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ABSTRACT 

We propose a new approach to determine the shortest path in an Interval valued fuzzy networks (IVFN), a network in 
which vertices (or nodes) and edges (or links) remain crisp but each edge (i, i+1) has an associated weight, which is an 
interval fuzzy number of the form Ri = [RiL, RiU] for each i.  For each IVFN, we associate two fuzzy networks called 
lower and upper limit fuzzy networks having the same set of vertices and edges but each edge(i, i+1) is attached with a 
fuzzy weight RiL and RiU respectively.  We exhibit that the shortest path of weight w = [wL, wU] an interval fuzzy number 
in IVFN, is that path for which the shortest path of weight wL in the lower limit fuzzy network coincides with the 
shortest path of weight wU in the upper limit fuzzy network.  The concept is illustrated with the help of a simple 
situation and the validation of mathematical verification is provided.  
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1. INTRODUCTION  
 
In graph theory the shortest path problem is the problem of finding a path between two vertices (or nodes) such that 
sum of the weight of its constituent edges is minimized. An example is finding the quickest way to get from one 
location to another on a road map; in this case, the vertices represent locations and are weighted by the time needed to 
travel that segment. The shortest path problem has transportation, communication routing and scheduling. Now, in any 
network path the arc length may represent time or cost. Therefore in real world, it can be considered to be a fuzzy set.  
Fuzzy set theory, proposed by Zadeh [10], is frequently utilized to deal with the uncertainty problem.  We consider a 
directed network consisting of a finite set of vertices and a finite set of directed edges.  It is assumed that there is only 
one directed edge between any two vertices.  The fuzzy shortest path problem was first analyzed by Dubois and Prade 
[3].  They used Floyd’s algorithm and Ford’s algorithm to treat the fuzzy shortest path problem. Although in their 
method the shortest method length can be obtained, may be the corresponding path in the network doesn’t exist.  Klein 
[4], proposed a dynamical programming recursion – based fuzzy algorithm and later developed by many researchers [1, 
2, 5, 6, 7]. Recently   the concept of Interval valued fuzzy matrices (IVFM) as a generalization of fuzzy matrix was 
introduced and developed by Shyamal and Pal [9], by extending the max. min operations on Fuzzy algebra  Ғ =[0,1], 
for elements   a, b∈ Ғ , a + b = max {a, b} and a . b = min {a, b}. Let Ғmn be the set of all mxn Fuzzy Matrices over the 
Fuzzy algebra with support [0, 1], that is matrices whose entries are intervals and all the intervals are subintervals of the 
interval [0, 1], then max {ai, bi} = [max {aiL, biL}, max {aiU, biU}].  In our earlier work [8], we have represented IVFM 
A = (aij) = ([aijL, aijU]) where each aij is a subinterval of the interval   [0, 1], as the interval matrix  
 
A = [AL, AU]                                                                                                                                                                   (1.1)                                                                   
 
whose ijth entry is the interval [aijL, aijU], where the lower limit AL = (aijL) and the upper limit   AU = (aijU) are fuzzy 
matrices such that the AL ≤ AU that is aijL ≤ aijU  under the usual ordering of real numbers.  In this paper, we adopt a 
similar technique to determine the shortest path for an IVFN, that is, a path in which the sum of the weight of its 
constituent edges is minimized, by way of constructing two fuzzy networks corresponding to the lower and upper limits 
of an IVFN as a generalization of fuzzy shortest path technique presented in [4] and analogous to that for shortest path 
technique found in [1].  In section 2, we present the basic definition and notations.  In section 3, we propose a new 
approach to determine the shortest path in IVFN in which the edges representing  the roads connecting the cities and 
each edge (i, i+1) has an associated weight representing the traffic on the road connecting the cities i and i+1 , which is 
an interval fuzzy number of the form Ri = [RiL, RiU] for each i and we apply the technique used in [1, 4] to determine 
the shortest path in lower and upper limits of the fuzzy networks.  We have defined the shortest path for an IVFN as  
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that path for which the shortest path in lower limit fuzzy network coincides with the shortest path in upper limit  fuzzy 
network and  weight = [wL, wU] where the wL and wU are the weights of the shortest path for lower and upper limit 
fuzzy networks respectively. 
 
2. PRELIMINARIES 
 
In this section, basic definitions and notations are given. 
 
Let a graph, denoted as (V, E), be a set of points V and a set of pairs of these points E. The set V refers to the vertices 
of the graph and the set E refers to the edges of the graph. An edge is denoted by a pair of vertices {i, j}. 
 
If E is changed to a set of ordered pairs of distinct elements  of V, then G (V, E) is a directed graph and E is the set of 
ordered pairs (i, j).  The ordered pairs (i, j) are referred to as arcs or edges and an arc goes from vertex i to vertex j.  An 
arc (i, i) is referred to as a loop.  A path from a vertex s to a vertex t is a sequence of arcs of the form (s, i1), (i1, i2)……. 
(ik, t). 
 
If each arc (i, j) has an associated weight or length Cij, then an (s, t) path has an associated weight or length equal to 
sum of the weights of the constituent arcs in the path.  This in turn gives rise to the shortest path problem, which is to 
find the path with minimal weight between two vertices s and t. 
 
There are a variety of ways to find one shortest path for a network [6].  Some of the more general methods such as the 
labeling algorithm follow from dynamic programming.  It is assumed that the graphs for the models to be presented or 
directed graphs, that is graph without cycles. 
 
For an acyclic directed graph G (V, E) with N vertices numbered from 1 to N such that ‘1’ is the source and ‘N’ is the 
sink, a dynamic programming (DP) formulation for the shortest path problem is given as in [1]: 
 
                               fi(Si+1) = minXi (Ri (Xi, Si+1) + fi-1(Si))                                                                                    (2.1) 
            
Where fi-1(Si) denotes the optimal value of the objective function corresponding to the last i-1 stages and Si is the input 
to the stage i-1, Xi denotes the vector of decision variable at stage i, Ri(Xi, Si+1) is the return function of the stage i and 
fi(Si+1) denotes the optimal value of the objective function corresponding to the last i stages and Si+1 is the input to the 
stage i.  Through the algorithm, vertex i is labeled with f(i), and labels allow the determination of the path. 
           
Through Belman’s principle of optimality this recursion (2.1) is very flexible and has many applications.  One obvious 
flexibility is that the sum in (2.1) can be replaced by almost any binary operator and the recursion will hold in [4].  For 
the fuzzy optimization problems under the max min composition, the sum in (2.1) is the fuzzy addition and (2.1) is 
reformulated as 
 

  fi(Si+1) =  min {max[Ri(Xi, Si+1), fi-1(Si)]}                                                                                                      (2.2)                              
                                   Xi 
 
3. The shortest path of an IVFN. 
 
An interval fuzzy network includes nodes and directed links.  Each node represents a city. Each directed links (i, i+1) 
connects city i to i+1.  Let Xi = {X1, X2… Xi-1} denotes the vector of decision variable at stage i and Si = {S1, S2… Si-1} 
is the input to stage i-1, fi-1 denotes the fuzzy optimal value of the objective function corresponding to the last i-1 
stages.   
 
 If  Xi   Ri      Si+1, then     it indicates that the degree of relevance from stage i to stage i+1  is  Ri   where Ri   is  a sub 
interval  of [0,1]. Let  
 
Ri = [RiL, RiU]                                                                                                                                                                  (3.1) 
 
Since Ri is an interval of [0, 1], RiL ≤ RiU.  Ri (Xi, Si+1) is the weight of the corresponding arc (i, i+1).  For this interval 
valued network (IVFN), let us construct two networks which we call as lower limit fuzzy network (FN)L and  upper 
limit  fuzzy network (FN)U with the same set of nodes and links, the weight of the corresponding arc  (i, i+1) in the 
lower limit fuzzy network is RiL  and in the upper limit fuzzy network in RiU . 
 
This fuzzy shortest path networks can also be viewed in terms of the Dynamic programming (DP) recursion given in 
Equation (2.1).  This recursion is very close to Ford’s Algorithm and is easily extended to fuzzy numbers as in 
Equation (2.2).  Then the DP recursion for lower fuzzy network is,    
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  fiL(Si+1) =  min {max[RiL(Xi, Si+1), f(i-1)L(Si)]}                                                                                                (3.2)                              

                                   Xi 
 
Where f(i-1)L(Si)  denotes the optimal value of the objective function corresponding to the last i-1 stages and Si is the 
input to the stage i-1 of lower fuzzy networks(FN)L, Xi denotes the vector of decision variable at stage i,  RiL(Xi, Si+1) is 
the return function of the stage i and fiL(Si+1) denotes the optimal value of the objective function corresponding to the 
last i stages and Si+1 is the input to the stage i of lower fuzzy networks(FN)L. 
 
DP recursion for upper fuzzy network is,  
 
                            fiU(Si+1) =  min {max[RiU(Xi, Si+1), f(i-1)U(Si)]}                                                                                   (3.3) 
                                                Xi 
Where f(i-1)U(Si)  denotes the optimal value of the objective function corresponding to the last i-1 stages and Si is the 
input to the stage i-1 of upper fuzzy networks(FN)U, Xi denotes the vector of decision variable at stage i,  RiU(Xi, Si+1) is 
the return function of the stage i and fiU(Si+1) denotes the optimal value of the objective function corresponding to the 
last i stages and Si+1 is the input to the stage i of upper fuzzy networks(FN)L. 
 
Let us define DP recursion for Interval valued fuzzy network as, 
 
          fi-1(Si) = [f(i-1)L(Si), f(i-1)U(Si)]                                                                                                                                 (3.4) 
 
Then by recursion 
 
          fi(Si+1) = [fiL(Si+1), fiU(Si+1)]                                                                                                                                  (3.5) 
 
By equation (3.2) and (3.3) we have, 
 
      fi(Si+1)  = [min {max[RiL(Xi, Si+1), f(i-1)L(Si)]},   min {max[RiU(Xi, Si+1), f(i-1)U(Si)]}]  
                        Xi                                                        Xi 
                 =  [min {max{[RiL(Xi, Si+1), RiU(Xi, Si+1)], [f(i-1)L(Si), f(i-1)U(Si)}}]      
                        Xi 
                 =  [min {max[Ri(Xi, Si+1), fi-1(Si)]}]     (By (1.1) )                                                                                       (3.7) 
                        Xi                                                      
 
Where fi(Si+1) denotes the optimal value of the objective function corresponding to the last i stages and Si+1 is the input 
to the stage i of Interval valued fuzzy networks(IVFN), f(i-1)(Si)  denotes the optimal value of the objective function 
corresponding to the last i-1 stages and Si is the input to the stage i-1 of Interval valued fuzzy networks(IVFN), Xi 
denotes the vector of decision variable at stage i,  Ri(Xi, Si+1) is the return function of the stage i of Interval valued 
fuzzy networks(IVFN) .  
 
Definition 3.1:  
Shortest path in IVFN = Shortest path in lower limit fuzzy network (FN)L 
                                    = Shortest path in upper limit fuzzy network (FN)U. 

              
Weight of the shortest path of IVFN = [wL, wU] where wL  and wU  are weights of the fuzzy    shortest path in (FN)L and  
(FN)U respectively. 
 
Now, we deal Interval valued fuzzy networks by using the algorithm [1], applied to (FN)L  and (FN)U   independently.  
 
Algorithm 3.2: 
 
Step 1: Identify the decision variables and specify objective function to be optimized for   interval valued fuzzy 

networks.  
Step 2: Decompose the network into a number of smaller sub intervals.  Identify the stage variable at each stage and 

write down the fuzzy transformation function as a function of the state variable and decision variable at the 
next stage.   

Step 3: Write down a general recursive relationship for completing the fuzzy optimal policy of IVFN by using the 
interval valued fuzzy dynamic programming recursion in (3.4) and (3.7).  

Step 4:   Construct appropriate stage to show the required values of the return function at each  
              Stage in IVFN. 
Step 5:  Determine the overall fuzzy optimal decision or policy and its value at each stage of an IVFN. 
Step 6:  We get the shortest path of IVFN.  
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Now, AN

T be the interval valued fuzzy networks, representing the weight of N during time interval T.     
 
 AN

T    = [ANL
T ,   ANU

T ]                                                                                                        (3.8)  
   
Where ANL

T    is the lower limit (RiL) of the fuzzy network and ANU
T   is upper limit (RiU) of the fuzzy network. Then,    

       
shortest path in AN

T  =  shortest path in  ANL
T =  shortest path in  ANU

T                                                                         (3.9) 
           
Weight of   the shortest path of IVFN = [weight of the shortest path in ANL

T, Weight of the shortest path in ANU
T]                                                                                                                               

                                                                                                                                                                                      (3.10) 
 
 We shall illustrate the technique with a simple example and provide the mathematical verification. 
 
Illustration 3.3:      
 
We consider a Network N = (V, E) consisting n nodes (cities) and m edges (roads) connecting the cities of a country. If 
we measure the crowdness that is traffic of the roads of the network for particular time duration, it is quite impossible 
to measure the crowdness in duration as it is not fixed, but varies from time to time.  So, appropriate technique to 
gradation of crowdness is an interval and not a point.  
 
In this case, the network N is an interval valued fuzzy network in which the weight of the each arc (i, i+1) depends 
upon the crowdness. 
 
Suppose that we want to select the shortest highway route (path) between two cities. The following route network 
provides the possible routes between the starting city at node 1 and the destination city at node 7.  The routes pass 
through intermediate cities designated by nodes 2 to 6.      

                
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

AN
T- Internal valued fuzzy network (IVFN) 

 
By using our representation (3.1) and (3.8), AN

T    = [ANL
T,   ANU

T]    
 

 
 

ANL
T - lower limit fuzzy network (FN)L 
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and 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

ANU
T - lower limit fuzzy network (FN)U 

 
Now we apply the algorithm (3.2) to find a path between city 1 to city 7 which is minimum among all the paths 
between city 1to city 7.  
 
(i) Shortest path for the lower limit fuzzy network.  

                 
First decompose the lower limit fuzzy network into sub networks/stages as 

 
Now S1   is the state in which the node 1lies also, S1    has only state value S1=1.  State S2 has only three possible values; 
Say 2, 3, 4 corresponding stage 1, and so on.  Possible alternative paths from one stage to the other will be called 
decision variables by Xi the decision which takes from   Si -1 to Si. The return or the gain which obviously being the 
function of decision will be denoted by RiL(Xi,Si+1). Here RiL (Xi, Si+1) can be identified with the lower limit of the 
corresponding arc.   By equation (3.2) we have, 
 
              fiL (Si+1)   = min{max [RiL (Xi, Si+1),  f(i-1)L(Si)]] }     
                                              Xi   
 
Now initially for i = 0, fi (Si+1) = f0 (S1) = f0(1) = 0    
 
For i =1 (stage1):    
               f1 (S2)   = min {max [RiL (X1, S2), f0  ( S1 )] }     
                                           Xi   
                            = min [RiL (X1, S2)]      
                                            Xi   
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Now tabulating the date for f1 (S2) 
 

S1 S2 X1 RiL (X1, S2) f1(S2) fuzzy  optimal policy 

1 
2 
3 
4 

1- 2 
1- 3 
1- 4 

.6 

.5 

.1 

.6 

.5 

.1 

1- 2 
1- 3 
1- 4 

 
For stage 2 (i = 2)  
               f2 (S3)   = min {max [R2L (X2, S3), f1 (S2)]}     
                                          X2   
 

S2 S3 X2 R2L (X2,S3) max (R2,f1) f2 (S3) fuzzy  optimal policy 
2 
 
 
3 
 
 
4 

 
 
5 
 
6 
 

2-5 .1 .6  2-5 

3-5 
3-6 

.6 

.3 
.6 

.5*                  .5 3-5 

4-5 
 

4-6 

.6 
 

.5 

.6 
 

.5* 

 
 

.5 

 
 

4- 6 
 
For last stage 3 (i = 3)  
               f3(S4)   =  min {max [R3L (X3, S4),  f2  ( S3 )]}      
                                           X3 

   
 
 
 
 
 
 
 
 
 
 
 
Therefore, for the lower limit fuzzy network of the shortest path from city 1to city7 is: 1         4          6          7 
Weight of the shortest path WL = (.1, .5, .3) 
 
(ii) Shortest path for the upper limit fuzzy matrices 
 
Decompose the upper limit fuzzy network in to sub network /stages as follows: 

 
 

S3 S4 X3 R3L (X3,S4) max (R3, f2) f3 fuzzy  optimal policy 

 
5 
 
 
 
6 

 
 
 
7 

5-7 .4 
.6 
.6 
.6 

  
 

 
6-7 

 
.3 

 
.5* 
.5 

 
.5 
 
 

 
6-7 
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Similarly we have to find the upper limit of the shortest path.  Here RiU (Xi, Si+1) can be identified with the upper limit 
of the corresponding arc. 
 
By equation (3.3) we have,  
 
              fiU (Si+1)   = min {max[RiU(Xi, Si+1), f(i-1)U(Si)]}      
                                    Xi 
 
Now, initially for i = 0, fi (Si+1) = f0 (S1) = f (1) = 0  
 
For i =1 (stage 1): 
  
                  f1 (S2)   = min{max [R1U (X1, S2), f0  ( S1 )]}      
                                                   X1  
  
                              = min [R1U (X1, S2)]       
                                                  X1  
 
Now tabulating the data for f1 (S2) 
 

S1 S2 X1 R1U (X1, S2) f1 (S2) fuzzy  optimal policy 

                  2           1- 2               .7                  .7                       1- 2 
  1              3           1- 3               .7                  .7                       1- 3 
                  4           1- 4               .3*                .3*                     1- 4 

 
For stage 2 (i = 2): 
              f2 (S3)   = min {max [R2 (X2, S3), f1 (S2)]}       
                                         X2  
 

S2 S3 R2U (X2, S3) max (R2, f1) f2 (S3) fuzzy  optimal policy 

2 
3 
 
 
4 

 
 
5 
 
6 
 

2-5 .7  2-5 

3-5 
3-6 

.8 
.7* .7 3-6 

4-5 
 

4-6 

.7 
 

.6* 

 
 

.6 

 
 

4-6 
 
For last stage 3 (i = 3) 
              f3 (S4)   = min {max [R3u (X3, S4), f2 (S3)]}     
                               X3  
 
 
 
 
 
 
 
 
 
 
 
 
 
Therefore the shortest path from city 1 to city 7 for the upper limit fuzzy network is: 1         4       6        7 
 
Weight of the shortest path wU = (.3, .6, .8) 
 

S3 S4 X3 R3L (X3,S4) max (R3,f2) F3 fuzzy  optimal policy 

 
5 
 
 
 
6 

 
 
 
7 

5-7 .9 
.9 
.9 
.9 

  
 

 
6-7 

 
.8 

 
.8* 

       .8 

 
 

.8 
 

 
 

6-7 
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Now we conclude by equation (3.9) we have, 
 
Shortest path in AN

T = shortest path in ANL
T = shortest path in ANU

T = 1         4          6         7 
 
By equation (3.10) we have, 
  
Weight of the shortest path of IVFN = [weight of the shortest path in ANL

T, weight of the shortest path in ANU
T] 

                                         That is, w = [wL, wU]  
                                              = [(.1, .5, .3), (.3, .6, .8)] 
                                              = [.1, .3], [.5, .6], [.3, .8], [.1, .3] [.5, .6]   [.3, .8] 
 
Therefore shortest path of IVFN is   1        4        6         7. 
 
CONCLUSION 
 
For a given IVFN, we have constructed two fuzzy networks (FN) L and (FN) U with the associated weight RiL and RiU 
respectively.  Since the vertex sets and edge sets are same for IVFN, (FN) L and (FN) U and weight of the each edge  
(i, i+1) in IVFN is an interval of the form wi = [wiL ,wiU], we conclude that the shortest path for an IVFN is that path for 
which the shortest path in lower limit fuzzy network coincides with the shortest path in upper limit  fuzzy network and  
weight = [wL, wU] where the wL and wU are the weights of the shortest path for lower and upper limit fuzzy networks.    
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