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ABSTRACT

In the present paper, we prove analogues of some fixed pointic results for contraction type mappings
having asymptotic regularity property in integral setting.
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1. INTRODUCTION AND PRELIMINARIES:

Banach’s contraction mapping principle [1] is one of the pivotal results of non- linear analysis. It has been the
source of metric fixed point theory and its significance rests in its vast applicability in different branches of
mathematics. In the general setting of complete metric space, this theorem runs as follows (see Theorem 2.1, [5]
or, Theorem 1.2.2,[13]).

Theorem: 1.1. (Banach’s contraction principle) Let (X, d) be a complete metric space, C € (0,1) and

f:X = X bea mapping such that for each x,y€ X ,

d(fx, fy)<cd(x,y) (1.1)

then f has a unique fixed point a€ X , such that for eachxe€ X ,lim f"x=a.

n—oco
After this classical result, Kannan [6] gave a substantially new contractive mapping to prove the fixed point
theorem. Since then, a number of researchers have been proving the existence of fixed point theorems by using
more generalised contractive conditions ( see [2], [9], [10] [11], [12]). On the otherhand, asymptotically regularity
(a.r.) property for a self-map has been investigated by F. E. Browder and W.V. Petryshyn [4]in 1966.

Definition: 1.2. A self-mapping 7 on a metric space (X, d) is said to be asymp- totically regular at a point x in
X, ie. if
d (T"x,T"“x) =0asn—oo 1.2)

where 7" x denotes the n-th iterate of T at x.

Motivated by this concept researchers have been interested to use this notion for various contraction mappings as
an additional sufficient condition to force the map extracting fixed point. They have verified by examples that
without this property (a.r.) contractive mappings are not sufficient enough to produce fixed point.

In 2002, A. Branciari [3] for the first time analyzed the existence of fixed point for mapping f defined on a
complete metric space (X, d) satisfying a general contractive condition of integral type in the following
theorem.

Theorem: 1.3. (Branciari) Let (X, d) be a complete metric space, C€E (0,1) and let

f: X — X be a mapping such that for eachXx,y€ X ,
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jo(ﬂ o(t dt<J' o(t)dt (13)

where @ [O, +<><>) - [0, +00) is d=Lesbesgyie-integrable mapping which is summable (i.e. with finite integral) on
each compact subset of [0 +°°), nonnegative, and such that for each €>0J‘ dt>0 then f has a

unique fixed point a € X such that for each X € X,hm f X=a.

n—oo

After the paper of Branciari, a lot of research works have been carried out on generalising contractive conditions of
integral type for different contractive mappings satisfying various known properties. A fine work has been done
by Rhoades [9] extending the result of Branciari by replacing the condition (1.3) by the following

| - [d(x,ﬂ')+d()wa)]}
() max{d(x, (). (3, ) LTSI
[ e(ndr<c[ 1 2 o(t)d (1.4)

The aim of this paper is to prove analogues of some fixed pointic results for mixed type of contraction mappings
having asymptotic regularity property in integral setting which in turn generalize certain results due to Panja
and Baisnab [7] in integral setting.

2. MAIN RESUL.T'S:
Theorem: 2.1. Let T be a self mapping of a complete metric space (X, d) satisfying the following condition:

max{d(x,Ty).d(y.Tx)}

J~d(Tx,Ty)

0

[d(x,Tx)-*—d(g,Tg)]
J‘ y,1y ¢(

d(x, )
p(r)dt<al t)dt+,8j0 Vo(t)dr +9/f o(t)dt 2.1)

1
for each x,y€ X with &, 5,7=>0 and max{a, ,B}-l— ¥y < E . where ¢:[0, +00) - [(), +°°) is a Lesbesgue-
integrable mapping which is summable (i.e. with finite integral) on each compact subset of [O,-I-OO),

nonnegative, and such that

for each e>0,j:(p(t)dt>0 2.2)
If T also satisfies

J‘d(T”x,T"Hx)

0

@(t)di=0asn— oo, (2.3)

then T has a unique fixed point 7€ X .

Proof: Let x,€ X be arbitrary. Then for positive integers m, n,

Ld(rmxo,T"xo) qo( )dt J~1(T(Tm 1 )T(Tnflx[))) (o(t)dt

)

< aJ- d(T’”’ X ,T’”xo)er(T”’ xOT”xo)J q)(t) dt 4 ﬂ J-Od (T " xy T xo (t ) dt

+ 7.'- max T”"I X0.T" Xy ),d(T’"xO T xy )} ¢ ( p ) d

[d(T””‘xo ,T”’xo)+d(T”*'x0,T”x0)] T 5 7" )

<a t)dt +f J' (D(I)dt
™ IXO,T"XO) T”’XO,T” ]XO)
+;/j0 o(r)dr+ 7/.[0 o(t)dt
Applying some routine calculation, we have
d(me(l ,T”x(,) o+ ﬂ + 7 d(Tm_]Xn»meo) d(T”'lx(, ,T”x(,)
[ ¢(t)dtsm[jo o(1)di+ | o(t)dr 2.4)
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1
where max{a', ,B}+ y< E Now since T satisfies (2.3), then by (2.4)

J-d(T"'xO ,T"xo)

. @(1)dr -0 as m,n — oo

Therefore, {T”x()} is Cauchy, hence convergent. Call the limit z€ X ie. im7"x, =z

From (2.1) we get

.[d(zmgo dt < J T 1)dt + j (7.7 o(t)dt

0

d(2.1"x) d(T" 5. T"xp )+d(2.T2)
S.[o o(t)dt +aj0[ }¢(t)dt

d(T"’lx ,z) mdx T” Ix, ,Tz),d(z,T”x )}
+,3_[0 o(t)dt +7j ! Y o(t)dt
Taking limit as 7 —> o°, we get
d(z,T7) d(z.Tz)
[T e@dr<(a+y)|, o(r)d
which, from (2.2), implies that d(z, Tz) =0 or, Tz = z.
Next suppose that W(;t Z ) be another fixed point of 7. Then from (2.1) we have
d(z,w) d(T ,Tw)
L p(t)dr = L () dr
[d(z.Tz)+d(w.Tw)] d(z,w) max{d(z.Tw).d(w,Iz)}
Sajo (p(t)dt+,BJ.0 t)dt +7j o(r)de

which implies

d(z,w)

r(z»w) p(1)di<(f+7)];

0

o(r)dr
gives a contradiction. Hence z = w and so the fixed point is unique.

Theorem: 2.2. Let T be a self mapping of a complete metric space (X, d) satisfying (2.1) and 2.2). If T
satisfies (2.3) and the sequence of iterates {T" (x)} has a subsequence converging to a point Z€ X , then z is

the unique fixed point of T and {T" (x)} also converges to z.

Proof: Let llm T™ (x)=2z. Then using (2.1) we get,

[ otas

T"]‘ +l T”kﬂx T

(p dt+J (D(I)dt

d(z,7%x d(T" x, "M x +d(z,Tz)
sj( ( )go(t)dt +aj()[ ( ) }(p(t)dt

)

max d T x,Tz ) d(z,T”k“x)}

+ ,BJ':(TWX’Z) t)dt + I o(r)dt

Taking limit as k — oo, we get
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which, from (2.2), implies that d(z, Tz) =0 or, Tz = z. Also uniqueness of z follows very immediate.

Next,

f ) o(r)dt = .[d(TZ’T"x) o(r)dt

0
max d T”x),d(T"’]x,Tz)}

<“I rlr x” dt+,[)’J. (277 t)dt +7I (1) dr

Excercising some routine calculation, we have

d(z.1"x) a+L+y | pdlrxrs
J.O ¢(t)dl${mjjo ¢(l)d[

1 -
Where max{a, IB} +y< 5 . As T satisfies (2.3),

l(h,T"x)
IO @(t)dr >0asn— oo

which completes the proof.

Theorem: 2.3. Let (X, d) be a complete metric space {Tn} be a sequence of mappings from X into itself

satisfying (2.1) and (2.2) with same constants O, ,B,}/ and possessing fixed points uy(n = 1,2, ...). Suppose

that T(x) =lim T, (x) forall xe X and T satisfies (2.3). Then T has a unique fixed point u if and only if
n—>00

u=limu, .

n

Proof: The proof is trivial.

Theorem: 2.4. Let (X, d) be a complete metric space and {Tj}A N be a sequence of mappings from X into
Jje

itself
I d(T/X‘ij)ﬁl’(t)dzsajo[d(x’T/X)M(y‘Tﬂ)](/’(t)dt+/”I:(x‘y> t)dt +7/J.max xm)yd(yf/x”?’(f)df 25

0

1
for each x,y€ X with &, 8,7>0 and max{a,,B}+ 7<5. where (0:[0,+°°)—>[0,+°0) is a Lesbesgue-

integrable mapping which is summable (i.e. with finite integral) on each compact subset of [0,+°°),

nonnegative, and such that

for each €>0, J dt >0 (2.6)

Suppose T" (x) = hmT/ (x) forall x€ X . Then T has a unique fixed point in X if T satisfies (2.3).
Jo

Proof: Let
n 1 n
T"x, —}.miTj x, forx,e X .
Then for positive integers m, n

J d(7750 1) o(1)di = J-Od(r,(r,»"lm)»T.f(T;—lxo)) o(t)dt

0
el m nel on -
< J‘O[d(T./ X1 x0)+d(T/ Xo. T xﬂ)] dt + ())j %o, ;" Xn (t)dl’

max{d(T;’HxO,Y;f‘xo),d(ij"xO ,Tj”’lxo )} (

+7/, o(r)dr
sajo[d(T’Wx”’T’%)*‘i(T”*“’”"*“” D+ ()
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d(T}’HxO T} ) d(TJm X ,T;on )
+7/, o(1)dr+ ;/L o(r)dt
Again applying some routine calculation, we have
d(T]"%.T}' %)) a+L+y| pdr s x) d(T) %17
[ go(t)dtgl_ﬁ—_zy[jo o(1)di+| o(t)dr @7
where max{a, IB}+ r< % .
Letting j — oo, we obtain
d(T”’Xu ,T”x“) o+ ﬂ + 7 d(Tm_]Xn»meo) d(T”'lx“ ,T”x“)
[ ¢(t)dtsm[jo o(1)di+|. o(t)dr 238)

Where max{a, f}+ ¥ <1. Since T satisfies (2.3), then by (2.8)

J~d(T”'x0 ,T"xl))

. @(1)dt >0 as myn — oo

Therefore, {T”xo} is Cauchy sequence. Then by completeness of X, im7"x, = ze X .

Then it follows from Theorem 2.1 that z is the unique fixed point of 7.
Remark: 2.5 On setting (o(t ) =1 over [0, +<><>) , the contractive condition of integral type transforms into a

general contractive condition not involving integrals.
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