “ga-closed sets and go-closed sets, respectively. The
digital plane is a mathematical model of the computer screen (cf.[5],[11],[12]).

2. PRELIMINARIES

Throughout this paper (X, 1), (Y,o) and (Z,n) represent topological space on which no separation axioms are assumed
unless otherwise mentioned. For a subset A of a space (X,1), cl(A), int(A) and C(A) denote the closure of A, the interior
of A and the complement of A in X respectively.

Let us recall the following definitions, which are useful in the sequel.

Definition 2.1: A subset A of a space (X, 1) is called
1. asemi-open set [14] if A < cl(int(A)) and a semi-closed set if int(cl(A)) < A,

2. an a-open set[19] if A  int(cl(int((A))) and an a-closed set if cl(int(cl(A))) < A and

Definition 2.2: A subset A of a space (X, 7) is called

1. a generalized closed (briefly g-closed) set [13] if cl(A) < U whenever A < U and U is opan in (X, 7). The
complement of a g- closed set is called a g-open set,

2. a generalized semi-closed (briefly gs-closed) set [1] if scl(A) < U whenever A — U and U is open in (X, 1),

3. an a-generalized closed (briefly ag-closed) set [16] if acl(A) < U whenever A U and U is open in (X, t). The

complement of an ag-closed set is called an ag-open set,
. a generalized a-closed ( briefly ga-closed ) set [17] if acl(A) < U whenever A — U and U is a-open in (X, 1),

. a generalized preclosed (briefly gp-closed ) set [18] if pcl(A) —U whenever A < U and U is open in (X, 1),

. a generalized semi-preclosed ( briefly gsp-closed ) set [9] if spcl(A) < U whenever A < Uand U is open in (X, 1),
. a generalized preregular closed ( briefly gpr-closed ) set [10] if pcl(A) < U whenever A — U and is regular open in
(X, 1),
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Definition 2.3: A function f: (X, 1) =(Y,0) is called

semi-continuous [14] if £1(V) is semi-open in (X, t) for every closed set V of (Y,5),
a-continuous [15] if £1(V) is a-closed in (X, t) for every closed set V of (Y,0),
g-continuous [2] if £1(V) is g-closed in (X, 1) for every closed set V of (Y,5),
gs-continuous [7] if f(V) is gs-closed in (X, t) for every closed set V of (Y,5),
ag-continuous [4] if £1(V) is ag-closed in (X, 1) for every closed set V of (Y,0),
ga-continuous [17] if f(V) is ga-closed in (X, 1) for every closed set V of (Y,5),
gsp-continuous [9] if £1(V) is gsp-closed in (X, 1) for every closed set V of (Y,5),
gpr-continuous [10] if £1(V) is gpr-closed in (X, 1) for every closed set V of (Y,o),
ge-irresolute [2] if F(V) is g-closed in (X, 1) for every g-closed set V of (Y,o),
gs-irresolute [7] if £1(V) is gs-closed in (X, 1) for every gs-closed set V of (Y,o),

ag -irresolute [4] if f(V) is ag -closed in (X, 1) for every ag -closed set V of (Y,s) and
ga-irresolute [17] if £1(V) is ga -closed in (X, 1) for every g -closed set V of (Y,o).
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Definition 2.4: A space (X, 1) is called

a Ty, space [13] if every g-closed set is closed,

a T, space [6] if every gs-closed set is closed,

a Ty space [6] if every gs-closed set is g-closed,
an ,Tpspace [4] if every ag-closed set is closed,
an ,Tqspace [4] if every ag-closed set is g-closed.

agrwbdE

Notation 2.5: For a space (X, 1), C(X, 1) (resp.SC(X, 1), aC(X, 1), GaC(X, 1),GC(X, 1),GSC(X, 1), aGC(X, 1)) denote
the class of all closed (resp.semi-closed, a-closed, ga-closed, g-closed, gs-closed, ag-closed) subsets of (X, 1).

3. BASIC PROPERTIES OF *ga-CLOSED SETS

We introduce the following definition.

Definition 3.1: A subset A of (X, 1) is called a “go-closed set if cl(A) < U whenever A U and U is ga-open in (X, 1).
The class of “ga-closed subsets of (X, 1) is denoted by "GaC(X, 1).

Theorem 3.2: Every closed set is a “ga -closed set.

Proof: Let AcU, where U is ga-open set in X. Since A is closed, cl(A) = AcU. Therefore cl(A) cU.
Hence A is “go-closed.

Following example shows that the above implication is not reversible.

Example 3.3: Let X = {a, b, ¢} and t = {X, ¢, {a, b}}. "GaC(X, 1) = {X, ¢, {c}, {b, ¢}, {a, c}}.
Here{b, c}is a “ga-closed set of (X, 7) but it is not a closed set of (X, 1).

Theorem 3.4: Every *ga -closed set is g-closed set.

Proof: Let ACU, where U is an open set in X. Since every open set is ga-open, U is ga-open .Since A is “ga-closed,
cl(A) cU. Hence A is g-closed.

Following example shows that the above implication is not reversible.

Example 3.5: Let X ={a, b, c} and 1= {X, ¢, {a}, {b, c}}. GC(X, 1) = {X, ¢, {a}, {b}, {c}, {a, b}, {b, c}, {a, c}}.
"GaC(X, 1) = {X, ¢, {a}, {b, c}}.

Here {b} is a g-closed set of (X, 7) it is not a “ga-closed set of (X, ).
Theorem 3.6: Every “go-closed set is go-closed set.

Proof: Let AcU, where U is an a-open set in X. Since every a-open set is go-open, U is ga-open. Since A is “go-
closed, cl(A) cU. But acl(A) c cl(A) cU. Therefore A is ga-closed.
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Following example shows that the above implication is not reversible.

Example 3.7: Let X and 1 be as in the example 3.5. Let A = {a, c}. A is a go-closed set of (X, 7). But A is not a "ga-
closed set of (X, 1).

Theorem 3.8: Every “go-closed set is gp-closed set.

Proof: Let ACU, where U is an open set in X. Since every open set is ga-open, U is ga-open. Since A is “ga-closed,
cl(A) cU. But pcl(A) < cl(A) cU. Therefore A is gp-closed set.

Following example shows that the above implication is not reversible.

Example 3.9: Let X and 7 be as in the example 3.5. Let B= {a, b}. B is a gp-closed set of (X, 7). But B is not a "go-
closed set of (X, 1).

Thus the class of “ga-closed sets are contained in the class of g-closed sets, go-closed sets, ag-closed sets, gs-closed
sets, gsp-closed sets, gpr-closed sets and gp-closed sets. The class of "ga-closed sets contains the class of closed sets.

Remark 3.10: “ga-closedness is independent of semi-closedness and a-closedness.
Proof: It can be seen by the following example.

Example 3.11: Let X = {a, b, ¢} and 1= {X, ¢, {a}}. SC(X, 1) = {X, ¢, {b}, {c}, {b, c}} = aC(X, 1)
"GaC(X, 1) = {X, ¢, {b, c}}.

Here {b} is semi-closed set and a-closed set of (X, ). But it is not a “ga-closed set of (X, ).

Example 3.12: Let X and 1 be as in the example 3.3. Here {b, c} is not a semi-closed and o-closed set of (X, 1). But it
isa ga-closed set of (X, 1).

Theorem 3.13: The intersection of two ga-closed sets is again in go-closed set.

Proof: Let A and B are go-closed sets. Let AnB C U, U is a-open. Since A and B are ga-closed sets, acl(A) — U and
acl(B) < U. This implies that acl(ANB) = acl(A) N acl(B) < U = acl(AnB) < U. Therefore AnB is ga-closed.

Theorem 3.14: Let A be an open set and B be an ga-open set, then AUB is ga-open set.

Proof: Suppose that A is an open set and B is an ga-open set. Since every open set is ga-open set, A is go-open set.
Then AUB is ga-open set, since union of two go-open set is again go-open Set.

Theorem 3.15:
1. Let Abe a ga-closed set of (X, 1) if and only if cl(A)-A does not contain any non empty go-closed set.

2. 1f Aisa “go-closed and Ac B —cl(A), then B is “ga-closed.

Proof:
1. Necessity part- Suppose that A is “ga-closed and let F be a non empty go-closed set with F = cl(A)-A. Then Ac X-

F and so cl(A) < X-F. Hence F < X-cl(A), a contradiction.

Sufficient part - Suppose A is a subset of (X, 1) such that cl(A)-A does not contain any non-empty ga-closed set. Let
U be a ga-open set of (X,t) such that A U. If cl(A)c U, then cl(A) NC(U) #¢.Then ¢ # cl(A)NC(U) is a ga-closed set

of (X, 1), since the intersection of two ga-closed sets is again ga-closed set.

2. Let U be a gaopen set of (X, 1) such that B U. Then AcU. Since A is “go-closed, cl(A) —U. Now
cl(B) cl(cl(A))=cl(A) = U. Therefore B is also a “ga-closed set of (X, 1).

Theorem 3.16: Let X be a topological space. A subset A of (X, 1) is “ga-open if and only if UclInt(A), whenever U is
go-closed set and Uc A.

Proof: Let A be a "go-open set and U is ga-closed set such that Uz A implies X-U o X-A and X-A is “ga-closed set.
So cl(X-A) < X-U implies (X- cl(X-A)) o (X-(X-U)) = U. But (X- cl(X-A)) = Int(A). Thus UcInt(A).
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Conversely, suppose A is subset such that UcInt(A). Whenever U is ga-closed and U< A. We show that X-A is “go-
closed set. Let X-A < U, where U is ga-open. Since X-A < U implies X-U < A. By assumption that we must have X-U
cInt(A) or X-Int(A) < U. Now X-Int(A) = cl(X-A) which implies that cI(X-A) U and X-A is “ga-closed set.

Theorem 3.17: The union of two “go-closed sets is a “ga-closed set.

Proof: Let A and B are “go-closed sets. Let AUB — U, Uis go-open. Since A and B are “go-closed sets, cl(A) c U
and cl(B) < U. This implies that cl(AUB) = cl(A) U cl(B) U = cl(AUB) < U. Therefore AUB is “ga-closed.

Remark 3.18: The intersection of two “ga-closed sets is again in “ga-closed set.
(i) The intersection of two *ga-closed sets is again in *ga-closed set.

(i1) The intersection of an open and a *ga-open sets is a *go-open set.

(iii) The union of an open and a *go-open sets is a *ga-open set.

We prepare the following notations:

For a subset A of (X, 1),

GaO(X, 1) = {U/U is ga-open in (X, 1)};

ker(A) = n{U/Uet and A c U},

a-ker(A) = n{U/U is a-open set and A c U},
GaO-ker(A) = n{U/Ue GaO(X, 1) and A < U}.
Kgae = {XeX [ {x} is ga-closed in (X, 1)} and
Xego = {xeX /{x} is "ga-open in (X, 1)}.

Theorem 3.19: Any subset A is ga-closed set if and only if acl(A) = a-ker(A) holds.
Proof: Necessary: We know that A  a-ker(A). Since A is ga-closed, then acl(A)  a-ker(A).

Sufficiency: Let A < U and U is a-open. Given that acl(A) < a-ker(A). If U < acl(A), then a-ker(A) < U < acl(A),
which is a contradiction to the hypothesis. Therefore acl(A) < U. Hence A is ga-closed.

Lemma 3.20: For any space (X, 1), X = Xgac'\J Xsgqo holds.

Proof: Let xeX. Suppose that {x} is not "go-closed set in (X, 7). Then X is a unique ga-open set containing X/{x}.
Thus X/{x} is "go-closed in (X, 1) and so {x} is "ga-open. Therefore Xe Xgue U Xego.

Theorem 3.21: For a subset A of (X, 1), the following conditions are equivalent:
1. Alis go-closed in (X, 1).

2. cl(A) < GaO-ker(A) holds.

3. (i) cl(A) N Xgue Aand (ii) cl(A) N Xego = GaO-ker(A) holds.

Proof:
(1)=(2): Let xg GaO-ker(A). Then there exists a set Ue GaO(X, 1) such that xgU and A c U.

Since A is “ga-closed, cl(A) < U and xecl(A). This is a contradiction.
(2=0):

(i): 1t follows from (2) that cl(A) N Xgc € GaO-ker(A) N Xgo. We claim that GaO-ker(A) N Xg < A.Suppose X €
GaO-ker(A) N Xq and assume that xgA.Since the set X/{x}e GaO(X, t) and A < X/{x}. Then we have that x €
XHx} and so this is a contradiction. Thus we show that cl(A) N Xg.. < A. by using (2) cl(A) N Xgoe = GoO-ker(A)
N Kgae © A

(ii): It is obtained by (2).
(3) =(2): By Remark 3.8 and (3),
cl(A) = cl(A) N X =cl(A) N (Kgoe 'V Xegao)
= (cl(A) N Xgue) U (CI(A) N Kigo)
< A U GaO-ker(A)
= GaO-ker(A).
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That is cl(A) € GaO-ker(A) holds.

(2) = (1): Let Ue GaO(X, 1) such that A < U. Then we have that GaO-ker(A) < U and so by (2) cl(A) < U. Therefore
Ais “ga-closed.

Remark 3.22:  The following diagram shows the relationships established between “go-closed sets and some other
sets in theorem 3.2, 3.4, 3.6, 3.8, remark3.10 and reference [22], [21]. A—B (A <—|—> B) represents A implies B but not
conversely(A and B are independent each other).

gp-closed
L 3
clozed g-clozed
“ro-cloz=d p 0g-clozed

v
u-cln}ssd...-————'k_—-___:.l --'_"L* go-closed //,
L J

semi-clozed ge-clozed

L )

L )
gap-clozed

gpt-closed 4—

4. APPLICATIONS OF *ga-CLOSED SETS

We introduce the following definition.

Definition 4.1: A space (X, 1) is called an , Ty, space if every “ga-closed set is closed.

The following theorem gives a characterization of T spaces.

Theorem 4.2: If (X, 1) is an 4Ty, space, then every singleton of X is either ga-closed or open.

Proof: Let x € X and suppose that {x} is not a ga-closed set of (X, 7). Then X/{x} is not ga-open. This implies that X
is the only go-open set containing X/{x}, so X/{x} is a "ga-closed set of (X, t).Since (X, 1) isan ,T1,  space, X/{x} is
closed or equivalently {x} is open in (X, 7).

Theorem 4.3: Every Ty, space isan , Ty, space.

Proof: Let A be a "go-closed set of (X, ). Since every "go-closed set is g-closed, A is g-closed. Since (X, 1) is a Ty,
space, A is closed. Therefore (X, t) is an 4Ty, space.

The space in the following example is an T space but not a Ty, space.

Example 4.4: Let X={a, b, c}with t ={X, ¢,{a},{a, b}}.
"GaC(X, 1)={X, ¢.{c}, {b, c}}
GC(X, 1) = {X, ¢.{c}, {b, c}, {a c}}.

Here (X, 1) is an , Ty, Space but not a Ty, space. Since {a, c} is a g-closed set but not a closed set.

Theorem 4.5: Every T, space isan Ty, space.
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Proof: Let A be a “ga-closed set of (X, ). Since every "go-closed set is gs-closed, A is gs-closed. Since (X, t)isa T
space, A is closed. Therefore (X, 1) is an 4Ty, space.

The space in the following example is an T space but not a Ty, space.

Example 4.6: Let X={a, b, ¢} with t={X, ¢,{b}, {b, c}}. ‘GaC(X, 1) ={X, ¢.{a}, {a, c}}
GSC(X, 1= {X, ¢.{a}, {c}, {a b}, {a c}}.

Here (X, 1) isan ,Ty;  space but not a T, space. Since {a, b} is a gs-closed set but not a closed set.
Theorem 4.7: Every ,T, space isan Ty, space.

Proof: Let A be a “ga-closed set of (X, 7). Since every go-closed set is ag-closed, A is ag-closed. Since (X, 1) is an
«Tp Space, A is closed. Therefore (X, t) isan 4Ty, Space.

The space in the following example is an T space but not an T}, space.

Example 4.8: Let X and 1 be as in example 4.6. Here (X, 1) is an uTI/Z** space but not an ,T,, space. Since {c}is an ag-
closed set but not a closed set.

Definition 4.9: A space (X, 1) is called a T, if every gs-closed set is “ga-closed.

The following theorem gives a characterization of T, spaces.

Theorem 4.10: If (X, 1) isa T, space, then every singleton of X is either closed or “ga-open.

Proof: Let x € X and suppose that {x} is not a closed set of (X, 1). Then X/{x} is not open. This implies X is the only
open set containing X/{x}. So X/{x} is a gs-closed set of (X, 7). Since (X, 1) isa T, space, X/{x} is a "ga-closed set
or equivalently {x} is “go-open in (X, 7).

The converse of the above theorem is not true as can be seen by the following example.

Example 4.11: Let X = {a, b, ¢} with t = {X, ¢,{a},{b}.{a, b}}.
“ga-open sets of (X, 1) are X, ¢,{a}.{b}.{a, b}.

GSC(X, 1) ={X, ¢.{a}{b}{c}.{b, c}.{a c}}.

GaC(X, 1) = {X, ¢,{c}.{b, c}.{a, c}}.

Here {a} and {b} are "go-open sets and {c} is a closed set but (X, 1) isnota T, space. Since {b} is a gs-closed set but
nota go-closed set of (X, 1).

Theorem 4.12: Every T, space isa T, space.

Proof: Let A be a gs-closed set of (X, 7). Since (X, t) is a Ty, space, A is closed. Since every closed set is “ga-closed, A
is “ga-closed set. Therefore (X, 1)isa T, space.

The space in the following example isa T, space but not a T,, space.

Example 4.13: Let X and 7 be as in example 3.3. Here (X, 1) is a T, space but not a T, space. Since {a, c} is a gs-
closed set but not a closed set.

Theorem 4.14: Every T, space is a T space.

Proof: Let A be a gs-closed set of (X, 1). Since (X, t)isa T, space, A is ga- closed. Since every “go -closed set is
g-closed, A is g-closed set. Therefore (X, t)isa T4 Space.

The space in the following example is a T, space but nota T, space.

Example 4.15: Let X and 7 be as in example 3.5. Here (X, 1) is a T4 space but nota T, space. Since {b} is a gs-closed
set but not "ga-closed set.

Theorem 4.16: Every T, space is an ,Tq space.
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Proof: Let A be a ag -closed set of (X, 1). Since every ag -closed set is gs-closed, A is gs-closed. Since (X, t)isa T,
space, A is ga- closed. Since every go -closed set is g-closed, A is g-closed set. Therefore (X, 1) is an , T4 Space.

The space in the following example is an ,T4 space but nota T, space.

Example 4.17: Let X and 7 be as in example 3.5. Here (X, 1) is an ,T4Space but nota T, space. Since {a, c} is a gs-
closed set but not “go-closed set.

Theorem 4.18: The space (X, 1) is a Ty space if and only if itisa T, space and an , Ty, space.
Proof: Necessity part: By theorem 4.12 and 4.5.

Sufficient part: Let A be a gs-closed sets of (X, 7). Since (X, t)isa T, space, A is ga-closed set. Since (X, 1) is an
T2 space, A is closed. Therefore (X, 1) is an T, space.

Remark 4.19: T, “spaceand Ty, space are independent of each other.
It can be seen by the following examples.

Example 4.20: Let X and t be as in example 3.5. Here (X, t)isan ,T1;, Space but not a T, space. Since {b}is gs-
closed set but not “go-closed set.

Example 4.21: Let X and 1 be as in example 3.3. Here (X, t)isa T, space but notan Ty, space. Since {b, c}is ga
-closed set but not closed set.

Definition 4.22: A space (X, 1) is called an ,T. space if every ag-closed set is “ga-closed.
Theorem 4.23: Every T, space isan , T space.

Proof: Let A be a ag-closed set of (X, 7). Since every ag-closed set is gs-closed, A is gs-closed. Since (X, 1) is a Ty
space, A is closed. Since every closed set is ga-closed, A is ga-closed set. Therefore (X, t)isa (T Space.

The space in the following example isan , T, space but not a T, space.

Example 4.24: Let X and t be as in example 3.3. Here (X, 1) is an , T, space but not a T, space. Since {b, ¢} is a gs-
closed set but not closed set.

Theorem 4.25: Every , T, space isan , T space.

Proof: Let A be a ag-closed set of (X, ). Since (X, 1) is a ,T;, space, A is closed. Since every closed set is “ga-closed,
A'is ga-closed set. Therefore (X, t) isan ,T. space.

The space in the following example is an , T space but not an , T, space.

Example 4.26: Let X and 1 be as in example 3.3. Here (X, 1) is an uTC**space but not an , Ty, space. Since {a, ¢} isa ag-
closed set but not closed set.

Theorem 4.27: Every ,T. space is an , T4 space.

Proof: Let A be a ag-closed set of (X, 7). Since (X, 1) is a , T space, A is “go -closed. Since every “ga -closed set is
g-closed, A is g-closed set. Therefore (X, 1) is an ,Tq4 Space.

The space in the following example is an ,TqSpace but notan T, space.

Example 4.28: Let X and t be as in example 3.5. Here (X, 1) is an ,Tqspace but not an T, space. Since {c} is a og-
closed set but not “go-closed set.

Theorem 4.29: Every T, space is an ,T.  space.

Proof: Let A be a ag-closed set of (X, 7). Since every ag-closed set is gs-closed, A is gs-closed. Since (X, t)isa T,
space, A is ga-closed. Therefore (X, t)isan ,T. space.
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The space in the following example isan ,T. space but nota T, space.

Example 4.30: Let X and t be as in example 4.11. Here (X, 1) isan ,T. space butnota T, space. Since{a} is a gs-
closed set but not "ga-closed set.

Theorem 4.31: The space (X, 1) is an 4T, space if and only if itisa , T space and an Ty, Space.
Proof: Necessity part: By theorem 4.25 and 4.7.

Sufficient part: Let A be a ag-closed set of (X, 7). Since (X, 1) is an , T, space, A is “go-closed. Since (X, 1) is an
T2, Ais closed set. Therefore (X, 1) isan ,Tp, Space.

Remark 4.32: ,T, spaceand Ty, space are independent of each other.
It can be seen by the following examples.

Example 4.33: Let X and 7 be as in example 3.5. Here (X, 1) is an uTl/Z** space but not an uTC** space. Since {b}is ag-
closed set but not “go-closed set.

Example 4.34: Let X and t be as in example 3.3 Here (X, 1) is an , T, space. But not an , Ty, space. Since {b, c}is
ga -closed set but not closed set.

Definition 4.35: A space (X, 1) is called a ~,T1;, space if every g-closed set is “ga-closed set.
Theorem 4.36: Every Ty,space isa Ty Space.

Proof: Let A be a g-closed set of (X, 7). Since (X, 7) is a Ty, space, A is closed. Since every closed set is “go-closed, A
is “ga-closed. Therefore (X, 1) isan 4Ty, Space.

The space in the following example is a i P space but not a Ty, Space.

Example 4.37: Let X and t be as in example 3.3. Here (X, 1) is a 4 T1; Space but not a Ty, space. Since {b, ¢} is a g-
closed set but not closed set.

Theorem 4.38: Every Tyspace isa 4T/ Space.

Proof: Let A be a g-closed set of (X, ). Since every g-closed set is gs-closed, A is gs-closed set. Since (X, 1) is an Ty
space, A is closed. Since every closed set is ga-closed, A is ga-closed. Therefore (X, t)isan Ty, Space.

The space in the following example is a ** T space but not a Ty, space.

Example 4.39: Let X and t be as in example 3.3. Here (X, 1) is a ~4T1/ Space but not a T, space. Since a, ¢} is a gs-
closed set but not closed set.

Theorem 4.40: Every ,T,space isa 4T 1/ SPace.

Proof: Let A be a g-closed set of (X, 7). Since every g-closed set is ag-closed, A is ag-closed set. Since (X, 1) is an
«Tp Space, A is closed. Since every closed set is ga-closed, A is ga-closed. Therefore (X, t)isan ,Ti, Space.

The space in the following example is a i P space but not an T} space.

Example 4.41: Let X and 7 be as in example 3.3.Here (X, 1) is a T2 Space but not an T, space. Since {a, c} is a ag-
closed set but not closed set.

Theorem 4.42: Every T, space isa Ty, space.

Proof: Let A be a g-closed set of (X, 1). Since every g-closed set is gs-closed, A is gs-closed set. Since (X, 1) isa T¢
space, A is “ga-closed. Therefore (X, 1) is an Ty, space.

The space in the following example isa ™, T1/, space but not a T, space.

Example 4.43: Let X and t be as in example 4.11. Here (X, 1) is an 4Ty, Space but not a T, space. Since {a} is a gs-
closed set but not a “go-closed set.
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Theorem 4.44: The space (X, 1) is a Ty space if and only if itisa Ty, space and an Ty, space.
Proof: Necessity part: By theorem 4.36 and 4.3.

Sufficient part: Let A be a g-closed set of (X, 1). Since (X, 1) is a 4Ty Space, A is ‘ga-closed. Since (X, 1) is an
T2 space, A is closed. Therefore (X, 1) is an Ty, Space.

Remark 4.45: ~,Ty,spaceand ,Ty," space are independent of each other.
It can be seen by the following examples.

Example 4.46: Let X and t be as in example 3.5. Here (X, 7) is an Ty, space but not an ", Ty, space. Since {b} is g-
closed set but not “go-closed set.

Example 4.47: Let X and 1 be as in example 3.3. Here (X, 7) is an 4Ty, Space but not an .1, space. Since {b, c} is
ga -closed set but not closed set.

Remark 4.48: The following diagram shows them relationship among the separation axioms considered in this paper

and reference [18], [19]. A > B (A<p B) represents A implies B but B need not imply A always (A and B are
independent of each other).

[ T:

T
5. "ga — CONTINUITY AND “ga - IRRESOLUTNESS:
We introduce the following definition

Definition 5.1: A function f: (X, ©) =(Y,o) is called "go. — continuous if f'(V) is a "ga — closed set of (X, 1) for every
closed set V of (Y, o).

Theorem 5.2: Every continuous map is “ga — continuous.

Proof: Let V be a closed set of (Y,c). Since f is continuous (V) is closed in (X, 1). But every closed set is "ga-
closed set. Hence f*(V) is “ga-closed set in (X, t). Thus fis "go — continuous.

The converse of the above theorem need not be true by the following example.
Example 5.3: Let X= {a, b, c} =Y with =={X, ¢, {a, b}} and o={Y, ¢, {a}}.

Define f: (X, 1) =(Y, o) by f(a)=b, f(b)=a, f(c)=c.
"Ga. C(X, 1) ={X, ¢, {c}, {b, ¢}, {a, c}}.
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Here f*({b, c}) = {a, c} is not a closed set in (X, ). Therefore f is not continuous. However fis “ga — continuous.
Theorem 5.4: Every “go. — continuous map is g—continuous.

Proof: Let V be a closed set of (Y,o).Since f is “ga — continuous, (V) is “go —closed in (X, ). But every “go —closed
set is g-closed set. Hence f*(V) is g-closed set in (X, ). Thus f is g — continuous.

The converse of the above theorem need not be true by the following example.

Example 5.5: Let X= {a, b, c} =Y with =={X, ¢, {a}.{a, c}} and o={Y, ¢, {a}.{a, b}}.
Define f: (X, 1) =(Y,0) by f(a)=b, f(b)=c, f(c)=a.

"Ga C(X, 1) ={X, ¢, {b}.{b, c}}.

GC(X, 1) ={X,¢, {b}, {a, b}.{b, c}}.

Here f*({b, c}) = {a, b} is not a "ga -closed set in (X, 1). Therefore f is not “go -continuous. However f is
g- continuous.

Theorem 5.6: Every “go. — continuous map is ga-continuous.

Proof: Let V be a closed set of (Y,o). Since f is “go. — continuous £1(V) is “go. —closed in (X, ). But every “go —closed
set is go-closed set in (X, 7). Hence f(V) is go-closed set in (X, t). Thus f is go-continuous.

The converse of the above theorem need not be true by the following example.

Example 5.7: Let X={a, b, c} =Y with t={ X, ¢, {a},{b, c}} and o={Y, ¢, {a}.{a, c}}.
Define f: (X, 1) =(Y,0) by f (a) =b, f (b) =c, f(c) =a.

"Ga C(X, 1) ={X, ¢, {a}.{b, c}}.

GaC(X, 1) ={X,¢, {a}.{b}, {c}, {a b}.{b, c} {a, c}}.

Here f*({b, c}) = {a, b} is not a "go -closed set in (X, t). Therefore f is not “go. -continuous. However f is ga-
continuous.

Remark 5.8: Every “ga — continuous map is ag-continuous, gs-continuous, gsp-continuous and gpr-continuous.
Theorem 5.9: Every “go. — continuous map is gp-continuous.

Proof: Let V be a closed set of (Y, o). Since f is "go. — continuous f*(V) is “ga —closed in (X, 7). But every “ga —closed
set is gp-closed set in (X, ). Hence f*(V) is gp-closed set in (X, ). Thus f is gp-continuous.

The converse of the above theorem need not be true by the following example.

Example 5.10: Let (X, 7) and (Y,o) be as in example 5.7. Here f1({b, c}) = {a, b} is not a “ga -closed set in (X, 1).
Therefore f is not ga -continuous. However f is gp-continuous.

Remark 5.11: “ga —continuity is independent of semi-continuity and a-continuity.
The proof follows from the following example.

Example 5.12: Let X={a, b, c} =Y with t={X, ¢, {a}} and o={Y, ¢, {a}.{a, b}}.
Define f: (X, 1) =(Y,0) by f (a) =3, f (b) =b, f(c) =c.

"Ga C(X, 1) ={X, ¢, {b, c}}.

SC(X, 1) ={X.¢, {b}, {c}, {b, c}}= aC(X, 7)

Here f({b}) = {b} is not a “ga -closed set in (X, 7). Therefore f is not “ga -continuous. However f is semi-continuous
and a-continuous.

Example 5.13: Let X={a, b, c}=Y with t={ X, ¢, {a, b}} and o={Y, ¢, {b}.{b, c}}.
Define f: (X, 1) =(Y, o) by f(a)=c, f(b)=b, f(c)=a.
"GaC(X, 1) ={X,0, {c}.{b, c}.{a, c}}. SC(X, 1) ={X,d, {c}}= aC(X, 1)

Here f*({a, c}) = {a, c} is not a semi -closed set and a-closed set in (X, t). Therefore f is not semi-continuous and o-
continuous. However f is ga -continuous.
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Remark 5.14: The composition of two “go. —continuous map need not be a “ga —continuous.
The proof follows from the example.

Example 5.15: Let X={a, b, c}=Y =Z with ={ X, ¢, {a}.{a, b}} .o={Y, ¢, {a, b}} and n={ Z, ¢, {b}.{b, c}}
Define f: (X, 1) = (Y, o) by f(a)=a, f(b)=b, f(c)=c.

Define g: (Y, o) = (Z, n) by g(a)=c, g(b)=b, g(c)=a.

‘Ga C(X, 1)={X, ¢, {c}.{b, c}}.

"Ga C(Y, 6)={Y, ¢, {c}.{b, c}.{a, c}}.

Clearly f and g are “go. —continuous.

Here {a, c} is a closed set in (Z,n). But (gof)*({a, c}) = {a, c} is not a "ga —closed set in (X, 1).
Therefore gof is not *ga. -continuous.

We introduce the following definition.

Definition 5.16: A function f: (X, 1) — (Y, o) is called "ga —irresolute if (V) is a "go —closed set of (X, 1) for every
“ga —closed set of (Y, o).

Theorem 5.17: Every “ga —irresolute function is “ga -continuous.

Proof: Let V be a closed set of (Y,c). Since every closed set is “ga -closed set. Therefore V is “ga -closed set of
(Y,0). Since f is “go — irresolute f*(V) is “ga —closed in (X, ). Therefore fis “go. -continuous.

The converse of the above theorem need not be true by the following example.

Example 5.18: Let X={a, b, c}=Y with =={ X, ¢, {b},{b, c}} and o={Y, ¢, {a, b}}.
Define f: (X, 1) =(Y, o) by f(a)=c, f(b)=a, f(c)=b.

‘Ga C(X, 1) ={X, ¢, {a}.{b, c}}.

‘Ga C(Y, o) ={Y, ¢, {c}.{b, c}{b, c}}.

Here f is “ga —continuous but f is not “ga —irresolute. Since {a, c} is “ga —closed set in (Y, ) but f*({a, c})={a, b} is
not ga —closed set in (X, 1).

Theorem 5.19: Let f: (X, 1) = (Y, o) and g: (Y, o) =(Z, n) be any two functions. Then
(i) gof: (X, T) =(Z, n) is “ga —continuous if g is continuous and f is “ga. —continuous.

(ii) gof: (X, 1) — (Z, m) is “ga —irresolute if both g and f are “ga — irresolute.

(iii) gof: (X, T) = (Z, ) is "go —continuous if g is “go. —continuous and f is “ga — irresolute.

Proof:
(i) LetV bea closgd set in (Z, ). Since g is continuous; g(V) is closed in (Y, o). Since f is “ga —continuous, f*(g°
Y(V))= (gof) (V) is "ga —closed in (X, ). Therefore gof is “ga. —continuous.

Similarly we can prove (ii) and (iii).

Theorem 5.20: Let f: (X, 7)— (Y, c) bea “go —continuous(resp.gs-continuous, ag-continuous, g-continuous) map. If
(X,1)isan 4Ty, (resp. Te .oTc . oT12 ) Space, then fis continuous ( ga —continuous, go —continuous, go —
continuous).

Proof: Let V be a closed set of (Y, o).Since f is “ga —continuous (resp.gs-continuous, ag-continuous, g-continuous),
f1(V) is “ga —closed (resp.gs-closed, ag-closed, g-closed) in (X, 1). Since (X, 1) is an 4Ty, space( resp. T . oTe

oT12 space ), F(V) is closed (“go —closed) in (X, t). Therefore f is continuous (*ga —continuous, “ga. —continuous, “ga
—continuous).

Theorem 5.21: Let f: (X, 1) — (Y, o) be a surjective, ga-irresolute and a closed map. Then f(A) is “ga —closed set of
(Y, o) for every "ga —closed set A of (X, 1).

Proof: Let A be a “ga —closed set of (X, 7). Let U be a ga-open set of (Y, o) such that f(A)cU. Since f is surjective and
ga-irresolute, f*(U) is a ga-open set of (X, 1). Since Ac f1(U) and A is “ga —closed set of (X, 1),cl(A) < F1(U).
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Then f(cl(A))  f(f*(U)) = U. Since f is closed, f(cl(A))=cl(f(cl(A))). This implies cl(f(A)) < cl(f(cl(A)))= f(cl(A)) cU.
Therefore f(A) is a “ga —closed set of (Y, o).

Theorem 5.22: Let f: (X, 1) —(Y,0) be a surjective, “ga-irresolute and a closed map. If (X, 1) is an 4Ty, space, then
(Y,o)isalsoan ,Ty,  space.

Proof: Let A be a “ga —closed set of (Y,o). Since f is “ga-irresolute, f*(A) is a “ga-closed set of (X, ). Since (X, 1) is
an ,Ty,~ space, f*(A) is a closed set of (X, ). Then f(f*(A)) = A is closed in (Y, ). Thus A is a closed set of (Y,o).
Therefore (Y,o) isa Ty,  space.

Definition 5.23: A function f: (X, T) (Y, o) is called pre-"ga-closed if f(A) is a “ga-closed set of (Y, o) for every “ga-
closed set A of (X, 7).

Theorem 5.24: Let f: (X, 1) — (Y,0) be a surjective, gs-irresolute and a pre-"ga-closed map. If (X, ) is an T, space,
then (Y,o) isalsoan T, space.

Proof: Let A be a gs —closed set of (Y,o). Since f is gs-irresolute, f*(A) is a gs-closed set in (X, 7). Since (X, 1) is a
T.” space, f(A) is a “ga-closed set in (X, t). Since fis pre- ga-closed map, f(f*(A)) is “ga-closed in (Y, ) for every
“ga-closed set f1(A) of (X, 1). Since f is surjection, A=f (f*(A)). Thus A is a "go-closed set of (Y,s). Therefore (Y, o)
isaT, space.

Theorem 5.25 Let f: (X, 1) »(Y,o) be a surjective, ag-irresolute and a pre-"ga-closed map. If (X, 1) is an T, space,
then (Y, o) isalso an T, space.

Proof: Let A be a ag—closed set of (Y, o). Since f is ag -irresolute, f*(A) is a ag -closed set in (X, 7). Since (X, 1) is a
T. space, f(A) is a “ga-closed set in (X, 1). Since f is pre-"ga-closed map, f(f*(A)) is “ga-closed in (Y, o) for every
“ga-closed set f1(A) of (X, 7). Since f is surjection, A=f(f'(A)). Thus A is a “ga-closed set of (Y, o). Therefore (Y,o)
isa,T. space.

Theorem 5.26: Let f: (X, 1) - (Y,o) be a surjective, gc-irresolute and a pre-"ga-closed map. If (X, 1) is an ~ Ty, space,
then (Y, o) isalsoan ", Ty, space.

Proof: Let A be a g—closed set of (Y,o). Since f is gc-irresolute, f*(A) is a g -closed set in(X, 7). Since (X, t)isa ~oT1
space, F(A) is a “go-closed set in (X, 7). Since fis pre- ga-closed map, f(f*(A)) is “ga-closed in (Y, o) for every “go-
closed set f*(A) of (X, 7). Since fis surjection, A=f(f*(A)). Thus A is a "go-closed set of (Y, o). Therefore (Y, o) is a
Ty Space.

6."Generalized ac - homeomorphism and their group structure

Definition 6.1: A function f: (X, 1) —»(Y,0) is said to be "ga-open if the image f (U) is "ga-open in (Y, o) for every
open set U of (X, 1).

Definition 6.2: A function f: (X, 1) - (Y,o) is said to be “ga-closed if the image f (U) is “ga-closed in (Y,c) for every
closed set U of (X, 1).

Definition 6.3: A function f: (X, 1) -(Y,0) *is said to be “gac- homeomorphism (resp.”ga- homoeomorphism) if f is
bijective and f and f* are "ga-irresolute (resp. “ga-continuous).

Theorem 6.4:

(i) Suppose that f is bijection. Then the following conditions are equivalent:
(1) fis ga- homoeomorphism.

(2) fis “go-open and “ga-continuous.

(3) fis “ga-closed and “go-continuous.

(i) If fis a homeomorphism, then f and f* are “ga-irresolute.

(iii) Every “gac- homeomorphism is a “ga- homoeomorphism.

Proof:

(i) First we prove that f* is “ga-irresolute. Let A be a "go-closed set of (X, 7). To show (f')™(A) = f(A) is "ga-closed
in (Y, o). Let U be a ga-open set such that f(A) < U. Then A = (F(f(A)) < f'(U) is ga-open. Since A is “ga-closed,
cl(A) < £1(U).We have cl(f(A)) < f(cl(A)) < f(f*(U)) = U and so f(A) is “ga-closed. Thus ' is “ga-irresolute. Since f*
is also a homeomorphism (f*)™ = fis "go-irresolute.
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(iii) Let f is bijective. Since f is “goc- homeomorphism, f and f* are “ga-irresolute. Since every “go-irresolute map is
ga-continuous, then fand ' are “ga-continuous. Therefore f is “ga- homoeomorphism.

Definition 6.5: For a topological space (X, t) we define the following three collections of functions:
(i) “goch (X, 1) = {f/ £ (X, 1) = (X, 1) is a gac- homeomorphism}.

(i) “gah (X, 1) = {f/ £: (X, 1) = (X, 1) isa go- homeomorphism}.

@iii) h(X, 1) ={f f: (X, 1)~ (X, 1) isa homeomorphism}.

Corollary 6.6: For a space (X, 1) the following properties hold.

(i) h(X, 1)< gach (X, 7)< "goh (X, 7).

(if) The set gach (X, ) forms a group gnder composition of functions.

(iii) The group h (X, 1) is a subgroup of gach (X, 7).

(iv) Iff (X, 1) >(Y,0) isa gac- homeomorphism then it induces an isomorphism f.: “gach (X, ) = “goch(Y, o).

Proof:

(i) These implications are obtained by theorem 6.4(ii), (iii).

(i) By theorem 5.19.

(iii) By (i).

(iv) We define f.: "gach (X, 1) — “gach(Y, o) by f«(h) = fohof™. Then using 5.19 we have that f«(h)e “gach (X, 7). It is
shown that f« is the required group isomorphism.

Remark 6.7: The following example shown that the converse of the above theorem (iv) is not true.

Example 6.8: Let X = {a, b, c}= Y with with t = { X, ¢, {a},{b, c}} and o = {Y, ¢, {a, b}}.
Define f: (X, 1) —=(Y, o) by f(a)=c, f(b)=a, f(c)=b.

‘Ga C(X, 1)={X, ¢, {a}.{b, c}}.

‘Ga C(Y, o) ={Y, ¢, {c}{b, c}{a,c}}.

Also define three functions h, hy, he: (X, 1)=(X, 1) by
ha(2)=a, hy(b)=c, hs(c)=b
hb(a)zai hb(b)zbi hb(c)=C
hc(2)=b, h¢(b)=a, h.(c)=c

Then it is shown that “gach (X, 1) = {l5 hs}, *gach(Y,5) = {1, h.} and f “gach (X, 1) > “gach(Y,o) is an
isomorphism such that f«(h,) = hy. However f is not *gac- homeomorphism.

7. EXAMPLES IN THE DIGITAL PLANE

In the digital plane, we investigate explicite forms of GaO-kernel a-kerenl and of a subset. The digital line or the so
called Khalimsky line is the set of the integers Z, equipped with the topology k having {{2n+1,2n,2n -1}/neZ} as a
subbase. This is denoted by (Z, k). Thus, a subset U is open in (Z, k) if and only if whenever xeU is an even integer,
then x-1,x+1eU. Let (Z%k?) be the topological product of two digital lines (Z, k), where Z2 =ZxZ and k’=kxk. This
space is called the digital plane in the present paper(cf.[5],[11],[12]). We note that for each point xe Z? there exists the
smallest open set containing X, say U(x). For the case of x = (2n+1,2m+1), U(X)={2n+1}x {2m+1}; for the case of x =
(2n,2m), U(x) = {2n-1,2n,2n+1}x {2m-1,2m,2m+1}; for the case of x = (2n,2m+1), U(X) = {2n-1,2n,2n+1}x {2m+1};
for the case of x = (2n+1,2m), U(x) = {2n+1}x 2m-1,2m,2m+1}, where nmeZ. For a subset E of (Z%k?), we define
the following three subsets as follows: Er= {xeE/ x is closed in (Z%k?)}; E 2= {xeE/ x is open in (Z%k*)}; Emix=
E\( Er U Ey). Then it is shown that Er = {(2n, 2m)eE/ nm e Z},E2= {(2n+1, 2m+1)cE/ nme Z} and Ei={(2n,
2m+1) eE/nm e Z}u {(2n+1, 2m) eE/n,m € Z}.

Theorem 7.1: Let A and E be subsets of (2%, k?).

(i) IfE is non - empty a—closed set, then Eg = ¢[8].

(i) If E is a— closed and E < B i U B, holds for some subset B of ( z*, k? ) then E = ¢[8].
(iii) The set U (Ag) U A nix U A is a go-open set containing A.

Proof:

(iii): We claim that A ix U AZ isa ga-open set . Let F be any non —empty a— closed set such that F < A ix U AlZ.
Then by (ii) , F = ¢. Thus, we have that F < o - Int (A nix U A ) then A mix U AZ is ga. - open . But we know that U
(Af) is a open set. Then U (Ag) U Anix U A2 is ga-open by theorem 3.14. But A= A U A ix U A% Ac U(Ag ) U
A mix U AZ. This implies that ga-open set contains A.
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Theorem 7.2: Let A be a subset of (Z, k?). The Ga.o- kernel of A and the a-kernel of A are obtained precisely as
follows:
(i) Goo—ker (A) = U (Ap) U A mix U AZ, where U (Ag) = U { U(X) | x € Ag}.
(ii) a-ker (A) = U(A) , where U (A) = U { U (x) | x eA}[8].

Proof:
(i): Let Up = U (Ap) U A nixU AZ By Lemma 7.1 (iii), Gowo - ker (A) < Un.

To prove Ua < Gao-ker (A), it is claimed that («)if there exists a go-open set V such that A ¢ V < U then V = Ua.
Indeed, let x be any point of Ua. There are three cases for the point x.

Case (1): xe(Ua)e. we note that (Ua)e = (U(AR))e U (Anix U Ad)e = Ar.
Then we have that x eArc Ac V.

Case (2): X €(Ua) 2. We note that

(U = (U (AR U (Amidd U (AG)E = (U(AR) & U AL,

Firstly suppose that x € U(Ag) Then x eU(y) for some y eAg. Since yeAr < A< V and V is ga-open, we have {y} c
o-Int (V). Then U(y) < a-Int (V), because a-Int (V) is a-open. Thus we have that x € V.

Secondly, suppose x € A2, then we have x € V, because x eAZ c Ac V.

Case (3): x € (Up)mix- We note that

(Ua)mix = (U (AR))mix Y (A mix U (Amidmix
= (U (AR)mix Y Anix

Firstly suppose that x € U (Ag). Then x € U (y) for some y € Ag. Then y be a a—closed point since every closed point
is a—closed point. Sincey € Ar c A c V, {y} is a—closed and V is ga - open set, we have {y} < a - Int (V). Then U
(y) c a-Int (V) and so xe V.

Secondly, suppose that X € Anix. Then X € Apix < Ac Vimpliesx € V.

For all cases we assume that x € Ua then we show that x € V, then Ux < V. But we know that V < Ua. From the
above cases we conclude that V = Ua. Thus we shown ().

Let Gao(A) be the family of all go-open sets containing A. Then, we have that U < W for each We Gao(A), using
() above and properties that Ac W nUac Upand W n Uais ga -open set. Hence, we show that Ua < n{W/ We
Goo(A)}= Gao—ker (A).

That is Up = Gao—ker (A). Therefore Goo—ker (A) = Up,

Theorem 7.3: Let E be a subset of ( 22, k*).
(i) If E is a non-empty ga-closed set, then Eg # ¢.
(i)  IfE is ga-closed set and E < By, U B holds for some subset B of (Z2, k), then E = ¢.

Proof:
(i): We recall that a subset E is ga-closed if and only if acl(E) < a-ker (E).Let y be a point of E.

We consider the following three cases for the point y.

Case 1: ye E 2 Let y = (2n+1, 2m+1) for some nm e Z. Then acl(y)= {2n, 2n+1, 2n+2} x {2m, 2m+1,
2m+2}cacl(E) < a-ker (E). Thus there exists a point (2n, 2m)e a-ker (E), say y; = (2n, 2m). Using theorem 7.2(ii),
we have that y;e U(z) for some zeE.

If ze Enix, Say z = (25+1, 2t) for some s,teZ, then U(z) = {2s+1}x {2t-1,2t,2t+1} and y;U(Z). This is a contradiction.

© 2012, IIMA. All Rights Reserved 2371



M. Vigneshwaran* & R. Devi/ On Gao-kernel in the digital plane/ IJMA- 3(6), June-2012, Page: 2358-2373

Next if zeE %, say z = (2s+1, 2t+1) for some s,teZ, then U(z) = {(2s+1, 2t+1)} and y,¢U(z). This is also a
contradiction.

Thus we have that ze Erand hence Eg = ¢ for casel.
Case 2: ye Eniyx Let y = (2n+1, 2m) for some n,m € Z. Then acl(y)= {2n, 2n+1, 2n+2} x {2m}coacl(E) < a-ker (E).

Thus there exists a point (2n, 2m)e a-ker (E), say y; = (2n, 2m). Using theorem 7.2(ii), we have that y;e U(z) for
some zeE.

If ze Enix, Say z = (25+1, 2t) for some s,teZ, then U(z) = {2s+1}x {2t-1,2t,2t+1} and y;¢U(z). This is a contradiction.

Next if zeE |, say z = (2s+1, 2t+1) for some s,teZ, then U(z) = {(2s+1, 2t+1)} and y,¢U(z). This is also a
contradiction.

Thus we have that ze Egand hence Eg = ¢ for case2.
Case 3: ye Eg, Then Eg # ¢.
We shown that Er = ¢ for all cases.

(ii): Suppose that E = ¢. By (i) we have that Eg = ¢. It follows from assumption and definition that Er = (B mix U B)r
= ¢. We have a contradiction.

Theorem 7.4: Let A be a subset in (Z2, k?).

(i) 1If (Z%r< Aholds, then A is “ga-closed.

(i) If (Z)r A holds and there exists a point xe A?such that cl{x}c A, then A is "ga-closed set which is not o-
closed.

Proof:

(i) Using theorem 7.2, we have Gao-ker (A) = U(Ag) = Z%. Then, A is “ga-closed set by theorem 3.21.

(i) By(i), A is "ga-closed set. Since {x} = AZ < A and Int(cl({x})) = {x}, we have that cI({x}) < cl(Int(cl(A))) and so
cl({x}) < acl(A). Suppose that A is a-closed. Then, we have that cl({x}) < A. This is a contradiction.

Example 7.5: The converse of the theorem 7.3(i) is not true in general. A set A={x, y, z} where x = (3, 3),y = (3, 2)
and z = (4, 2) is not ga-closed but Ag # ¢.
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